source: Sophya/trunk/SophyaLib/TArray/diagmtx.h@ 3995

Last change on this file since 3995 was 3870, checked in by ansari, 15 years ago

correction commentaires pour doxygen, Reza 12/08/2010

File size: 6.8 KB
Line 
1// This may look like C code, but it is really -*- C++ -*-
2// This code is part of the SOPHYA library
3// (C) Univ. Paris-Sud (C) LAL-IN2P3/CNRS (C) IRFU-CEA
4// (C) R. Ansari, C.Magneville 2009-2010
5
6#ifndef DIAGMTX_H_SEEN
7#define DIAGMTX_H_SEEN
8
9#include "spesqmtx.h"
10
11namespace SOPHYA {
12
13/*!
14 \class DiagonalMatrix
15 \ingroup TArray
16 \brief Class representing a diagonal matrix.
17
18 This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like
19 reference sharing and counting, arithmetic operators ... However, this class has no
20 sub matrix extraction method.
21*/
22
23template <class T>
24class DiagonalMatrix : public SpecialSquareMatrix<T> {
25public :
26
27#include "spesqmtx_tsnl.h"
28
29//! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used
30explicit DiagonalMatrix()
31 : SpecialSquareMatrix<T>(C_DiagonalMatrix)
32{
33 mOffDiag = T(0);
34}
35
36//! Instanciate a triangular matrix from the number of rows (rowSize must be > 0)
37explicit DiagonalMatrix(sa_size_t rowSize)
38 : SpecialSquareMatrix<T>(rowSize, C_DiagonalMatrix)
39{
40 if (rowSize < 1)
41 throw ParmError("DiagonalMatrix<T>::DiagonalMatrix(rsz) rsz <= 0");
42 mElems.ReSize(rowSize);
43 mInfo = NULL;
44 mOffDiag = T(0);
45}
46
47//! Copy constructor (possibility of sharing datas)
48DiagonalMatrix(DiagonalMatrix<T> const & a, bool share=false)
49 : SpecialSquareMatrix<T>(a, share)
50{
51 mOffDiag = T(0);
52}
53
54//! Copy constructor (possibility of sharing datas)
55DiagonalMatrix(SpecialSquareMatrix<T> const & a, bool share=false)
56 : SpecialSquareMatrix<T>(a, share)
57{
58 if (a.MtxType() != C_DiagonalMatrix)
59 throw TypeMismatchExc("DiagonalMatrix(a) a NOT a DiagonalMatrix");
60 mOffDiag = T(0);
61}
62
63/*!
64 \brief Create a lower triangular matrix from a square matrix.
65 Off diagonal elements are ignored.
66*/
67explicit DiagonalMatrix(TMatrix<T> const & mx)
68 : SpecialSquareMatrix<T>(C_DiagonalMatrix)
69{
70 if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1))
71 throw ParmError("DiagonalMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix");
72 SetSize(mx.NRows());
73 for(sa_size_t l=0; l<NRows(); l++) (*this)(l,l) = mx(l,l);
74 mOffDiag = T(0);
75}
76
77//! Sets or change the triangular matrix size, specifying the new number of rows
78virtual void SetSize(sa_size_t rowSize)
79{
80 if (rowSize < 1)
81 throw ParmError("DiagonalMatrix<T>::SetSize(rsz) rsz <= 0");
82 if (rowSize == mNrows) return;
83 mNrows=rowSize;
84 mElems.ReSize(mNrows);
85}
86
87
88//! Return the object (diagonal matrix) as a standard (TMatrix<T>) square matrix
89virtual TMatrix<T> ConvertToStdMatrix() const
90{
91 if (mNrows < 1)
92 throw SzMismatchError("DiagonalMatrix<T>::ConvertToStdMatrix() (this) not allocated !");
93 TMatrix<T> mx(NRows(), NRows());
94 for(sa_size_t l=0; l<NRows(); l++) mx(l,l) = (*this)(l,l);
95 return mx;
96}
97
98
99//--- Operateurs = (T b) , = (DiagonalMatrix<T> b)
100//! operator = a , to set all elements to the value \b a
101inline DiagonalMatrix<T>& operator = (T a)
102 { SetCst(a); return (*this); }
103//! operator = DiagonalMatrix<T> a , element by element copy operator
104inline DiagonalMatrix<T>& operator = (DiagonalMatrix<T> const & a)
105 { Set(a); return (*this); }
106//! operator = Sequence seq
107inline DiagonalMatrix<T>& operator = (Sequence const & seq)
108 { SetSeq(seq); return (*this); }
109//! operator = Sequence seq
110inline DiagonalMatrix<T>& operator = (IdentityMatrix & idmx)
111 { SetCst((T)(idmx.Diag())); return (*this); }
112
113//--- Operateurs d'acces aux elements
114//! Element access operator (R/W): access to elements row \b r and column \b c
115inline T& operator()(sa_size_t r, sa_size_t c)
116{
117 if ((r<0)||(r>=mNrows))
118 throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
119 if (r!=c) { mOffDiag = T(0); return mOffDiag; }
120 return mElems(r);
121}
122//! Element access operator (RO): access to elements row \b r and column \b c
123inline T operator()(sa_size_t r, sa_size_t c) const
124{
125 if ((r<0)||(r>=mNrows))
126 throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
127 if (r!=c) { mOffDiag = T(0); return mOffDiag; }
128 return mElems(r);
129}
130
131//! Diagonal Matrix product (multiplication) : ret_matrix = (*this) * dmx
132DiagonalMatrix<T> Multiply(DiagonalMatrix<T> const & dmx) const
133{
134 if (NRows() != dmx.NRows())
135 throw SzMismatchError("DiagonalMatrix<T>::Multiply(DiagonalMatrix<T> dmx): different sizes");
136 DiagonalMatrix<T> ret(NRows());
137 for(size_t k=0; k<mElems.Size(); k++)
138 ret.mElems(k) = mElems(k)*dmx.mElems(k);
139 ret.SetTemp(true);
140 return ret;
141}
142
143//! Matrix product (multiplication) : ret_matrix = (*this) * mx
144TMatrix<T> MultiplyDG(TMatrix<T> const & mx) const
145{
146 if (NCols() != mx.NRows())
147 throw SzMismatchError("DiagonalMatrix<T>::MultiplyDG(TMatrix<T> mx): NCols()!=mx.NRows()");
148
149 TMatrix<T> ret(mx, false);
150 for(sa_size_t r=0; r<NRows(); r++)
151 ret.Row(r) *= (*this)(r,r);
152 ret.SetTemp(true);
153 return ret;
154}
155
156//! Matrix product (multiplication) : ret_matrix = mx * (*this)
157TMatrix<T> MultiplyGD(TMatrix<T> const & mx) const
158{
159 if (NRows() != mx.NCols())
160 throw SzMismatchError("DiagonalMatrix<T>::MultiplyGD(TMatrix<T> mx): NRows()!=mx.NCols()");
161
162 TMatrix<T> ret(mx, false);
163 for(sa_size_t c=0; c<NRows(); c++)
164 ret.Column(c) *= (*this)(c,c);
165 ret.SetTemp(true);
166 return ret;
167}
168
169
170//! ASCII dump/print of the triangular matrix object (nprt=-1 for printing all diagonal elements)
171ostream& Print(ostream& os, sa_size_t nprt=-1) const
172{
173 os << "DiagonalMatrix< " << typeid(T).name()
174 << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl;
175 for(sa_size_t k=0; k<Size(); k+=8) {
176 if (k%32==0) os << "DiagonalElements: [ " << k << " ..." << k+31 <<" ] :" << endl;
177 sa_size_t jmx=k+8;
178 if (jmx>Size()) jmx = Size();
179 for(sa_size_t j=k; j<jmx; j++) os << mElems(j) << " , ";
180 os << endl;
181 if (k >= nprt) break;
182 }
183 return os;
184}
185
186protected:
187mutable T mOffDiag;
188};
189
190//----- Surcharge d'operateurs C = A * B (multiplication matricielle)
191/*! \ingroup TArray \fn operator*(const DiagonalMatrix<T>&,const DiagonalMatrix<T>&)
192 \brief * : DiagonalMatrix multiplication \b a and \b b */
193template <class T>
194inline DiagonalMatrix<T> operator * (const DiagonalMatrix<T>& a, const DiagonalMatrix<T>& b)
195 { return(a.Multiply(b)); }
196
197/*! \ingroup TArray \fn operator*(const DiagonalMatrix<T>&,const TMatrix<T>&)
198 \brief * : Matrix multiplication DiagonalMatrix (\b a ) * TMatrix<T> ( \b b ) */
199template <class T>
200inline TMatrix<T> operator * (const DiagonalMatrix<T>& a, const TMatrix<T>& b)
201 { return(a.MultiplyDG(b)); }
202
203/*! \ingroup TArray \fn operator*(const TMatrix<T>&,const DiagonalMatrix<T>&)
204 \brief * : Matrix multiplication TMatrix (\b a ) * DiagonalMatrix<T> ( \b b ) */
205template <class T>
206inline TMatrix<T> operator * (const TMatrix<T>& a, const DiagonalMatrix<T>& b)
207 { return(b.MultiplyGD(a)); }
208
209
210} // namespace SOPHYA
211
212#endif
Note: See TracBrowser for help on using the repository browser.