| [787] | 1 | //  Usuall mathematical functions and operations on arrays | 
|---|
|  | 2 | //                     R. Ansari, C.Magneville   03/2000 | 
|---|
|  | 3 |  | 
|---|
| [2615] | 4 | #include "sopnamsp.h" | 
|---|
| [787] | 5 | #include "machdefs.h" | 
|---|
| [882] | 6 | #include <math.h> | 
|---|
| [787] | 7 | #include "matharr.h" | 
|---|
|  | 8 |  | 
|---|
|  | 9 | // ---------------------------------------------------- | 
|---|
|  | 10 | //          Application d'une fonction | 
|---|
|  | 11 | // ---------------------------------------------------- | 
|---|
|  | 12 |  | 
|---|
| [926] | 13 | /*! | 
|---|
|  | 14 | \class SOPHYA::MathArray | 
|---|
|  | 15 | \ingroup TArray | 
|---|
|  | 16 | Class for simple mathematical operation on arrays | 
|---|
|  | 17 | \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays | 
|---|
|  | 18 | */ | 
|---|
| [894] | 19 |  | 
|---|
|  | 20 | //! Apply Function In Place (function double version) | 
|---|
|  | 21 | /*! | 
|---|
|  | 22 | \param a : array to be replaced in place | 
|---|
|  | 23 | \param f : function for replacement | 
|---|
|  | 24 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
|  | 25 | */ | 
|---|
| [787] | 26 | template <class T> | 
|---|
|  | 27 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f) | 
|---|
|  | 28 | { | 
|---|
| [804] | 29 | if (a.NbDimensions() < 1) | 
|---|
|  | 30 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !"); | 
|---|
| [787] | 31 | T * pe; | 
|---|
| [1156] | 32 | sa_size_t j,k; | 
|---|
| [787] | 33 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| [1156] | 34 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 35 | sa_size_t maxx = a.Size()*step; | 
|---|
| [787] | 36 | pe = a.Data(); | 
|---|
|  | 37 | for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((double)pe[k])); | 
|---|
|  | 38 | } | 
|---|
|  | 39 | else {    // Non regular data spacing ... | 
|---|
| [1156] | 40 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 41 | sa_size_t step = a.Step(ka); | 
|---|
|  | 42 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 43 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| [813] | 44 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 45 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| [787] | 46 | for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((double)pe[k])); | 
|---|
|  | 47 | } | 
|---|
|  | 48 | } | 
|---|
|  | 49 | return(a); | 
|---|
|  | 50 | } | 
|---|
|  | 51 |  | 
|---|
| [894] | 52 | //! Apply Function In Place (function float version) | 
|---|
|  | 53 | /*! | 
|---|
|  | 54 | \param a : array to be replaced in place | 
|---|
|  | 55 | \param f : function for replacement | 
|---|
|  | 56 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
|  | 57 | */ | 
|---|
| [787] | 58 | template <class T> | 
|---|
| [2322] | 59 | TArray<T>& MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a, Arr_FloatFunctionOfX f) | 
|---|
| [787] | 60 | { | 
|---|
| [804] | 61 | if (a.NbDimensions() < 1) | 
|---|
| [2322] | 62 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a..) Not Allocated Array a !"); | 
|---|
| [787] | 63 | T * pe; | 
|---|
| [1156] | 64 | sa_size_t j,k; | 
|---|
| [787] | 65 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| [1156] | 66 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 67 | sa_size_t maxx = a.Size()*step; | 
|---|
| [787] | 68 | pe = a.Data(); | 
|---|
|  | 69 | for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((float)pe[k])); | 
|---|
|  | 70 | } | 
|---|
|  | 71 | else {    // Non regular data spacing ... | 
|---|
| [1156] | 72 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 73 | sa_size_t step = a.Step(ka); | 
|---|
|  | 74 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 75 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| [813] | 76 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 77 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| [787] | 78 | for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((float)pe[k])); | 
|---|
|  | 79 | } | 
|---|
|  | 80 | } | 
|---|
|  | 81 | return(a); | 
|---|
|  | 82 | } | 
|---|
|  | 83 |  | 
|---|
|  | 84 |  | 
|---|
| [894] | 85 | //! Apply Function (function double version) | 
|---|
|  | 86 | /*! | 
|---|
|  | 87 | \param a : argument array of the function | 
|---|
|  | 88 | \param f : function for replacement | 
|---|
|  | 89 | \return Return a new array filled with function f(a(i,j)) | 
|---|
|  | 90 | */ | 
|---|
| [787] | 91 | template <class T> | 
|---|
|  | 92 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f) | 
|---|
|  | 93 | { | 
|---|
|  | 94 | TArray<T> ra; | 
|---|
|  | 95 | ra = a; | 
|---|
|  | 96 | ApplyFunctionInPlace(ra, f); | 
|---|
|  | 97 | return(ra); | 
|---|
|  | 98 | } | 
|---|
|  | 99 |  | 
|---|
| [894] | 100 | //! Apply Function (function float version) | 
|---|
|  | 101 | /*! | 
|---|
|  | 102 | \param a : argument array of the function | 
|---|
|  | 103 | \param f : function for replacement | 
|---|
|  | 104 | \return Return a new array filled with function f(a(i,j)) | 
|---|
|  | 105 | */ | 
|---|
| [787] | 106 | template <class T> | 
|---|
| [2322] | 107 | TArray<T> MathArray<T>::ApplyFunctionF(TArray<T> const & a, Arr_FloatFunctionOfX f) | 
|---|
| [787] | 108 | { | 
|---|
|  | 109 | TArray<T> ra; | 
|---|
|  | 110 | ra = a; | 
|---|
| [2322] | 111 | ApplyFunctionInPlaceF(ra, f); | 
|---|
| [787] | 112 | return(ra); | 
|---|
|  | 113 | } | 
|---|
|  | 114 |  | 
|---|
| [894] | 115 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean | 
|---|
| [804] | 116 | template <class T> | 
|---|
|  | 117 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig) | 
|---|
|  | 118 | { | 
|---|
|  | 119 | if (a.NbDimensions() < 1) | 
|---|
|  | 120 | throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !"); | 
|---|
|  | 121 | const T * pe; | 
|---|
| [1156] | 122 | sa_size_t j,k; | 
|---|
| [804] | 123 | mean=0.; | 
|---|
|  | 124 | sig = 0.; | 
|---|
|  | 125 | double valok; | 
|---|
|  | 126 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| [1156] | 127 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 128 | sa_size_t maxx = a.Size()*step; | 
|---|
| [804] | 129 | pe = a.Data(); | 
|---|
|  | 130 | for(k=0; k<maxx; k+=step )  { | 
|---|
|  | 131 | valok = (double) pe[k]; | 
|---|
|  | 132 | mean += valok;  sig += valok*valok; | 
|---|
|  | 133 | } | 
|---|
|  | 134 | } | 
|---|
|  | 135 | else {    // Non regular data spacing ... | 
|---|
| [1156] | 136 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 137 | sa_size_t step = a.Step(ka); | 
|---|
|  | 138 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 139 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| [813] | 140 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 141 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| [804] | 142 | for(k=0; k<gpas; k+=step) { | 
|---|
|  | 143 | valok = (double) pe[k]; | 
|---|
|  | 144 | mean += valok;  sig += valok*valok; | 
|---|
|  | 145 | } | 
|---|
|  | 146 | } | 
|---|
|  | 147 | } | 
|---|
|  | 148 | double dsz = (double)(a.Size()); | 
|---|
|  | 149 | mean /= dsz; | 
|---|
| [2923] | 150 | if (dsz > 1.5) { | 
|---|
|  | 151 | sig = sig/dsz - mean*mean; | 
|---|
|  | 152 | sig *= (dsz/(dsz-1)); | 
|---|
|  | 153 | if (sig >= 0.) sig = sqrt(sig); | 
|---|
|  | 154 | } | 
|---|
|  | 155 | else sig = 0.; | 
|---|
| [804] | 156 | return(mean); | 
|---|
|  | 157 | } | 
|---|
|  | 158 |  | 
|---|
| [1517] | 159 |  | 
|---|
|  | 160 | //------------------------------------------------------------------------------- | 
|---|
|  | 161 | //      Definition utilitaire d'application de fonction | 
|---|
|  | 162 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z, | 
|---|
|  | 163 | Arr_ComplexDoubleFunctionOfX f) | 
|---|
|  | 164 | { | 
|---|
|  | 165 | return(f(z)); | 
|---|
|  | 166 | } | 
|---|
|  | 167 |  | 
|---|
|  | 168 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z, | 
|---|
|  | 169 | Arr_ComplexDoubleFunctionOfX f) | 
|---|
|  | 170 | { | 
|---|
|  | 171 | complex<r_8> zd((r_8)z.real(), (r_8)z.imag()); | 
|---|
|  | 172 | zd = f(zd); | 
|---|
| [1521] | 173 | complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag()); | 
|---|
| [1517] | 174 | return(zr); | 
|---|
|  | 175 | } | 
|---|
|  | 176 |  | 
|---|
|  | 177 | //------------------------------------------------------------------------------- | 
|---|
|  | 178 |  | 
|---|
|  | 179 | /*! | 
|---|
|  | 180 | \class SOPHYA::ComplexMathArray | 
|---|
|  | 181 | \ingroup TArray | 
|---|
|  | 182 | Class for simple mathematical operation on arrays | 
|---|
|  | 183 | \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays | 
|---|
|  | 184 | */ | 
|---|
|  | 185 |  | 
|---|
|  | 186 | //! Apply Function In Place (complex arrays) | 
|---|
|  | 187 | /*! | 
|---|
|  | 188 | \param a : complex array to be replaced in place | 
|---|
|  | 189 | \param f : function for replacement | 
|---|
|  | 190 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
|  | 191 | */ | 
|---|
|  | 192 | template <class T> | 
|---|
|  | 193 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f) | 
|---|
|  | 194 | { | 
|---|
|  | 195 | if (a.NbDimensions() < 1) | 
|---|
|  | 196 | throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !"); | 
|---|
|  | 197 | complex<T> * pe; | 
|---|
|  | 198 | sa_size_t j,k; | 
|---|
|  | 199 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 200 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 201 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 202 | pe = a.Data(); | 
|---|
|  | 203 | for(k=0; k<maxx; k+=step )  pe[k] = ApplyComplexDoubleFunction(pe[k],f); | 
|---|
|  | 204 | } | 
|---|
|  | 205 | else {    // Non regular data spacing ... | 
|---|
|  | 206 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 207 | sa_size_t step = a.Step(ka); | 
|---|
|  | 208 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 209 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 210 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 211 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 212 | for(k=0; k<gpas; k+=step)  pe[k] = ApplyComplexDoubleFunction(pe[k],f); | 
|---|
|  | 213 | } | 
|---|
|  | 214 | } | 
|---|
|  | 215 | return(a); | 
|---|
|  | 216 | } | 
|---|
|  | 217 |  | 
|---|
|  | 218 |  | 
|---|
|  | 219 |  | 
|---|
|  | 220 | //! Apply Function (complex arrays) | 
|---|
|  | 221 | /*! | 
|---|
|  | 222 | \param a : argument array of the function | 
|---|
|  | 223 | \param f : function for replacement | 
|---|
|  | 224 | \return Return a new array filled with function f(a(i,j)) | 
|---|
|  | 225 | */ | 
|---|
|  | 226 | template <class T> | 
|---|
|  | 227 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f) | 
|---|
|  | 228 | { | 
|---|
|  | 229 | TArray< complex<T> > ra; | 
|---|
|  | 230 | ra = a; | 
|---|
|  | 231 | ApplyFunctionInPlace(ra, f); | 
|---|
|  | 232 | return(ra); | 
|---|
|  | 233 | } | 
|---|
|  | 234 |  | 
|---|
|  | 235 | //! Create a complex array, from a real and an imaginary arrays | 
|---|
|  | 236 | /*! | 
|---|
|  | 237 | \param p_real : array containing the real part of the complex output array | 
|---|
|  | 238 | \param p_imag : array containing the imaginary part of the complex output array | 
|---|
|  | 239 | \return Return a new complex array build from \b p_real and \b p_imag | 
|---|
|  | 240 | */ | 
|---|
|  | 241 | template <class T> | 
|---|
|  | 242 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real, | 
|---|
|  | 243 | TArray<T> const & p_imag) | 
|---|
|  | 244 | { | 
|---|
|  | 245 | if (p_real.NbDimensions() < 1) | 
|---|
|  | 246 | throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! "); | 
|---|
|  | 247 | bool smo; | 
|---|
|  | 248 | if (!p_real.CompareSizes(p_imag, smo)) | 
|---|
|  | 249 | throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ; | 
|---|
|  | 250 |  | 
|---|
|  | 251 | TArray< complex<T> > ra; | 
|---|
|  | 252 | ra.ReSize(p_real); | 
|---|
|  | 253 |  | 
|---|
|  | 254 | complex<T> * pe; | 
|---|
|  | 255 | const T * per; | 
|---|
|  | 256 | const T * pei; | 
|---|
|  | 257 | sa_size_t j,k,ka; | 
|---|
|  | 258 | if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0))   {  // regularly spaced elements | 
|---|
|  | 259 | sa_size_t step = p_real.AvgStep(); | 
|---|
|  | 260 | sa_size_t stepa = p_imag.AvgStep(); | 
|---|
|  | 261 | sa_size_t maxx = p_real.Size()*step; | 
|---|
|  | 262 | per = p_real.Data(); | 
|---|
|  | 263 | pei = p_imag.Data(); | 
|---|
|  | 264 | pe = ra.Data(); | 
|---|
|  | 265 | for(k=0, ka=0;  k<maxx;  k+=step, ka+=stepa ) | 
|---|
|  | 266 | pe[k] = complex<T>(per[k], pei[ka]) ; | 
|---|
|  | 267 | } | 
|---|
|  | 268 | else {    // Non regular data spacing ... | 
|---|
|  | 269 | int_4 ax,axa; | 
|---|
|  | 270 | sa_size_t step, stepa; | 
|---|
|  | 271 | sa_size_t gpas, naxa; | 
|---|
|  | 272 | p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa); | 
|---|
|  | 273 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 274 | per = p_real.Data()+p_real.Offset(ax,j); | 
|---|
|  | 275 | pei = p_imag.Data()+p_imag.Offset(axa,j); | 
|---|
|  | 276 | pe = ra.Data()+ra.Offset(ax,j); | 
|---|
|  | 277 | for(k=0, ka=0;  k<gpas;  k+=step, ka+=stepa) | 
|---|
|  | 278 | pe[k] = complex<T>(per[k], pei[ka]) ; | 
|---|
|  | 279 | } | 
|---|
|  | 280 | } | 
|---|
|  | 281 | return(ra); | 
|---|
|  | 282 | } | 
|---|
|  | 283 |  | 
|---|
|  | 284 |  | 
|---|
|  | 285 | //! Returns the real part of the complex input array. | 
|---|
|  | 286 | /*! | 
|---|
|  | 287 | \param a : input complex array | 
|---|
|  | 288 | \return Return a new array filled with the real part of the input complex array elements | 
|---|
|  | 289 | */ | 
|---|
|  | 290 |  | 
|---|
|  | 291 | template <class T> | 
|---|
|  | 292 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a) | 
|---|
|  | 293 | { | 
|---|
|  | 294 | if (a.NbDimensions() < 1) | 
|---|
|  | 295 | throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
|  | 296 | TArray<T> ra; | 
|---|
|  | 297 | ra.ReSize(a); | 
|---|
|  | 298 |  | 
|---|
|  | 299 | const complex<T> * pe; | 
|---|
|  | 300 | T * po; | 
|---|
|  | 301 | sa_size_t j,k; | 
|---|
|  | 302 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 303 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 304 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 305 | pe = a.Data(); | 
|---|
|  | 306 | po = ra.Data(); | 
|---|
|  | 307 | for(k=0; k<maxx; k+=step )  po[k] = pe[k].real(); | 
|---|
|  | 308 | } | 
|---|
|  | 309 | else {    // Non regular data spacing ... | 
|---|
|  | 310 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 311 | sa_size_t step = a.Step(ka); | 
|---|
|  | 312 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 313 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 314 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 315 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 316 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
|  | 317 | for(k=0; k<gpas; k+=step)  po[k] = pe[k].real(); | 
|---|
|  | 318 | } | 
|---|
|  | 319 | } | 
|---|
|  | 320 | return(ra); | 
|---|
|  | 321 | } | 
|---|
|  | 322 |  | 
|---|
|  | 323 | //! Returns the imaginary part of the complex input array. | 
|---|
|  | 324 | /*! | 
|---|
|  | 325 | \param a : input complex array | 
|---|
|  | 326 | \return Return a new array filled with the imaginary part of the input complex array elements | 
|---|
|  | 327 | */ | 
|---|
|  | 328 |  | 
|---|
|  | 329 | template <class T> | 
|---|
|  | 330 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a) | 
|---|
|  | 331 | { | 
|---|
|  | 332 | if (a.NbDimensions() < 1) | 
|---|
|  | 333 | throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
|  | 334 | TArray<T> ra; | 
|---|
|  | 335 | ra.ReSize(a); | 
|---|
|  | 336 |  | 
|---|
|  | 337 | const complex<T> * pe; | 
|---|
|  | 338 | T * po; | 
|---|
|  | 339 | sa_size_t j,k; | 
|---|
|  | 340 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 341 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 342 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 343 | pe = a.Data(); | 
|---|
|  | 344 | po = ra.Data(); | 
|---|
|  | 345 | for(k=0; k<maxx; k+=step )  po[k] = pe[k].imag(); | 
|---|
|  | 346 | } | 
|---|
|  | 347 | else {    // Non regular data spacing ... | 
|---|
|  | 348 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 349 | sa_size_t step = a.Step(ka); | 
|---|
|  | 350 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 351 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 352 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 353 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 354 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
|  | 355 | for(k=0; k<gpas; k+=step)  po[k] = pe[k].imag(); | 
|---|
|  | 356 | } | 
|---|
|  | 357 | } | 
|---|
|  | 358 | return(ra); | 
|---|
|  | 359 | } | 
|---|
|  | 360 |  | 
|---|
|  | 361 | //! Returns the module squared of the complex input array. | 
|---|
|  | 362 | /*! | 
|---|
|  | 363 | \param a : input complex array | 
|---|
|  | 364 | \return Return a new array filled with the module squared of the input complex array elements | 
|---|
|  | 365 | */ | 
|---|
|  | 366 |  | 
|---|
|  | 367 | template <class T> | 
|---|
|  | 368 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a) | 
|---|
|  | 369 | { | 
|---|
|  | 370 | if (a.NbDimensions() < 1) | 
|---|
|  | 371 | throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
|  | 372 | TArray<T> ra; | 
|---|
|  | 373 | ra.ReSize(a); | 
|---|
|  | 374 |  | 
|---|
|  | 375 | const complex<T> * pe; | 
|---|
|  | 376 | T * po; | 
|---|
|  | 377 | sa_size_t j,k; | 
|---|
|  | 378 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 379 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 380 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 381 | pe = a.Data(); | 
|---|
|  | 382 | po = ra.Data(); | 
|---|
|  | 383 | for(k=0; k<maxx; k+=step ) | 
|---|
|  | 384 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()); | 
|---|
|  | 385 | } | 
|---|
|  | 386 | else {    // Non regular data spacing ... | 
|---|
|  | 387 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 388 | sa_size_t step = a.Step(ka); | 
|---|
|  | 389 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 390 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 391 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 392 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 393 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
|  | 394 | for(k=0; k<gpas; k+=step) | 
|---|
|  | 395 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()); | 
|---|
|  | 396 | } | 
|---|
|  | 397 | } | 
|---|
|  | 398 | return(ra); | 
|---|
|  | 399 | } | 
|---|
|  | 400 |  | 
|---|
|  | 401 | //! Returns the module of the complex input array. | 
|---|
|  | 402 | /*! | 
|---|
|  | 403 | \param a : input complex array | 
|---|
|  | 404 | \return Return a new array filled with the module of the input complex array elements | 
|---|
|  | 405 | */ | 
|---|
|  | 406 |  | 
|---|
|  | 407 | template <class T> | 
|---|
|  | 408 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a) | 
|---|
|  | 409 | { | 
|---|
|  | 410 | if (a.NbDimensions() < 1) | 
|---|
|  | 411 | throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
|  | 412 | TArray<T> ra; | 
|---|
|  | 413 | ra.ReSize(a); | 
|---|
|  | 414 |  | 
|---|
|  | 415 | const complex<T> * pe; | 
|---|
|  | 416 | T * po; | 
|---|
|  | 417 | sa_size_t j,k; | 
|---|
|  | 418 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 419 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 420 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 421 | pe = a.Data(); | 
|---|
|  | 422 | po = ra.Data(); | 
|---|
|  | 423 | for(k=0; k<maxx; k+=step ) | 
|---|
|  | 424 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag())); | 
|---|
|  | 425 | } | 
|---|
|  | 426 | else {    // Non regular data spacing ... | 
|---|
|  | 427 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 428 | sa_size_t step = a.Step(ka); | 
|---|
|  | 429 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 430 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 431 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 432 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 433 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
|  | 434 | for(k=0; k<gpas; k+=step) | 
|---|
|  | 435 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag())); | 
|---|
|  | 436 | } | 
|---|
|  | 437 | } | 
|---|
|  | 438 | return(ra); | 
|---|
|  | 439 | } | 
|---|
|  | 440 |  | 
|---|
|  | 441 |  | 
|---|
|  | 442 | //! Returns the phase of the complex input array. | 
|---|
|  | 443 | /*! | 
|---|
|  | 444 | \param a : input complex array | 
|---|
|  | 445 | \return Return a new array filled with the phase of the input complex array elements | 
|---|
|  | 446 | */ | 
|---|
|  | 447 |  | 
|---|
|  | 448 | template <class T> | 
|---|
|  | 449 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a) | 
|---|
|  | 450 | { | 
|---|
|  | 451 | if (a.NbDimensions() < 1) | 
|---|
|  | 452 | throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
|  | 453 | TArray<T> ra; | 
|---|
|  | 454 | ra.ReSize(a); | 
|---|
|  | 455 |  | 
|---|
|  | 456 | const complex<T> * pe; | 
|---|
|  | 457 | T * po; | 
|---|
|  | 458 | sa_size_t j,k; | 
|---|
|  | 459 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
|  | 460 | sa_size_t step = a.AvgStep(); | 
|---|
|  | 461 | sa_size_t maxx = a.Size()*step; | 
|---|
|  | 462 | pe = a.Data(); | 
|---|
|  | 463 | po = ra.Data(); | 
|---|
|  | 464 | for(k=0; k<maxx; k+=step ) | 
|---|
|  | 465 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real()); | 
|---|
|  | 466 | } | 
|---|
|  | 467 | else {    // Non regular data spacing ... | 
|---|
|  | 468 | int_4 ka = a.MaxSizeKA(); | 
|---|
|  | 469 | sa_size_t step = a.Step(ka); | 
|---|
|  | 470 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
|  | 471 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
|  | 472 | for(j=0; j<naxa; j++)  { | 
|---|
|  | 473 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
|  | 474 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
|  | 475 | for(k=0; k<gpas; k+=step) | 
|---|
|  | 476 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real()); | 
|---|
|  | 477 | } | 
|---|
|  | 478 | } | 
|---|
|  | 479 | return(ra); | 
|---|
|  | 480 | } | 
|---|
|  | 481 |  | 
|---|
|  | 482 |  | 
|---|
| [787] | 483 | /////////////////////////////////////////////////////////////// | 
|---|
|  | 484 | #ifdef __CXX_PRAGMA_TEMPLATES__ | 
|---|
|  | 485 | #pragma define_template MathArray<r_4> | 
|---|
|  | 486 | #pragma define_template MathArray<r_8> | 
|---|
| [1517] | 487 | #pragma define_template ComplexMathArray<r_4> | 
|---|
|  | 488 | #pragma define_template ComplexMathArray<r_8> | 
|---|
| [787] | 489 | #endif | 
|---|
|  | 490 |  | 
|---|
|  | 491 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) | 
|---|
| [2868] | 492 | namespace SOPHYA { | 
|---|
| [787] | 493 | template class MathArray<r_4>; | 
|---|
|  | 494 | template class MathArray<r_8>; | 
|---|
| [1517] | 495 | template class ComplexMathArray<r_4>; | 
|---|
|  | 496 | template class ComplexMathArray<r_8>; | 
|---|
| [2868] | 497 | } | 
|---|
| [787] | 498 | #endif | 
|---|