[787] | 1 | // Usuall mathematical functions and operations on arrays
|
---|
| 2 | // R. Ansari, C.Magneville 03/2000
|
---|
| 3 |
|
---|
[2615] | 4 | #include "sopnamsp.h"
|
---|
[787] | 5 | #include "machdefs.h"
|
---|
[882] | 6 | #include <math.h>
|
---|
[787] | 7 | #include "matharr.h"
|
---|
| 8 |
|
---|
| 9 | // ----------------------------------------------------
|
---|
| 10 | // Application d'une fonction
|
---|
| 11 | // ----------------------------------------------------
|
---|
| 12 |
|
---|
[926] | 13 | /*!
|
---|
| 14 | \class SOPHYA::MathArray
|
---|
| 15 | \ingroup TArray
|
---|
| 16 | Class for simple mathematical operation on arrays
|
---|
| 17 | \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays
|
---|
| 18 | */
|
---|
[894] | 19 |
|
---|
| 20 | //! Apply Function In Place (function double version)
|
---|
| 21 | /*!
|
---|
| 22 | \param a : array to be replaced in place
|
---|
| 23 | \param f : function for replacement
|
---|
| 24 | \return Return an array \b a filled with function f(a(i,j))
|
---|
| 25 | */
|
---|
[787] | 26 | template <class T>
|
---|
| 27 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f)
|
---|
| 28 | {
|
---|
[804] | 29 | if (a.NbDimensions() < 1)
|
---|
| 30 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !");
|
---|
[787] | 31 | T * pe;
|
---|
[1156] | 32 | sa_size_t j,k;
|
---|
[787] | 33 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
[1156] | 34 | sa_size_t step = a.AvgStep();
|
---|
| 35 | sa_size_t maxx = a.Size()*step;
|
---|
[787] | 36 | pe = a.Data();
|
---|
| 37 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((double)pe[k]));
|
---|
| 38 | }
|
---|
| 39 | else { // Non regular data spacing ...
|
---|
[1156] | 40 | int_4 ka = a.MaxSizeKA();
|
---|
| 41 | sa_size_t step = a.Step(ka);
|
---|
| 42 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 43 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
[813] | 44 | for(j=0; j<naxa; j++) {
|
---|
| 45 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
[787] | 46 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((double)pe[k]));
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 | return(a);
|
---|
| 50 | }
|
---|
| 51 |
|
---|
[894] | 52 | //! Apply Function In Place (function float version)
|
---|
| 53 | /*!
|
---|
| 54 | \param a : array to be replaced in place
|
---|
| 55 | \param f : function for replacement
|
---|
| 56 | \return Return an array \b a filled with function f(a(i,j))
|
---|
| 57 | */
|
---|
[787] | 58 | template <class T>
|
---|
[2322] | 59 | TArray<T>& MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a, Arr_FloatFunctionOfX f)
|
---|
[787] | 60 | {
|
---|
[804] | 61 | if (a.NbDimensions() < 1)
|
---|
[2322] | 62 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a..) Not Allocated Array a !");
|
---|
[787] | 63 | T * pe;
|
---|
[1156] | 64 | sa_size_t j,k;
|
---|
[787] | 65 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
[1156] | 66 | sa_size_t step = a.AvgStep();
|
---|
| 67 | sa_size_t maxx = a.Size()*step;
|
---|
[787] | 68 | pe = a.Data();
|
---|
| 69 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((float)pe[k]));
|
---|
| 70 | }
|
---|
| 71 | else { // Non regular data spacing ...
|
---|
[1156] | 72 | int_4 ka = a.MaxSizeKA();
|
---|
| 73 | sa_size_t step = a.Step(ka);
|
---|
| 74 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 75 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
[813] | 76 | for(j=0; j<naxa; j++) {
|
---|
| 77 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
[787] | 78 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((float)pe[k]));
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | return(a);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 |
|
---|
[894] | 85 | //! Apply Function (function double version)
|
---|
| 86 | /*!
|
---|
| 87 | \param a : argument array of the function
|
---|
| 88 | \param f : function for replacement
|
---|
| 89 | \return Return a new array filled with function f(a(i,j))
|
---|
| 90 | */
|
---|
[787] | 91 | template <class T>
|
---|
| 92 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f)
|
---|
| 93 | {
|
---|
| 94 | TArray<T> ra;
|
---|
| 95 | ra = a;
|
---|
| 96 | ApplyFunctionInPlace(ra, f);
|
---|
| 97 | return(ra);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[894] | 100 | //! Apply Function (function float version)
|
---|
| 101 | /*!
|
---|
| 102 | \param a : argument array of the function
|
---|
| 103 | \param f : function for replacement
|
---|
| 104 | \return Return a new array filled with function f(a(i,j))
|
---|
| 105 | */
|
---|
[787] | 106 | template <class T>
|
---|
[2322] | 107 | TArray<T> MathArray<T>::ApplyFunctionF(TArray<T> const & a, Arr_FloatFunctionOfX f)
|
---|
[787] | 108 | {
|
---|
| 109 | TArray<T> ra;
|
---|
| 110 | ra = a;
|
---|
[2322] | 111 | ApplyFunctionInPlaceF(ra, f);
|
---|
[787] | 112 | return(ra);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[894] | 115 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean
|
---|
[804] | 116 | template <class T>
|
---|
| 117 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig)
|
---|
| 118 | {
|
---|
| 119 | if (a.NbDimensions() < 1)
|
---|
| 120 | throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !");
|
---|
| 121 | const T * pe;
|
---|
[1156] | 122 | sa_size_t j,k;
|
---|
[804] | 123 | mean=0.;
|
---|
| 124 | sig = 0.;
|
---|
| 125 | double valok;
|
---|
| 126 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
[1156] | 127 | sa_size_t step = a.AvgStep();
|
---|
| 128 | sa_size_t maxx = a.Size()*step;
|
---|
[804] | 129 | pe = a.Data();
|
---|
| 130 | for(k=0; k<maxx; k+=step ) {
|
---|
| 131 | valok = (double) pe[k];
|
---|
| 132 | mean += valok; sig += valok*valok;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | else { // Non regular data spacing ...
|
---|
[1156] | 136 | int_4 ka = a.MaxSizeKA();
|
---|
| 137 | sa_size_t step = a.Step(ka);
|
---|
| 138 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 139 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
[813] | 140 | for(j=0; j<naxa; j++) {
|
---|
| 141 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
[804] | 142 | for(k=0; k<gpas; k+=step) {
|
---|
| 143 | valok = (double) pe[k];
|
---|
| 144 | mean += valok; sig += valok*valok;
|
---|
| 145 | }
|
---|
| 146 | }
|
---|
| 147 | }
|
---|
| 148 | double dsz = (double)(a.Size());
|
---|
| 149 | mean /= dsz;
|
---|
[2923] | 150 | if (dsz > 1.5) {
|
---|
| 151 | sig = sig/dsz - mean*mean;
|
---|
| 152 | sig *= (dsz/(dsz-1));
|
---|
| 153 | if (sig >= 0.) sig = sqrt(sig);
|
---|
| 154 | }
|
---|
| 155 | else sig = 0.;
|
---|
[804] | 156 | return(mean);
|
---|
| 157 | }
|
---|
| 158 |
|
---|
[1517] | 159 |
|
---|
| 160 | //-------------------------------------------------------------------------------
|
---|
| 161 | // Definition utilitaire d'application de fonction
|
---|
| 162 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z,
|
---|
| 163 | Arr_ComplexDoubleFunctionOfX f)
|
---|
| 164 | {
|
---|
| 165 | return(f(z));
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z,
|
---|
| 169 | Arr_ComplexDoubleFunctionOfX f)
|
---|
| 170 | {
|
---|
| 171 | complex<r_8> zd((r_8)z.real(), (r_8)z.imag());
|
---|
| 172 | zd = f(zd);
|
---|
[1521] | 173 | complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag());
|
---|
[1517] | 174 | return(zr);
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | //-------------------------------------------------------------------------------
|
---|
| 178 |
|
---|
| 179 | /*!
|
---|
| 180 | \class SOPHYA::ComplexMathArray
|
---|
| 181 | \ingroup TArray
|
---|
| 182 | Class for simple mathematical operation on arrays
|
---|
| 183 | \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays
|
---|
| 184 | */
|
---|
| 185 |
|
---|
| 186 | //! Apply Function In Place (complex arrays)
|
---|
| 187 | /*!
|
---|
| 188 | \param a : complex array to be replaced in place
|
---|
| 189 | \param f : function for replacement
|
---|
| 190 | \return Return an array \b a filled with function f(a(i,j))
|
---|
| 191 | */
|
---|
| 192 | template <class T>
|
---|
| 193 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
| 194 | {
|
---|
| 195 | if (a.NbDimensions() < 1)
|
---|
| 196 | throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !");
|
---|
| 197 | complex<T> * pe;
|
---|
| 198 | sa_size_t j,k;
|
---|
| 199 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 200 | sa_size_t step = a.AvgStep();
|
---|
| 201 | sa_size_t maxx = a.Size()*step;
|
---|
| 202 | pe = a.Data();
|
---|
| 203 | for(k=0; k<maxx; k+=step ) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
| 204 | }
|
---|
| 205 | else { // Non regular data spacing ...
|
---|
| 206 | int_4 ka = a.MaxSizeKA();
|
---|
| 207 | sa_size_t step = a.Step(ka);
|
---|
| 208 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 209 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 210 | for(j=0; j<naxa; j++) {
|
---|
| 211 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 212 | for(k=0; k<gpas; k+=step) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | return(a);
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 |
|
---|
| 220 | //! Apply Function (complex arrays)
|
---|
| 221 | /*!
|
---|
| 222 | \param a : argument array of the function
|
---|
| 223 | \param f : function for replacement
|
---|
| 224 | \return Return a new array filled with function f(a(i,j))
|
---|
| 225 | */
|
---|
| 226 | template <class T>
|
---|
| 227 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
| 228 | {
|
---|
| 229 | TArray< complex<T> > ra;
|
---|
| 230 | ra = a;
|
---|
| 231 | ApplyFunctionInPlace(ra, f);
|
---|
| 232 | return(ra);
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | //! Create a complex array, from a real and an imaginary arrays
|
---|
| 236 | /*!
|
---|
| 237 | \param p_real : array containing the real part of the complex output array
|
---|
| 238 | \param p_imag : array containing the imaginary part of the complex output array
|
---|
| 239 | \return Return a new complex array build from \b p_real and \b p_imag
|
---|
| 240 | */
|
---|
| 241 | template <class T>
|
---|
| 242 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real,
|
---|
| 243 | TArray<T> const & p_imag)
|
---|
| 244 | {
|
---|
| 245 | if (p_real.NbDimensions() < 1)
|
---|
| 246 | throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! ");
|
---|
| 247 | bool smo;
|
---|
| 248 | if (!p_real.CompareSizes(p_imag, smo))
|
---|
| 249 | throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ;
|
---|
| 250 |
|
---|
| 251 | TArray< complex<T> > ra;
|
---|
| 252 | ra.ReSize(p_real);
|
---|
| 253 |
|
---|
| 254 | complex<T> * pe;
|
---|
| 255 | const T * per;
|
---|
| 256 | const T * pei;
|
---|
| 257 | sa_size_t j,k,ka;
|
---|
| 258 | if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0)) { // regularly spaced elements
|
---|
| 259 | sa_size_t step = p_real.AvgStep();
|
---|
| 260 | sa_size_t stepa = p_imag.AvgStep();
|
---|
| 261 | sa_size_t maxx = p_real.Size()*step;
|
---|
| 262 | per = p_real.Data();
|
---|
| 263 | pei = p_imag.Data();
|
---|
| 264 | pe = ra.Data();
|
---|
| 265 | for(k=0, ka=0; k<maxx; k+=step, ka+=stepa )
|
---|
| 266 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
| 267 | }
|
---|
| 268 | else { // Non regular data spacing ...
|
---|
| 269 | int_4 ax,axa;
|
---|
| 270 | sa_size_t step, stepa;
|
---|
| 271 | sa_size_t gpas, naxa;
|
---|
| 272 | p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa);
|
---|
| 273 | for(j=0; j<naxa; j++) {
|
---|
| 274 | per = p_real.Data()+p_real.Offset(ax,j);
|
---|
| 275 | pei = p_imag.Data()+p_imag.Offset(axa,j);
|
---|
| 276 | pe = ra.Data()+ra.Offset(ax,j);
|
---|
| 277 | for(k=0, ka=0; k<gpas; k+=step, ka+=stepa)
|
---|
| 278 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | return(ra);
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 |
|
---|
| 285 | //! Returns the real part of the complex input array.
|
---|
| 286 | /*!
|
---|
| 287 | \param a : input complex array
|
---|
| 288 | \return Return a new array filled with the real part of the input complex array elements
|
---|
| 289 | */
|
---|
| 290 |
|
---|
| 291 | template <class T>
|
---|
| 292 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a)
|
---|
| 293 | {
|
---|
| 294 | if (a.NbDimensions() < 1)
|
---|
| 295 | throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
| 296 | TArray<T> ra;
|
---|
| 297 | ra.ReSize(a);
|
---|
| 298 |
|
---|
| 299 | const complex<T> * pe;
|
---|
| 300 | T * po;
|
---|
| 301 | sa_size_t j,k;
|
---|
| 302 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 303 | sa_size_t step = a.AvgStep();
|
---|
| 304 | sa_size_t maxx = a.Size()*step;
|
---|
| 305 | pe = a.Data();
|
---|
| 306 | po = ra.Data();
|
---|
| 307 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].real();
|
---|
| 308 | }
|
---|
| 309 | else { // Non regular data spacing ...
|
---|
| 310 | int_4 ka = a.MaxSizeKA();
|
---|
| 311 | sa_size_t step = a.Step(ka);
|
---|
| 312 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 313 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 314 | for(j=0; j<naxa; j++) {
|
---|
| 315 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 316 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
| 317 | for(k=0; k<gpas; k+=step) po[k] = pe[k].real();
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | return(ra);
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | //! Returns the imaginary part of the complex input array.
|
---|
| 324 | /*!
|
---|
| 325 | \param a : input complex array
|
---|
| 326 | \return Return a new array filled with the imaginary part of the input complex array elements
|
---|
| 327 | */
|
---|
| 328 |
|
---|
| 329 | template <class T>
|
---|
| 330 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a)
|
---|
| 331 | {
|
---|
| 332 | if (a.NbDimensions() < 1)
|
---|
| 333 | throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
| 334 | TArray<T> ra;
|
---|
| 335 | ra.ReSize(a);
|
---|
| 336 |
|
---|
| 337 | const complex<T> * pe;
|
---|
| 338 | T * po;
|
---|
| 339 | sa_size_t j,k;
|
---|
| 340 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 341 | sa_size_t step = a.AvgStep();
|
---|
| 342 | sa_size_t maxx = a.Size()*step;
|
---|
| 343 | pe = a.Data();
|
---|
| 344 | po = ra.Data();
|
---|
| 345 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].imag();
|
---|
| 346 | }
|
---|
| 347 | else { // Non regular data spacing ...
|
---|
| 348 | int_4 ka = a.MaxSizeKA();
|
---|
| 349 | sa_size_t step = a.Step(ka);
|
---|
| 350 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 351 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 352 | for(j=0; j<naxa; j++) {
|
---|
| 353 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 354 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
| 355 | for(k=0; k<gpas; k+=step) po[k] = pe[k].imag();
|
---|
| 356 | }
|
---|
| 357 | }
|
---|
| 358 | return(ra);
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | //! Returns the module squared of the complex input array.
|
---|
| 362 | /*!
|
---|
| 363 | \param a : input complex array
|
---|
| 364 | \return Return a new array filled with the module squared of the input complex array elements
|
---|
| 365 | */
|
---|
| 366 |
|
---|
| 367 | template <class T>
|
---|
| 368 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a)
|
---|
| 369 | {
|
---|
| 370 | if (a.NbDimensions() < 1)
|
---|
| 371 | throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
| 372 | TArray<T> ra;
|
---|
| 373 | ra.ReSize(a);
|
---|
| 374 |
|
---|
| 375 | const complex<T> * pe;
|
---|
| 376 | T * po;
|
---|
| 377 | sa_size_t j,k;
|
---|
| 378 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 379 | sa_size_t step = a.AvgStep();
|
---|
| 380 | sa_size_t maxx = a.Size()*step;
|
---|
| 381 | pe = a.Data();
|
---|
| 382 | po = ra.Data();
|
---|
| 383 | for(k=0; k<maxx; k+=step )
|
---|
| 384 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
| 385 | }
|
---|
| 386 | else { // Non regular data spacing ...
|
---|
| 387 | int_4 ka = a.MaxSizeKA();
|
---|
| 388 | sa_size_t step = a.Step(ka);
|
---|
| 389 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 390 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 391 | for(j=0; j<naxa; j++) {
|
---|
| 392 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 393 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
| 394 | for(k=0; k<gpas; k+=step)
|
---|
| 395 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 | return(ra);
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | //! Returns the module of the complex input array.
|
---|
| 402 | /*!
|
---|
| 403 | \param a : input complex array
|
---|
| 404 | \return Return a new array filled with the module of the input complex array elements
|
---|
| 405 | */
|
---|
| 406 |
|
---|
| 407 | template <class T>
|
---|
| 408 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a)
|
---|
| 409 | {
|
---|
| 410 | if (a.NbDimensions() < 1)
|
---|
| 411 | throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
| 412 | TArray<T> ra;
|
---|
| 413 | ra.ReSize(a);
|
---|
| 414 |
|
---|
| 415 | const complex<T> * pe;
|
---|
| 416 | T * po;
|
---|
| 417 | sa_size_t j,k;
|
---|
| 418 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 419 | sa_size_t step = a.AvgStep();
|
---|
| 420 | sa_size_t maxx = a.Size()*step;
|
---|
| 421 | pe = a.Data();
|
---|
| 422 | po = ra.Data();
|
---|
| 423 | for(k=0; k<maxx; k+=step )
|
---|
| 424 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
| 425 | }
|
---|
| 426 | else { // Non regular data spacing ...
|
---|
| 427 | int_4 ka = a.MaxSizeKA();
|
---|
| 428 | sa_size_t step = a.Step(ka);
|
---|
| 429 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 430 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 431 | for(j=0; j<naxa; j++) {
|
---|
| 432 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 433 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
| 434 | for(k=0; k<gpas; k+=step)
|
---|
| 435 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
| 436 | }
|
---|
| 437 | }
|
---|
| 438 | return(ra);
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 |
|
---|
| 442 | //! Returns the phase of the complex input array.
|
---|
| 443 | /*!
|
---|
| 444 | \param a : input complex array
|
---|
| 445 | \return Return a new array filled with the phase of the input complex array elements
|
---|
| 446 | */
|
---|
| 447 |
|
---|
| 448 | template <class T>
|
---|
| 449 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a)
|
---|
| 450 | {
|
---|
| 451 | if (a.NbDimensions() < 1)
|
---|
| 452 | throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
| 453 | TArray<T> ra;
|
---|
| 454 | ra.ReSize(a);
|
---|
| 455 |
|
---|
| 456 | const complex<T> * pe;
|
---|
| 457 | T * po;
|
---|
| 458 | sa_size_t j,k;
|
---|
| 459 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
| 460 | sa_size_t step = a.AvgStep();
|
---|
| 461 | sa_size_t maxx = a.Size()*step;
|
---|
| 462 | pe = a.Data();
|
---|
| 463 | po = ra.Data();
|
---|
| 464 | for(k=0; k<maxx; k+=step )
|
---|
| 465 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
| 466 | }
|
---|
| 467 | else { // Non regular data spacing ...
|
---|
| 468 | int_4 ka = a.MaxSizeKA();
|
---|
| 469 | sa_size_t step = a.Step(ka);
|
---|
| 470 | sa_size_t gpas = a.Size(ka)*step;
|
---|
| 471 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
| 472 | for(j=0; j<naxa; j++) {
|
---|
| 473 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
| 474 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
| 475 | for(k=0; k<gpas; k+=step)
|
---|
| 476 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
| 477 | }
|
---|
| 478 | }
|
---|
| 479 | return(ra);
|
---|
| 480 | }
|
---|
| 481 |
|
---|
| 482 |
|
---|
[787] | 483 | ///////////////////////////////////////////////////////////////
|
---|
| 484 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 485 | #pragma define_template MathArray<r_4>
|
---|
| 486 | #pragma define_template MathArray<r_8>
|
---|
[1517] | 487 | #pragma define_template ComplexMathArray<r_4>
|
---|
| 488 | #pragma define_template ComplexMathArray<r_8>
|
---|
[787] | 489 | #endif
|
---|
| 490 |
|
---|
| 491 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
[2868] | 492 | namespace SOPHYA {
|
---|
[787] | 493 | template class MathArray<r_4>;
|
---|
| 494 | template class MathArray<r_8>;
|
---|
[1517] | 495 | template class ComplexMathArray<r_4>;
|
---|
| 496 | template class ComplexMathArray<r_8>;
|
---|
[2868] | 497 | }
|
---|
[787] | 498 | #endif
|
---|