1 | // Usuall mathematical functions and operations on arrays
|
---|
2 | // R. Ansari, C.Magneville 03/2000
|
---|
3 |
|
---|
4 | #include "machdefs.h"
|
---|
5 | #include <math.h>
|
---|
6 | #include "matharr.h"
|
---|
7 |
|
---|
8 | // ----------------------------------------------------
|
---|
9 | // Application d'une fonction
|
---|
10 | // ----------------------------------------------------
|
---|
11 |
|
---|
12 | /*!
|
---|
13 | \class SOPHYA::MathArray
|
---|
14 | \ingroup TArray
|
---|
15 | Class for simple mathematical operation on arrays
|
---|
16 | \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays
|
---|
17 | */
|
---|
18 |
|
---|
19 | //! Apply Function In Place (function double version)
|
---|
20 | /*!
|
---|
21 | \param a : array to be replaced in place
|
---|
22 | \param f : function for replacement
|
---|
23 | \return Return an array \b a filled with function f(a(i,j))
|
---|
24 | */
|
---|
25 | template <class T>
|
---|
26 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f)
|
---|
27 | {
|
---|
28 | if (a.NbDimensions() < 1)
|
---|
29 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !");
|
---|
30 | T * pe;
|
---|
31 | sa_size_t j,k;
|
---|
32 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
33 | sa_size_t step = a.AvgStep();
|
---|
34 | sa_size_t maxx = a.Size()*step;
|
---|
35 | pe = a.Data();
|
---|
36 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((double)pe[k]));
|
---|
37 | }
|
---|
38 | else { // Non regular data spacing ...
|
---|
39 | int_4 ka = a.MaxSizeKA();
|
---|
40 | sa_size_t step = a.Step(ka);
|
---|
41 | sa_size_t gpas = a.Size(ka)*step;
|
---|
42 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
43 | for(j=0; j<naxa; j++) {
|
---|
44 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
45 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((double)pe[k]));
|
---|
46 | }
|
---|
47 | }
|
---|
48 | return(a);
|
---|
49 | }
|
---|
50 |
|
---|
51 | //! Apply Function In Place (function float version)
|
---|
52 | /*!
|
---|
53 | \param a : array to be replaced in place
|
---|
54 | \param f : function for replacement
|
---|
55 | \return Return an array \b a filled with function f(a(i,j))
|
---|
56 | */
|
---|
57 | template <class T>
|
---|
58 | TArray<T>& MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a, Arr_FloatFunctionOfX f)
|
---|
59 | {
|
---|
60 | if (a.NbDimensions() < 1)
|
---|
61 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a..) Not Allocated Array a !");
|
---|
62 | T * pe;
|
---|
63 | sa_size_t j,k;
|
---|
64 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
65 | sa_size_t step = a.AvgStep();
|
---|
66 | sa_size_t maxx = a.Size()*step;
|
---|
67 | pe = a.Data();
|
---|
68 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((float)pe[k]));
|
---|
69 | }
|
---|
70 | else { // Non regular data spacing ...
|
---|
71 | int_4 ka = a.MaxSizeKA();
|
---|
72 | sa_size_t step = a.Step(ka);
|
---|
73 | sa_size_t gpas = a.Size(ka)*step;
|
---|
74 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
75 | for(j=0; j<naxa; j++) {
|
---|
76 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
77 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((float)pe[k]));
|
---|
78 | }
|
---|
79 | }
|
---|
80 | return(a);
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | //! Apply Function (function double version)
|
---|
85 | /*!
|
---|
86 | \param a : argument array of the function
|
---|
87 | \param f : function for replacement
|
---|
88 | \return Return a new array filled with function f(a(i,j))
|
---|
89 | */
|
---|
90 | template <class T>
|
---|
91 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f)
|
---|
92 | {
|
---|
93 | TArray<T> ra;
|
---|
94 | ra = a;
|
---|
95 | ApplyFunctionInPlace(ra, f);
|
---|
96 | return(ra);
|
---|
97 | }
|
---|
98 |
|
---|
99 | //! Apply Function (function float version)
|
---|
100 | /*!
|
---|
101 | \param a : argument array of the function
|
---|
102 | \param f : function for replacement
|
---|
103 | \return Return a new array filled with function f(a(i,j))
|
---|
104 | */
|
---|
105 | template <class T>
|
---|
106 | TArray<T> MathArray<T>::ApplyFunctionF(TArray<T> const & a, Arr_FloatFunctionOfX f)
|
---|
107 | {
|
---|
108 | TArray<T> ra;
|
---|
109 | ra = a;
|
---|
110 | ApplyFunctionInPlaceF(ra, f);
|
---|
111 | return(ra);
|
---|
112 | }
|
---|
113 |
|
---|
114 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean
|
---|
115 | template <class T>
|
---|
116 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig)
|
---|
117 | {
|
---|
118 | if (a.NbDimensions() < 1)
|
---|
119 | throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !");
|
---|
120 | const T * pe;
|
---|
121 | sa_size_t j,k;
|
---|
122 | mean=0.;
|
---|
123 | sig = 0.;
|
---|
124 | double valok;
|
---|
125 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
126 | sa_size_t step = a.AvgStep();
|
---|
127 | sa_size_t maxx = a.Size()*step;
|
---|
128 | pe = a.Data();
|
---|
129 | for(k=0; k<maxx; k+=step ) {
|
---|
130 | valok = (double) pe[k];
|
---|
131 | mean += valok; sig += valok*valok;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | else { // Non regular data spacing ...
|
---|
135 | int_4 ka = a.MaxSizeKA();
|
---|
136 | sa_size_t step = a.Step(ka);
|
---|
137 | sa_size_t gpas = a.Size(ka)*step;
|
---|
138 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
139 | for(j=0; j<naxa; j++) {
|
---|
140 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
141 | for(k=0; k<gpas; k+=step) {
|
---|
142 | valok = (double) pe[k];
|
---|
143 | mean += valok; sig += valok*valok;
|
---|
144 | }
|
---|
145 | }
|
---|
146 | }
|
---|
147 | double dsz = (double)(a.Size());
|
---|
148 | mean /= dsz;
|
---|
149 | sig = sig/dsz - mean*mean;
|
---|
150 | if (sig >= 0.) sig = sqrt(sig);
|
---|
151 | return(mean);
|
---|
152 | }
|
---|
153 |
|
---|
154 |
|
---|
155 | //-------------------------------------------------------------------------------
|
---|
156 | // Definition utilitaire d'application de fonction
|
---|
157 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z,
|
---|
158 | Arr_ComplexDoubleFunctionOfX f)
|
---|
159 | {
|
---|
160 | return(f(z));
|
---|
161 | }
|
---|
162 |
|
---|
163 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z,
|
---|
164 | Arr_ComplexDoubleFunctionOfX f)
|
---|
165 | {
|
---|
166 | complex<r_8> zd((r_8)z.real(), (r_8)z.imag());
|
---|
167 | zd = f(zd);
|
---|
168 | complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag());
|
---|
169 | return(zr);
|
---|
170 | }
|
---|
171 |
|
---|
172 | //-------------------------------------------------------------------------------
|
---|
173 |
|
---|
174 | /*!
|
---|
175 | \class SOPHYA::ComplexMathArray
|
---|
176 | \ingroup TArray
|
---|
177 | Class for simple mathematical operation on arrays
|
---|
178 | \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays
|
---|
179 | */
|
---|
180 |
|
---|
181 | //! Apply Function In Place (complex arrays)
|
---|
182 | /*!
|
---|
183 | \param a : complex array to be replaced in place
|
---|
184 | \param f : function for replacement
|
---|
185 | \return Return an array \b a filled with function f(a(i,j))
|
---|
186 | */
|
---|
187 | template <class T>
|
---|
188 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
189 | {
|
---|
190 | if (a.NbDimensions() < 1)
|
---|
191 | throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !");
|
---|
192 | complex<T> * pe;
|
---|
193 | sa_size_t j,k;
|
---|
194 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
195 | sa_size_t step = a.AvgStep();
|
---|
196 | sa_size_t maxx = a.Size()*step;
|
---|
197 | pe = a.Data();
|
---|
198 | for(k=0; k<maxx; k+=step ) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
199 | }
|
---|
200 | else { // Non regular data spacing ...
|
---|
201 | int_4 ka = a.MaxSizeKA();
|
---|
202 | sa_size_t step = a.Step(ka);
|
---|
203 | sa_size_t gpas = a.Size(ka)*step;
|
---|
204 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
205 | for(j=0; j<naxa; j++) {
|
---|
206 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
207 | for(k=0; k<gpas; k+=step) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
208 | }
|
---|
209 | }
|
---|
210 | return(a);
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 |
|
---|
215 | //! Apply Function (complex arrays)
|
---|
216 | /*!
|
---|
217 | \param a : argument array of the function
|
---|
218 | \param f : function for replacement
|
---|
219 | \return Return a new array filled with function f(a(i,j))
|
---|
220 | */
|
---|
221 | template <class T>
|
---|
222 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
223 | {
|
---|
224 | TArray< complex<T> > ra;
|
---|
225 | ra = a;
|
---|
226 | ApplyFunctionInPlace(ra, f);
|
---|
227 | return(ra);
|
---|
228 | }
|
---|
229 |
|
---|
230 | //! Create a complex array, from a real and an imaginary arrays
|
---|
231 | /*!
|
---|
232 | \param p_real : array containing the real part of the complex output array
|
---|
233 | \param p_imag : array containing the imaginary part of the complex output array
|
---|
234 | \return Return a new complex array build from \b p_real and \b p_imag
|
---|
235 | */
|
---|
236 | template <class T>
|
---|
237 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real,
|
---|
238 | TArray<T> const & p_imag)
|
---|
239 | {
|
---|
240 | if (p_real.NbDimensions() < 1)
|
---|
241 | throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! ");
|
---|
242 | bool smo;
|
---|
243 | if (!p_real.CompareSizes(p_imag, smo))
|
---|
244 | throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ;
|
---|
245 |
|
---|
246 | TArray< complex<T> > ra;
|
---|
247 | ra.ReSize(p_real);
|
---|
248 |
|
---|
249 | complex<T> * pe;
|
---|
250 | const T * per;
|
---|
251 | const T * pei;
|
---|
252 | sa_size_t j,k,ka;
|
---|
253 | if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0)) { // regularly spaced elements
|
---|
254 | sa_size_t step = p_real.AvgStep();
|
---|
255 | sa_size_t stepa = p_imag.AvgStep();
|
---|
256 | sa_size_t maxx = p_real.Size()*step;
|
---|
257 | per = p_real.Data();
|
---|
258 | pei = p_imag.Data();
|
---|
259 | pe = ra.Data();
|
---|
260 | for(k=0, ka=0; k<maxx; k+=step, ka+=stepa )
|
---|
261 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
262 | }
|
---|
263 | else { // Non regular data spacing ...
|
---|
264 | int_4 ax,axa;
|
---|
265 | sa_size_t step, stepa;
|
---|
266 | sa_size_t gpas, naxa;
|
---|
267 | p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa);
|
---|
268 | for(j=0; j<naxa; j++) {
|
---|
269 | per = p_real.Data()+p_real.Offset(ax,j);
|
---|
270 | pei = p_imag.Data()+p_imag.Offset(axa,j);
|
---|
271 | pe = ra.Data()+ra.Offset(ax,j);
|
---|
272 | for(k=0, ka=0; k<gpas; k+=step, ka+=stepa)
|
---|
273 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
274 | }
|
---|
275 | }
|
---|
276 | return(ra);
|
---|
277 | }
|
---|
278 |
|
---|
279 |
|
---|
280 | //! Returns the real part of the complex input array.
|
---|
281 | /*!
|
---|
282 | \param a : input complex array
|
---|
283 | \return Return a new array filled with the real part of the input complex array elements
|
---|
284 | */
|
---|
285 |
|
---|
286 | template <class T>
|
---|
287 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a)
|
---|
288 | {
|
---|
289 | if (a.NbDimensions() < 1)
|
---|
290 | throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
291 | TArray<T> ra;
|
---|
292 | ra.ReSize(a);
|
---|
293 |
|
---|
294 | const complex<T> * pe;
|
---|
295 | T * po;
|
---|
296 | sa_size_t j,k;
|
---|
297 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
298 | sa_size_t step = a.AvgStep();
|
---|
299 | sa_size_t maxx = a.Size()*step;
|
---|
300 | pe = a.Data();
|
---|
301 | po = ra.Data();
|
---|
302 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].real();
|
---|
303 | }
|
---|
304 | else { // Non regular data spacing ...
|
---|
305 | int_4 ka = a.MaxSizeKA();
|
---|
306 | sa_size_t step = a.Step(ka);
|
---|
307 | sa_size_t gpas = a.Size(ka)*step;
|
---|
308 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
309 | for(j=0; j<naxa; j++) {
|
---|
310 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
311 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
312 | for(k=0; k<gpas; k+=step) po[k] = pe[k].real();
|
---|
313 | }
|
---|
314 | }
|
---|
315 | return(ra);
|
---|
316 | }
|
---|
317 |
|
---|
318 | //! Returns the imaginary part of the complex input array.
|
---|
319 | /*!
|
---|
320 | \param a : input complex array
|
---|
321 | \return Return a new array filled with the imaginary part of the input complex array elements
|
---|
322 | */
|
---|
323 |
|
---|
324 | template <class T>
|
---|
325 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a)
|
---|
326 | {
|
---|
327 | if (a.NbDimensions() < 1)
|
---|
328 | throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
329 | TArray<T> ra;
|
---|
330 | ra.ReSize(a);
|
---|
331 |
|
---|
332 | const complex<T> * pe;
|
---|
333 | T * po;
|
---|
334 | sa_size_t j,k;
|
---|
335 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
336 | sa_size_t step = a.AvgStep();
|
---|
337 | sa_size_t maxx = a.Size()*step;
|
---|
338 | pe = a.Data();
|
---|
339 | po = ra.Data();
|
---|
340 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].imag();
|
---|
341 | }
|
---|
342 | else { // Non regular data spacing ...
|
---|
343 | int_4 ka = a.MaxSizeKA();
|
---|
344 | sa_size_t step = a.Step(ka);
|
---|
345 | sa_size_t gpas = a.Size(ka)*step;
|
---|
346 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
347 | for(j=0; j<naxa; j++) {
|
---|
348 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
349 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
350 | for(k=0; k<gpas; k+=step) po[k] = pe[k].imag();
|
---|
351 | }
|
---|
352 | }
|
---|
353 | return(ra);
|
---|
354 | }
|
---|
355 |
|
---|
356 | //! Returns the module squared of the complex input array.
|
---|
357 | /*!
|
---|
358 | \param a : input complex array
|
---|
359 | \return Return a new array filled with the module squared of the input complex array elements
|
---|
360 | */
|
---|
361 |
|
---|
362 | template <class T>
|
---|
363 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a)
|
---|
364 | {
|
---|
365 | if (a.NbDimensions() < 1)
|
---|
366 | throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
367 | TArray<T> ra;
|
---|
368 | ra.ReSize(a);
|
---|
369 |
|
---|
370 | const complex<T> * pe;
|
---|
371 | T * po;
|
---|
372 | sa_size_t j,k;
|
---|
373 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
374 | sa_size_t step = a.AvgStep();
|
---|
375 | sa_size_t maxx = a.Size()*step;
|
---|
376 | pe = a.Data();
|
---|
377 | po = ra.Data();
|
---|
378 | for(k=0; k<maxx; k+=step )
|
---|
379 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
380 | }
|
---|
381 | else { // Non regular data spacing ...
|
---|
382 | int_4 ka = a.MaxSizeKA();
|
---|
383 | sa_size_t step = a.Step(ka);
|
---|
384 | sa_size_t gpas = a.Size(ka)*step;
|
---|
385 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
386 | for(j=0; j<naxa; j++) {
|
---|
387 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
388 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
389 | for(k=0; k<gpas; k+=step)
|
---|
390 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
391 | }
|
---|
392 | }
|
---|
393 | return(ra);
|
---|
394 | }
|
---|
395 |
|
---|
396 | //! Returns the module of the complex input array.
|
---|
397 | /*!
|
---|
398 | \param a : input complex array
|
---|
399 | \return Return a new array filled with the module of the input complex array elements
|
---|
400 | */
|
---|
401 |
|
---|
402 | template <class T>
|
---|
403 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a)
|
---|
404 | {
|
---|
405 | if (a.NbDimensions() < 1)
|
---|
406 | throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
407 | TArray<T> ra;
|
---|
408 | ra.ReSize(a);
|
---|
409 |
|
---|
410 | const complex<T> * pe;
|
---|
411 | T * po;
|
---|
412 | sa_size_t j,k;
|
---|
413 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
414 | sa_size_t step = a.AvgStep();
|
---|
415 | sa_size_t maxx = a.Size()*step;
|
---|
416 | pe = a.Data();
|
---|
417 | po = ra.Data();
|
---|
418 | for(k=0; k<maxx; k+=step )
|
---|
419 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
420 | }
|
---|
421 | else { // Non regular data spacing ...
|
---|
422 | int_4 ka = a.MaxSizeKA();
|
---|
423 | sa_size_t step = a.Step(ka);
|
---|
424 | sa_size_t gpas = a.Size(ka)*step;
|
---|
425 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
426 | for(j=0; j<naxa; j++) {
|
---|
427 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
428 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
429 | for(k=0; k<gpas; k+=step)
|
---|
430 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
431 | }
|
---|
432 | }
|
---|
433 | return(ra);
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | //! Returns the phase of the complex input array.
|
---|
438 | /*!
|
---|
439 | \param a : input complex array
|
---|
440 | \return Return a new array filled with the phase of the input complex array elements
|
---|
441 | */
|
---|
442 |
|
---|
443 | template <class T>
|
---|
444 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a)
|
---|
445 | {
|
---|
446 | if (a.NbDimensions() < 1)
|
---|
447 | throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
448 | TArray<T> ra;
|
---|
449 | ra.ReSize(a);
|
---|
450 |
|
---|
451 | const complex<T> * pe;
|
---|
452 | T * po;
|
---|
453 | sa_size_t j,k;
|
---|
454 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
455 | sa_size_t step = a.AvgStep();
|
---|
456 | sa_size_t maxx = a.Size()*step;
|
---|
457 | pe = a.Data();
|
---|
458 | po = ra.Data();
|
---|
459 | for(k=0; k<maxx; k+=step )
|
---|
460 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
461 | }
|
---|
462 | else { // Non regular data spacing ...
|
---|
463 | int_4 ka = a.MaxSizeKA();
|
---|
464 | sa_size_t step = a.Step(ka);
|
---|
465 | sa_size_t gpas = a.Size(ka)*step;
|
---|
466 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
467 | for(j=0; j<naxa; j++) {
|
---|
468 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
469 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
470 | for(k=0; k<gpas; k+=step)
|
---|
471 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
472 | }
|
---|
473 | }
|
---|
474 | return(ra);
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|
478 | ///////////////////////////////////////////////////////////////
|
---|
479 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
480 | #pragma define_template MathArray<r_4>
|
---|
481 | #pragma define_template MathArray<r_8>
|
---|
482 | #pragma define_template ComplexMathArray<r_4>
|
---|
483 | #pragma define_template ComplexMathArray<r_8>
|
---|
484 | #endif
|
---|
485 |
|
---|
486 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
487 | template class MathArray<r_4>;
|
---|
488 | template class MathArray<r_8>;
|
---|
489 | template class ComplexMathArray<r_4>;
|
---|
490 | template class ComplexMathArray<r_8>;
|
---|
491 | #endif
|
---|