| 1 | //  Usuall mathematical functions and operations on arrays | 
|---|
| 2 | //                     R. Ansari, C.Magneville   03/2000 | 
|---|
| 3 |  | 
|---|
| 4 | #include "machdefs.h" | 
|---|
| 5 | #include <math.h> | 
|---|
| 6 | #include "matharr.h" | 
|---|
| 7 |  | 
|---|
| 8 | // ---------------------------------------------------- | 
|---|
| 9 | //          Application d'une fonction | 
|---|
| 10 | // ---------------------------------------------------- | 
|---|
| 11 |  | 
|---|
| 12 | /*! | 
|---|
| 13 | \class SOPHYA::MathArray | 
|---|
| 14 | \ingroup TArray | 
|---|
| 15 | Class for simple mathematical operation on arrays | 
|---|
| 16 | \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | //! Apply Function In Place (function double version) | 
|---|
| 20 | /*! | 
|---|
| 21 | \param a : array to be replaced in place | 
|---|
| 22 | \param f : function for replacement | 
|---|
| 23 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
| 24 | */ | 
|---|
| 25 | template <class T> | 
|---|
| 26 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f) | 
|---|
| 27 | { | 
|---|
| 28 | if (a.NbDimensions() < 1) | 
|---|
| 29 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !"); | 
|---|
| 30 | T * pe; | 
|---|
| 31 | sa_size_t j,k; | 
|---|
| 32 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 33 | sa_size_t step = a.AvgStep(); | 
|---|
| 34 | sa_size_t maxx = a.Size()*step; | 
|---|
| 35 | pe = a.Data(); | 
|---|
| 36 | for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((double)pe[k])); | 
|---|
| 37 | } | 
|---|
| 38 | else {    // Non regular data spacing ... | 
|---|
| 39 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 40 | sa_size_t step = a.Step(ka); | 
|---|
| 41 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 42 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 43 | for(j=0; j<naxa; j++)  { | 
|---|
| 44 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 45 | for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((double)pe[k])); | 
|---|
| 46 | } | 
|---|
| 47 | } | 
|---|
| 48 | return(a); | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | //! Apply Function In Place (function float version) | 
|---|
| 52 | /*! | 
|---|
| 53 | \param a : array to be replaced in place | 
|---|
| 54 | \param f : function for replacement | 
|---|
| 55 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
| 56 | */ | 
|---|
| 57 | template <class T> | 
|---|
| 58 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_FloatFunctionOfX f) | 
|---|
| 59 | { | 
|---|
| 60 | if (a.NbDimensions() < 1) | 
|---|
| 61 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !"); | 
|---|
| 62 | T * pe; | 
|---|
| 63 | sa_size_t j,k; | 
|---|
| 64 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 65 | sa_size_t step = a.AvgStep(); | 
|---|
| 66 | sa_size_t maxx = a.Size()*step; | 
|---|
| 67 | pe = a.Data(); | 
|---|
| 68 | for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((float)pe[k])); | 
|---|
| 69 | } | 
|---|
| 70 | else {    // Non regular data spacing ... | 
|---|
| 71 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 72 | sa_size_t step = a.Step(ka); | 
|---|
| 73 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 74 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 75 | for(j=0; j<naxa; j++)  { | 
|---|
| 76 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 77 | for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((float)pe[k])); | 
|---|
| 78 | } | 
|---|
| 79 | } | 
|---|
| 80 | return(a); | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 |  | 
|---|
| 84 | //! Apply Function (function double version) | 
|---|
| 85 | /*! | 
|---|
| 86 | \param a : argument array of the function | 
|---|
| 87 | \param f : function for replacement | 
|---|
| 88 | \return Return a new array filled with function f(a(i,j)) | 
|---|
| 89 | */ | 
|---|
| 90 | template <class T> | 
|---|
| 91 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f) | 
|---|
| 92 | { | 
|---|
| 93 | TArray<T> ra; | 
|---|
| 94 | ra = a; | 
|---|
| 95 | ApplyFunctionInPlace(ra, f); | 
|---|
| 96 | return(ra); | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | //! Apply Function (function float version) | 
|---|
| 100 | /*! | 
|---|
| 101 | \param a : argument array of the function | 
|---|
| 102 | \param f : function for replacement | 
|---|
| 103 | \return Return a new array filled with function f(a(i,j)) | 
|---|
| 104 | */ | 
|---|
| 105 | template <class T> | 
|---|
| 106 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_FloatFunctionOfX f) | 
|---|
| 107 | { | 
|---|
| 108 | TArray<T> ra; | 
|---|
| 109 | ra = a; | 
|---|
| 110 | ApplyFunctionInPlace(ra, f); | 
|---|
| 111 | return(ra); | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean | 
|---|
| 115 | template <class T> | 
|---|
| 116 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig) | 
|---|
| 117 | { | 
|---|
| 118 | if (a.NbDimensions() < 1) | 
|---|
| 119 | throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !"); | 
|---|
| 120 | const T * pe; | 
|---|
| 121 | sa_size_t j,k; | 
|---|
| 122 | mean=0.; | 
|---|
| 123 | sig = 0.; | 
|---|
| 124 | double valok; | 
|---|
| 125 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 126 | sa_size_t step = a.AvgStep(); | 
|---|
| 127 | sa_size_t maxx = a.Size()*step; | 
|---|
| 128 | pe = a.Data(); | 
|---|
| 129 | for(k=0; k<maxx; k+=step )  { | 
|---|
| 130 | valok = (double) pe[k]; | 
|---|
| 131 | mean += valok;  sig += valok*valok; | 
|---|
| 132 | } | 
|---|
| 133 | } | 
|---|
| 134 | else {    // Non regular data spacing ... | 
|---|
| 135 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 136 | sa_size_t step = a.Step(ka); | 
|---|
| 137 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 138 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 139 | for(j=0; j<naxa; j++)  { | 
|---|
| 140 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 141 | for(k=0; k<gpas; k+=step) { | 
|---|
| 142 | valok = (double) pe[k]; | 
|---|
| 143 | mean += valok;  sig += valok*valok; | 
|---|
| 144 | } | 
|---|
| 145 | } | 
|---|
| 146 | } | 
|---|
| 147 | double dsz = (double)(a.Size()); | 
|---|
| 148 | mean /= dsz; | 
|---|
| 149 | sig = sig/dsz - mean*mean; | 
|---|
| 150 | if (sig >= 0.) sig = sqrt(sig); | 
|---|
| 151 | return(mean); | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 |  | 
|---|
| 155 | //------------------------------------------------------------------------------- | 
|---|
| 156 | //      Definition utilitaire d'application de fonction | 
|---|
| 157 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z, | 
|---|
| 158 | Arr_ComplexDoubleFunctionOfX f) | 
|---|
| 159 | { | 
|---|
| 160 | return(f(z)); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z, | 
|---|
| 164 | Arr_ComplexDoubleFunctionOfX f) | 
|---|
| 165 | { | 
|---|
| 166 | complex<r_8> zd((r_8)z.real(), (r_8)z.imag()); | 
|---|
| 167 | zd = f(zd); | 
|---|
| 168 | complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag()); | 
|---|
| 169 | return(zr); | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | //------------------------------------------------------------------------------- | 
|---|
| 173 |  | 
|---|
| 174 | /*! | 
|---|
| 175 | \class SOPHYA::ComplexMathArray | 
|---|
| 176 | \ingroup TArray | 
|---|
| 177 | Class for simple mathematical operation on arrays | 
|---|
| 178 | \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays | 
|---|
| 179 | */ | 
|---|
| 180 |  | 
|---|
| 181 | //! Apply Function In Place (complex arrays) | 
|---|
| 182 | /*! | 
|---|
| 183 | \param a : complex array to be replaced in place | 
|---|
| 184 | \param f : function for replacement | 
|---|
| 185 | \return Return an array \b a filled with function f(a(i,j)) | 
|---|
| 186 | */ | 
|---|
| 187 | template <class T> | 
|---|
| 188 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f) | 
|---|
| 189 | { | 
|---|
| 190 | if (a.NbDimensions() < 1) | 
|---|
| 191 | throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !"); | 
|---|
| 192 | complex<T> * pe; | 
|---|
| 193 | sa_size_t j,k; | 
|---|
| 194 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 195 | sa_size_t step = a.AvgStep(); | 
|---|
| 196 | sa_size_t maxx = a.Size()*step; | 
|---|
| 197 | pe = a.Data(); | 
|---|
| 198 | for(k=0; k<maxx; k+=step )  pe[k] = ApplyComplexDoubleFunction(pe[k],f); | 
|---|
| 199 | } | 
|---|
| 200 | else {    // Non regular data spacing ... | 
|---|
| 201 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 202 | sa_size_t step = a.Step(ka); | 
|---|
| 203 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 204 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 205 | for(j=0; j<naxa; j++)  { | 
|---|
| 206 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 207 | for(k=0; k<gpas; k+=step)  pe[k] = ApplyComplexDoubleFunction(pe[k],f); | 
|---|
| 208 | } | 
|---|
| 209 | } | 
|---|
| 210 | return(a); | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 |  | 
|---|
| 214 |  | 
|---|
| 215 | //! Apply Function (complex arrays) | 
|---|
| 216 | /*! | 
|---|
| 217 | \param a : argument array of the function | 
|---|
| 218 | \param f : function for replacement | 
|---|
| 219 | \return Return a new array filled with function f(a(i,j)) | 
|---|
| 220 | */ | 
|---|
| 221 | template <class T> | 
|---|
| 222 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f) | 
|---|
| 223 | { | 
|---|
| 224 | TArray< complex<T> > ra; | 
|---|
| 225 | ra = a; | 
|---|
| 226 | ApplyFunctionInPlace(ra, f); | 
|---|
| 227 | return(ra); | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | //! Create a complex array, from a real and an imaginary arrays | 
|---|
| 231 | /*! | 
|---|
| 232 | \param p_real : array containing the real part of the complex output array | 
|---|
| 233 | \param p_imag : array containing the imaginary part of the complex output array | 
|---|
| 234 | \return Return a new complex array build from \b p_real and \b p_imag | 
|---|
| 235 | */ | 
|---|
| 236 | template <class T> | 
|---|
| 237 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real, | 
|---|
| 238 | TArray<T> const & p_imag) | 
|---|
| 239 | { | 
|---|
| 240 | if (p_real.NbDimensions() < 1) | 
|---|
| 241 | throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! "); | 
|---|
| 242 | bool smo; | 
|---|
| 243 | if (!p_real.CompareSizes(p_imag, smo)) | 
|---|
| 244 | throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ; | 
|---|
| 245 |  | 
|---|
| 246 | TArray< complex<T> > ra; | 
|---|
| 247 | ra.ReSize(p_real); | 
|---|
| 248 |  | 
|---|
| 249 | complex<T> * pe; | 
|---|
| 250 | const T * per; | 
|---|
| 251 | const T * pei; | 
|---|
| 252 | sa_size_t j,k,ka; | 
|---|
| 253 | if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0))   {  // regularly spaced elements | 
|---|
| 254 | sa_size_t step = p_real.AvgStep(); | 
|---|
| 255 | sa_size_t stepa = p_imag.AvgStep(); | 
|---|
| 256 | sa_size_t maxx = p_real.Size()*step; | 
|---|
| 257 | per = p_real.Data(); | 
|---|
| 258 | pei = p_imag.Data(); | 
|---|
| 259 | pe = ra.Data(); | 
|---|
| 260 | for(k=0, ka=0;  k<maxx;  k+=step, ka+=stepa ) | 
|---|
| 261 | pe[k] = complex<T>(per[k], pei[ka]) ; | 
|---|
| 262 | } | 
|---|
| 263 | else {    // Non regular data spacing ... | 
|---|
| 264 | int_4 ax,axa; | 
|---|
| 265 | sa_size_t step, stepa; | 
|---|
| 266 | sa_size_t gpas, naxa; | 
|---|
| 267 | p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa); | 
|---|
| 268 | for(j=0; j<naxa; j++)  { | 
|---|
| 269 | per = p_real.Data()+p_real.Offset(ax,j); | 
|---|
| 270 | pei = p_imag.Data()+p_imag.Offset(axa,j); | 
|---|
| 271 | pe = ra.Data()+ra.Offset(ax,j); | 
|---|
| 272 | for(k=0, ka=0;  k<gpas;  k+=step, ka+=stepa) | 
|---|
| 273 | pe[k] = complex<T>(per[k], pei[ka]) ; | 
|---|
| 274 | } | 
|---|
| 275 | } | 
|---|
| 276 | return(ra); | 
|---|
| 277 | } | 
|---|
| 278 |  | 
|---|
| 279 |  | 
|---|
| 280 | //! Returns the real part of the complex input array. | 
|---|
| 281 | /*! | 
|---|
| 282 | \param a : input complex array | 
|---|
| 283 | \return Return a new array filled with the real part of the input complex array elements | 
|---|
| 284 | */ | 
|---|
| 285 |  | 
|---|
| 286 | template <class T> | 
|---|
| 287 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a) | 
|---|
| 288 | { | 
|---|
| 289 | if (a.NbDimensions() < 1) | 
|---|
| 290 | throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
| 291 | TArray<T> ra; | 
|---|
| 292 | ra.ReSize(a); | 
|---|
| 293 |  | 
|---|
| 294 | const complex<T> * pe; | 
|---|
| 295 | T * po; | 
|---|
| 296 | sa_size_t j,k; | 
|---|
| 297 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 298 | sa_size_t step = a.AvgStep(); | 
|---|
| 299 | sa_size_t maxx = a.Size()*step; | 
|---|
| 300 | pe = a.Data(); | 
|---|
| 301 | po = ra.Data(); | 
|---|
| 302 | for(k=0; k<maxx; k+=step )  po[k] = pe[k].real(); | 
|---|
| 303 | } | 
|---|
| 304 | else {    // Non regular data spacing ... | 
|---|
| 305 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 306 | sa_size_t step = a.Step(ka); | 
|---|
| 307 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 308 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 309 | for(j=0; j<naxa; j++)  { | 
|---|
| 310 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 311 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
| 312 | for(k=0; k<gpas; k+=step)  po[k] = pe[k].real(); | 
|---|
| 313 | } | 
|---|
| 314 | } | 
|---|
| 315 | return(ra); | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | //! Returns the imaginary part of the complex input array. | 
|---|
| 319 | /*! | 
|---|
| 320 | \param a : input complex array | 
|---|
| 321 | \return Return a new array filled with the imaginary part of the input complex array elements | 
|---|
| 322 | */ | 
|---|
| 323 |  | 
|---|
| 324 | template <class T> | 
|---|
| 325 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a) | 
|---|
| 326 | { | 
|---|
| 327 | if (a.NbDimensions() < 1) | 
|---|
| 328 | throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
| 329 | TArray<T> ra; | 
|---|
| 330 | ra.ReSize(a); | 
|---|
| 331 |  | 
|---|
| 332 | const complex<T> * pe; | 
|---|
| 333 | T * po; | 
|---|
| 334 | sa_size_t j,k; | 
|---|
| 335 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 336 | sa_size_t step = a.AvgStep(); | 
|---|
| 337 | sa_size_t maxx = a.Size()*step; | 
|---|
| 338 | pe = a.Data(); | 
|---|
| 339 | po = ra.Data(); | 
|---|
| 340 | for(k=0; k<maxx; k+=step )  po[k] = pe[k].imag(); | 
|---|
| 341 | } | 
|---|
| 342 | else {    // Non regular data spacing ... | 
|---|
| 343 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 344 | sa_size_t step = a.Step(ka); | 
|---|
| 345 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 346 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 347 | for(j=0; j<naxa; j++)  { | 
|---|
| 348 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 349 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
| 350 | for(k=0; k<gpas; k+=step)  po[k] = pe[k].imag(); | 
|---|
| 351 | } | 
|---|
| 352 | } | 
|---|
| 353 | return(ra); | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | //! Returns the module squared of the complex input array. | 
|---|
| 357 | /*! | 
|---|
| 358 | \param a : input complex array | 
|---|
| 359 | \return Return a new array filled with the module squared of the input complex array elements | 
|---|
| 360 | */ | 
|---|
| 361 |  | 
|---|
| 362 | template <class T> | 
|---|
| 363 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a) | 
|---|
| 364 | { | 
|---|
| 365 | if (a.NbDimensions() < 1) | 
|---|
| 366 | throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
| 367 | TArray<T> ra; | 
|---|
| 368 | ra.ReSize(a); | 
|---|
| 369 |  | 
|---|
| 370 | const complex<T> * pe; | 
|---|
| 371 | T * po; | 
|---|
| 372 | sa_size_t j,k; | 
|---|
| 373 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 374 | sa_size_t step = a.AvgStep(); | 
|---|
| 375 | sa_size_t maxx = a.Size()*step; | 
|---|
| 376 | pe = a.Data(); | 
|---|
| 377 | po = ra.Data(); | 
|---|
| 378 | for(k=0; k<maxx; k+=step ) | 
|---|
| 379 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()); | 
|---|
| 380 | } | 
|---|
| 381 | else {    // Non regular data spacing ... | 
|---|
| 382 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 383 | sa_size_t step = a.Step(ka); | 
|---|
| 384 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 385 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 386 | for(j=0; j<naxa; j++)  { | 
|---|
| 387 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 388 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
| 389 | for(k=0; k<gpas; k+=step) | 
|---|
| 390 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()); | 
|---|
| 391 | } | 
|---|
| 392 | } | 
|---|
| 393 | return(ra); | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | //! Returns the module of the complex input array. | 
|---|
| 397 | /*! | 
|---|
| 398 | \param a : input complex array | 
|---|
| 399 | \return Return a new array filled with the module of the input complex array elements | 
|---|
| 400 | */ | 
|---|
| 401 |  | 
|---|
| 402 | template <class T> | 
|---|
| 403 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a) | 
|---|
| 404 | { | 
|---|
| 405 | if (a.NbDimensions() < 1) | 
|---|
| 406 | throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
| 407 | TArray<T> ra; | 
|---|
| 408 | ra.ReSize(a); | 
|---|
| 409 |  | 
|---|
| 410 | const complex<T> * pe; | 
|---|
| 411 | T * po; | 
|---|
| 412 | sa_size_t j,k; | 
|---|
| 413 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 414 | sa_size_t step = a.AvgStep(); | 
|---|
| 415 | sa_size_t maxx = a.Size()*step; | 
|---|
| 416 | pe = a.Data(); | 
|---|
| 417 | po = ra.Data(); | 
|---|
| 418 | for(k=0; k<maxx; k+=step ) | 
|---|
| 419 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag())); | 
|---|
| 420 | } | 
|---|
| 421 | else {    // Non regular data spacing ... | 
|---|
| 422 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 423 | sa_size_t step = a.Step(ka); | 
|---|
| 424 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 425 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 426 | for(j=0; j<naxa; j++)  { | 
|---|
| 427 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 428 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
| 429 | for(k=0; k<gpas; k+=step) | 
|---|
| 430 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag())); | 
|---|
| 431 | } | 
|---|
| 432 | } | 
|---|
| 433 | return(ra); | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 |  | 
|---|
| 437 | //! Returns the phase of the complex input array. | 
|---|
| 438 | /*! | 
|---|
| 439 | \param a : input complex array | 
|---|
| 440 | \return Return a new array filled with the phase of the input complex array elements | 
|---|
| 441 | */ | 
|---|
| 442 |  | 
|---|
| 443 | template <class T> | 
|---|
| 444 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a) | 
|---|
| 445 | { | 
|---|
| 446 | if (a.NbDimensions() < 1) | 
|---|
| 447 | throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !"); | 
|---|
| 448 | TArray<T> ra; | 
|---|
| 449 | ra.ReSize(a); | 
|---|
| 450 |  | 
|---|
| 451 | const complex<T> * pe; | 
|---|
| 452 | T * po; | 
|---|
| 453 | sa_size_t j,k; | 
|---|
| 454 | if (a.AvgStep() > 0)   {  // regularly spaced elements | 
|---|
| 455 | sa_size_t step = a.AvgStep(); | 
|---|
| 456 | sa_size_t maxx = a.Size()*step; | 
|---|
| 457 | pe = a.Data(); | 
|---|
| 458 | po = ra.Data(); | 
|---|
| 459 | for(k=0; k<maxx; k+=step ) | 
|---|
| 460 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real()); | 
|---|
| 461 | } | 
|---|
| 462 | else {    // Non regular data spacing ... | 
|---|
| 463 | int_4 ka = a.MaxSizeKA(); | 
|---|
| 464 | sa_size_t step = a.Step(ka); | 
|---|
| 465 | sa_size_t gpas = a.Size(ka)*step; | 
|---|
| 466 | sa_size_t naxa = a.Size()/a.Size(ka); | 
|---|
| 467 | for(j=0; j<naxa; j++)  { | 
|---|
| 468 | pe = a.DataBlock().Begin()+a.Offset(ka,j); | 
|---|
| 469 | po = ra.DataBlock().Begin()+ra.Offset(ka,j); | 
|---|
| 470 | for(k=0; k<gpas; k+=step) | 
|---|
| 471 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real()); | 
|---|
| 472 | } | 
|---|
| 473 | } | 
|---|
| 474 | return(ra); | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 |  | 
|---|
| 478 | /////////////////////////////////////////////////////////////// | 
|---|
| 479 | #ifdef __CXX_PRAGMA_TEMPLATES__ | 
|---|
| 480 | #pragma define_template MathArray<r_4> | 
|---|
| 481 | #pragma define_template MathArray<r_8> | 
|---|
| 482 | #pragma define_template ComplexMathArray<r_4> | 
|---|
| 483 | #pragma define_template ComplexMathArray<r_8> | 
|---|
| 484 | #endif | 
|---|
| 485 |  | 
|---|
| 486 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) | 
|---|
| 487 | template class MathArray<r_4>; | 
|---|
| 488 | template class MathArray<r_8>; | 
|---|
| 489 | template class ComplexMathArray<r_4>; | 
|---|
| 490 | template class ComplexMathArray<r_8>; | 
|---|
| 491 | #endif | 
|---|