| 1 | //  Usuall mathematical functions and operations on arrays
 | 
|---|
| 2 | //                     R. Ansari, C.Magneville   03/2000
 | 
|---|
| 3 | 
 | 
|---|
| 4 | #include "sopnamsp.h"
 | 
|---|
| 5 | #include "machdefs.h"
 | 
|---|
| 6 | #include <math.h>
 | 
|---|
| 7 | #include "matharr.h"
 | 
|---|
| 8 | 
 | 
|---|
| 9 | // ----------------------------------------------------
 | 
|---|
| 10 | //          Application d'une fonction
 | 
|---|
| 11 | // ----------------------------------------------------
 | 
|---|
| 12 | 
 | 
|---|
| 13 | /*!
 | 
|---|
| 14 |   \class SOPHYA::MathArray
 | 
|---|
| 15 |   \ingroup TArray
 | 
|---|
| 16 |   Class for simple mathematical operation on arrays 
 | 
|---|
| 17 |   \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays
 | 
|---|
| 18 | */
 | 
|---|
| 19 | 
 | 
|---|
| 20 | //! Apply Function In Place (function double version)
 | 
|---|
| 21 | /*!
 | 
|---|
| 22 |   \param a : array to be replaced in place
 | 
|---|
| 23 |   \param f : function for replacement
 | 
|---|
| 24 |   \return Return an array \b a filled with function f(a(i,j))
 | 
|---|
| 25 | */
 | 
|---|
| 26 | template <class T>
 | 
|---|
| 27 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f)
 | 
|---|
| 28 | {
 | 
|---|
| 29 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 30 |     throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !");
 | 
|---|
| 31 |   T * pe;
 | 
|---|
| 32 |   sa_size_t j,k;
 | 
|---|
| 33 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 34 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 35 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 36 |     pe = a.Data();
 | 
|---|
| 37 |     for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((double)pe[k])); 
 | 
|---|
| 38 |   }
 | 
|---|
| 39 |   else {    // Non regular data spacing ...
 | 
|---|
| 40 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 41 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 42 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 43 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 44 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 45 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 46 |       for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((double)pe[k]));
 | 
|---|
| 47 |     }
 | 
|---|
| 48 |   }
 | 
|---|
| 49 |   return(a);
 | 
|---|
| 50 | }
 | 
|---|
| 51 | 
 | 
|---|
| 52 | //! Apply Function In Place (function float version)
 | 
|---|
| 53 | /*!
 | 
|---|
| 54 |   \param a : array to be replaced in place
 | 
|---|
| 55 |   \param f : function for replacement
 | 
|---|
| 56 |   \return Return an array \b a filled with function f(a(i,j))
 | 
|---|
| 57 | */
 | 
|---|
| 58 | template <class T>
 | 
|---|
| 59 | TArray<T>& MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a, Arr_FloatFunctionOfX f)
 | 
|---|
| 60 | {
 | 
|---|
| 61 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 62 |     throw RangeCheckError("MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a..) Not Allocated Array a !");
 | 
|---|
| 63 |   T * pe;
 | 
|---|
| 64 |   sa_size_t j,k;
 | 
|---|
| 65 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 66 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 67 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 68 |     pe = a.Data();
 | 
|---|
| 69 |     for(k=0; k<maxx; k+=step )  pe[k] = (T)(f((float)pe[k])); 
 | 
|---|
| 70 |   }
 | 
|---|
| 71 |   else {    // Non regular data spacing ...
 | 
|---|
| 72 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 73 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 74 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 75 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 76 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 77 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 78 |       for(k=0; k<gpas; k+=step)  pe[k] = (T)(f((float)pe[k]));
 | 
|---|
| 79 |     }
 | 
|---|
| 80 |   }
 | 
|---|
| 81 |   return(a);
 | 
|---|
| 82 | }
 | 
|---|
| 83 | 
 | 
|---|
| 84 | 
 | 
|---|
| 85 | //! Apply Function (function double version)
 | 
|---|
| 86 | /*!
 | 
|---|
| 87 |   \param a : argument array of the function
 | 
|---|
| 88 |   \param f : function for replacement
 | 
|---|
| 89 |   \return Return a new array filled with function f(a(i,j))
 | 
|---|
| 90 | */
 | 
|---|
| 91 | template <class T>
 | 
|---|
| 92 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f)
 | 
|---|
| 93 | {
 | 
|---|
| 94 |   TArray<T> ra;
 | 
|---|
| 95 |   ra = a;
 | 
|---|
| 96 |   ApplyFunctionInPlace(ra, f);
 | 
|---|
| 97 |   return(ra);
 | 
|---|
| 98 | }
 | 
|---|
| 99 | 
 | 
|---|
| 100 | //! Apply Function (function float version)
 | 
|---|
| 101 | /*!
 | 
|---|
| 102 |   \param a : argument array of the function
 | 
|---|
| 103 |   \param f : function for replacement
 | 
|---|
| 104 |   \return Return a new array filled with function f(a(i,j))
 | 
|---|
| 105 | */
 | 
|---|
| 106 | template <class T>
 | 
|---|
| 107 | TArray<T> MathArray<T>::ApplyFunctionF(TArray<T> const & a, Arr_FloatFunctionOfX f)
 | 
|---|
| 108 | {
 | 
|---|
| 109 |   TArray<T> ra;
 | 
|---|
| 110 |   ra = a;
 | 
|---|
| 111 |   ApplyFunctionInPlaceF(ra, f);
 | 
|---|
| 112 |   return(ra);
 | 
|---|
| 113 | }
 | 
|---|
| 114 | 
 | 
|---|
| 115 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean
 | 
|---|
| 116 | template <class T>
 | 
|---|
| 117 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig)
 | 
|---|
| 118 | {
 | 
|---|
| 119 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 120 |     throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !");
 | 
|---|
| 121 |   const T * pe;
 | 
|---|
| 122 |   sa_size_t j,k;
 | 
|---|
| 123 |   mean=0.;
 | 
|---|
| 124 |   sig = 0.;
 | 
|---|
| 125 |   double valok;
 | 
|---|
| 126 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 127 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 128 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 129 |     pe = a.Data();
 | 
|---|
| 130 |     for(k=0; k<maxx; k+=step )  { 
 | 
|---|
| 131 |       valok = (double) pe[k]; 
 | 
|---|
| 132 |       mean += valok;  sig += valok*valok;
 | 
|---|
| 133 |     }
 | 
|---|
| 134 |   }
 | 
|---|
| 135 |   else {    // Non regular data spacing ...
 | 
|---|
| 136 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 137 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 138 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 139 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 140 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 141 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 142 |       for(k=0; k<gpas; k+=step) { 
 | 
|---|
| 143 |         valok = (double) pe[k]; 
 | 
|---|
| 144 |         mean += valok;  sig += valok*valok;
 | 
|---|
| 145 |       }
 | 
|---|
| 146 |     }
 | 
|---|
| 147 |   }
 | 
|---|
| 148 |   double dsz = (double)(a.Size());
 | 
|---|
| 149 |   mean /= dsz;
 | 
|---|
| 150 |   if (dsz > 1.5) {
 | 
|---|
| 151 |     sig = sig/dsz - mean*mean;
 | 
|---|
| 152 |     sig *= (dsz/(dsz-1));
 | 
|---|
| 153 |     if (sig >= 0.) sig = sqrt(sig);
 | 
|---|
| 154 |   }
 | 
|---|
| 155 |   else sig = 0.;
 | 
|---|
| 156 |   return(mean);
 | 
|---|
| 157 | }
 | 
|---|
| 158 | 
 | 
|---|
| 159 | 
 | 
|---|
| 160 | //-------------------------------------------------------------------------------
 | 
|---|
| 161 | //      Definition utilitaire d'application de fonction 
 | 
|---|
| 162 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z, 
 | 
|---|
| 163 |                                                Arr_ComplexDoubleFunctionOfX f)
 | 
|---|
| 164 | {
 | 
|---|
| 165 |   return(f(z));
 | 
|---|
| 166 | }
 | 
|---|
| 167 | 
 | 
|---|
| 168 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z, 
 | 
|---|
| 169 |                                                Arr_ComplexDoubleFunctionOfX f)
 | 
|---|
| 170 | {
 | 
|---|
| 171 |   complex<r_8> zd((r_8)z.real(), (r_8)z.imag());
 | 
|---|
| 172 |   zd = f(zd);
 | 
|---|
| 173 |   complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag());
 | 
|---|
| 174 |   return(zr);
 | 
|---|
| 175 | }
 | 
|---|
| 176 | 
 | 
|---|
| 177 | //-------------------------------------------------------------------------------
 | 
|---|
| 178 | 
 | 
|---|
| 179 | /*!
 | 
|---|
| 180 |   \class SOPHYA::ComplexMathArray
 | 
|---|
| 181 |   \ingroup TArray
 | 
|---|
| 182 |   Class for simple mathematical operation on arrays 
 | 
|---|
| 183 |   \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays
 | 
|---|
| 184 | */
 | 
|---|
| 185 | 
 | 
|---|
| 186 | //! Apply Function In Place (complex arrays)
 | 
|---|
| 187 | /*!
 | 
|---|
| 188 |   \param a : complex array to be replaced in place
 | 
|---|
| 189 |   \param f : function for replacement
 | 
|---|
| 190 |   \return Return an array \b a filled with function f(a(i,j))
 | 
|---|
| 191 | */
 | 
|---|
| 192 | template <class T>
 | 
|---|
| 193 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f)
 | 
|---|
| 194 | {
 | 
|---|
| 195 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 196 |     throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !");
 | 
|---|
| 197 |   complex<T> * pe;
 | 
|---|
| 198 |   sa_size_t j,k;
 | 
|---|
| 199 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 200 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 201 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 202 |     pe = a.Data();
 | 
|---|
| 203 |     for(k=0; k<maxx; k+=step )  pe[k] = ApplyComplexDoubleFunction(pe[k],f); 
 | 
|---|
| 204 |   }
 | 
|---|
| 205 |   else {    // Non regular data spacing ...
 | 
|---|
| 206 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 207 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 208 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 209 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 210 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 211 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 212 |       for(k=0; k<gpas; k+=step)  pe[k] = ApplyComplexDoubleFunction(pe[k],f);
 | 
|---|
| 213 |     }
 | 
|---|
| 214 |   }
 | 
|---|
| 215 |   return(a);
 | 
|---|
| 216 | }
 | 
|---|
| 217 | 
 | 
|---|
| 218 | 
 | 
|---|
| 219 | 
 | 
|---|
| 220 | //! Apply Function (complex arrays)
 | 
|---|
| 221 | /*!
 | 
|---|
| 222 |   \param a : argument array of the function
 | 
|---|
| 223 |   \param f : function for replacement
 | 
|---|
| 224 |   \return Return a new array filled with function f(a(i,j))
 | 
|---|
| 225 | */
 | 
|---|
| 226 | template <class T>
 | 
|---|
| 227 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f)
 | 
|---|
| 228 | {
 | 
|---|
| 229 |   TArray< complex<T> > ra;
 | 
|---|
| 230 |   ra = a;
 | 
|---|
| 231 |   ApplyFunctionInPlace(ra, f);
 | 
|---|
| 232 |   return(ra);
 | 
|---|
| 233 | }
 | 
|---|
| 234 | 
 | 
|---|
| 235 | //! Create a complex array, from a real and an imaginary arrays
 | 
|---|
| 236 | /*!
 | 
|---|
| 237 |   \param p_real : array containing the real part of the complex output array
 | 
|---|
| 238 |   \param p_imag : array containing the imaginary part of the complex output array
 | 
|---|
| 239 |   \return Return a new complex array build from \b p_real and \b p_imag
 | 
|---|
| 240 | */
 | 
|---|
| 241 | template <class T>
 | 
|---|
| 242 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real,
 | 
|---|
| 243 |                                                    TArray<T> const & p_imag)
 | 
|---|
| 244 | {
 | 
|---|
| 245 |   if (p_real.NbDimensions() < 1) 
 | 
|---|
| 246 |     throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! ");
 | 
|---|
| 247 |   bool smo;
 | 
|---|
| 248 |   if (!p_real.CompareSizes(p_imag, smo)) 
 | 
|---|
| 249 |     throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ;
 | 
|---|
| 250 | 
 | 
|---|
| 251 |   TArray< complex<T> > ra;
 | 
|---|
| 252 |   ra.ReSize(p_real);
 | 
|---|
| 253 | 
 | 
|---|
| 254 |   complex<T> * pe;
 | 
|---|
| 255 |   const T * per;
 | 
|---|
| 256 |   const T * pei;
 | 
|---|
| 257 |   sa_size_t j,k,ka;
 | 
|---|
| 258 |   if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0))   {  // regularly spaced elements
 | 
|---|
| 259 |     sa_size_t step = p_real.AvgStep();
 | 
|---|
| 260 |     sa_size_t stepa = p_imag.AvgStep();
 | 
|---|
| 261 |     sa_size_t maxx = p_real.Size()*step;
 | 
|---|
| 262 |     per = p_real.Data();
 | 
|---|
| 263 |     pei = p_imag.Data();
 | 
|---|
| 264 |     pe = ra.Data();
 | 
|---|
| 265 |     for(k=0, ka=0;  k<maxx;  k+=step, ka+=stepa )  
 | 
|---|
| 266 |       pe[k] = complex<T>(per[k], pei[ka]) ;
 | 
|---|
| 267 |   }
 | 
|---|
| 268 |   else {    // Non regular data spacing ...
 | 
|---|
| 269 |     int_4 ax,axa;
 | 
|---|
| 270 |     sa_size_t step, stepa;
 | 
|---|
| 271 |     sa_size_t gpas, naxa;
 | 
|---|
| 272 |     p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa);
 | 
|---|
| 273 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 274 |       per = p_real.Data()+p_real.Offset(ax,j);
 | 
|---|
| 275 |       pei = p_imag.Data()+p_imag.Offset(axa,j);
 | 
|---|
| 276 |       pe = ra.Data()+ra.Offset(ax,j);
 | 
|---|
| 277 |       for(k=0, ka=0;  k<gpas;  k+=step, ka+=stepa)  
 | 
|---|
| 278 |         pe[k] = complex<T>(per[k], pei[ka]) ;
 | 
|---|
| 279 |     }
 | 
|---|
| 280 |   }
 | 
|---|
| 281 |   return(ra);
 | 
|---|
| 282 | }
 | 
|---|
| 283 | 
 | 
|---|
| 284 | 
 | 
|---|
| 285 | //! Returns the real part of the complex input array.
 | 
|---|
| 286 | /*!
 | 
|---|
| 287 |   \param a : input complex array
 | 
|---|
| 288 |   \return Return a new array filled with the real part of the input complex array elements
 | 
|---|
| 289 | */
 | 
|---|
| 290 | 
 | 
|---|
| 291 | template <class T>
 | 
|---|
| 292 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a)
 | 
|---|
| 293 | {
 | 
|---|
| 294 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 295 |     throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !");
 | 
|---|
| 296 |   TArray<T> ra;
 | 
|---|
| 297 |   ra.ReSize(a);
 | 
|---|
| 298 | 
 | 
|---|
| 299 |   const complex<T> * pe;
 | 
|---|
| 300 |   T * po;
 | 
|---|
| 301 |   sa_size_t j,k;
 | 
|---|
| 302 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 303 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 304 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 305 |     pe = a.Data();
 | 
|---|
| 306 |     po = ra.Data();
 | 
|---|
| 307 |     for(k=0; k<maxx; k+=step )  po[k] = pe[k].real();
 | 
|---|
| 308 |   }
 | 
|---|
| 309 |   else {    // Non regular data spacing ...
 | 
|---|
| 310 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 311 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 312 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 313 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 314 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 315 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 316 |       po = ra.DataBlock().Begin()+ra.Offset(ka,j);
 | 
|---|
| 317 |       for(k=0; k<gpas; k+=step)  po[k] = pe[k].real();
 | 
|---|
| 318 |     }
 | 
|---|
| 319 |   }
 | 
|---|
| 320 |   return(ra);
 | 
|---|
| 321 | }
 | 
|---|
| 322 | 
 | 
|---|
| 323 | //! Returns the imaginary part of the complex input array.
 | 
|---|
| 324 | /*!
 | 
|---|
| 325 |   \param a : input complex array
 | 
|---|
| 326 |   \return Return a new array filled with the imaginary part of the input complex array elements
 | 
|---|
| 327 | */
 | 
|---|
| 328 | 
 | 
|---|
| 329 | template <class T>
 | 
|---|
| 330 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a)
 | 
|---|
| 331 | {
 | 
|---|
| 332 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 333 |     throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !");
 | 
|---|
| 334 |   TArray<T> ra;
 | 
|---|
| 335 |   ra.ReSize(a);
 | 
|---|
| 336 | 
 | 
|---|
| 337 |   const complex<T> * pe;
 | 
|---|
| 338 |   T * po;
 | 
|---|
| 339 |   sa_size_t j,k;
 | 
|---|
| 340 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 341 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 342 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 343 |     pe = a.Data();
 | 
|---|
| 344 |     po = ra.Data();
 | 
|---|
| 345 |     for(k=0; k<maxx; k+=step )  po[k] = pe[k].imag();
 | 
|---|
| 346 |   }
 | 
|---|
| 347 |   else {    // Non regular data spacing ...
 | 
|---|
| 348 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 349 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 350 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 351 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 352 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 353 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 354 |       po = ra.DataBlock().Begin()+ra.Offset(ka,j);
 | 
|---|
| 355 |       for(k=0; k<gpas; k+=step)  po[k] = pe[k].imag();
 | 
|---|
| 356 |     }
 | 
|---|
| 357 |   }
 | 
|---|
| 358 |   return(ra);
 | 
|---|
| 359 | }
 | 
|---|
| 360 | 
 | 
|---|
| 361 | //! Returns the module squared of the complex input array.
 | 
|---|
| 362 | /*!
 | 
|---|
| 363 |   \param a : input complex array
 | 
|---|
| 364 |   \return Return a new array filled with the module squared of the input complex array elements 
 | 
|---|
| 365 | */
 | 
|---|
| 366 | 
 | 
|---|
| 367 | template <class T>
 | 
|---|
| 368 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a)
 | 
|---|
| 369 | {
 | 
|---|
| 370 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 371 |     throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !");
 | 
|---|
| 372 |   TArray<T> ra;
 | 
|---|
| 373 |   ra.ReSize(a);
 | 
|---|
| 374 | 
 | 
|---|
| 375 |   const complex<T> * pe;
 | 
|---|
| 376 |   T * po;
 | 
|---|
| 377 |   sa_size_t j,k;
 | 
|---|
| 378 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 379 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 380 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 381 |     pe = a.Data();
 | 
|---|
| 382 |     po = ra.Data();
 | 
|---|
| 383 |     for(k=0; k<maxx; k+=step )  
 | 
|---|
| 384 |       po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
 | 
|---|
| 385 |   }
 | 
|---|
| 386 |   else {    // Non regular data spacing ...
 | 
|---|
| 387 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 388 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 389 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 390 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 391 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 392 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 393 |       po = ra.DataBlock().Begin()+ra.Offset(ka,j);
 | 
|---|
| 394 |       for(k=0; k<gpas; k+=step)  
 | 
|---|
| 395 |         po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
 | 
|---|
| 396 |     }
 | 
|---|
| 397 |   }
 | 
|---|
| 398 |   return(ra);
 | 
|---|
| 399 | }
 | 
|---|
| 400 | 
 | 
|---|
| 401 | //! Returns the module of the complex input array.
 | 
|---|
| 402 | /*!
 | 
|---|
| 403 |   \param a : input complex array
 | 
|---|
| 404 |   \return Return a new array filled with the module of the input complex array elements 
 | 
|---|
| 405 | */
 | 
|---|
| 406 | 
 | 
|---|
| 407 | template <class T>
 | 
|---|
| 408 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a)
 | 
|---|
| 409 | {
 | 
|---|
| 410 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 411 |     throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !");
 | 
|---|
| 412 |   TArray<T> ra;
 | 
|---|
| 413 |   ra.ReSize(a);
 | 
|---|
| 414 | 
 | 
|---|
| 415 |   const complex<T> * pe;
 | 
|---|
| 416 |   T * po;
 | 
|---|
| 417 |   sa_size_t j,k;
 | 
|---|
| 418 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 419 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 420 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 421 |     pe = a.Data();
 | 
|---|
| 422 |     po = ra.Data();
 | 
|---|
| 423 |     for(k=0; k<maxx; k+=step )  
 | 
|---|
| 424 |       po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
 | 
|---|
| 425 |   }
 | 
|---|
| 426 |   else {    // Non regular data spacing ...
 | 
|---|
| 427 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 428 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 429 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 430 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 431 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 432 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 433 |       po = ra.DataBlock().Begin()+ra.Offset(ka,j);
 | 
|---|
| 434 |       for(k=0; k<gpas; k+=step)  
 | 
|---|
| 435 |         po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
 | 
|---|
| 436 |     }
 | 
|---|
| 437 |   }
 | 
|---|
| 438 |   return(ra);
 | 
|---|
| 439 | }
 | 
|---|
| 440 | 
 | 
|---|
| 441 | 
 | 
|---|
| 442 | //! Returns the phase of the complex input array.
 | 
|---|
| 443 | /*!
 | 
|---|
| 444 |   \param a : input complex array
 | 
|---|
| 445 |   \return Return a new array filled with the phase of the input complex array elements 
 | 
|---|
| 446 | */
 | 
|---|
| 447 | 
 | 
|---|
| 448 | template <class T>
 | 
|---|
| 449 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a)
 | 
|---|
| 450 | {
 | 
|---|
| 451 |   if (a.NbDimensions() < 1) 
 | 
|---|
| 452 |     throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !");
 | 
|---|
| 453 |   TArray<T> ra;
 | 
|---|
| 454 |   ra.ReSize(a);
 | 
|---|
| 455 | 
 | 
|---|
| 456 |   const complex<T> * pe;
 | 
|---|
| 457 |   T * po;
 | 
|---|
| 458 |   sa_size_t j,k;
 | 
|---|
| 459 |   if (a.AvgStep() > 0)   {  // regularly spaced elements
 | 
|---|
| 460 |     sa_size_t step = a.AvgStep(); 
 | 
|---|
| 461 |     sa_size_t maxx = a.Size()*step;
 | 
|---|
| 462 |     pe = a.Data();
 | 
|---|
| 463 |     po = ra.Data();
 | 
|---|
| 464 |     for(k=0; k<maxx; k+=step )  
 | 
|---|
| 465 |       po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
 | 
|---|
| 466 |   }
 | 
|---|
| 467 |   else {    // Non regular data spacing ...
 | 
|---|
| 468 |     int_4 ka = a.MaxSizeKA();
 | 
|---|
| 469 |     sa_size_t step = a.Step(ka);
 | 
|---|
| 470 |     sa_size_t gpas = a.Size(ka)*step;
 | 
|---|
| 471 |     sa_size_t naxa = a.Size()/a.Size(ka);
 | 
|---|
| 472 |     for(j=0; j<naxa; j++)  {
 | 
|---|
| 473 |       pe = a.DataBlock().Begin()+a.Offset(ka,j);
 | 
|---|
| 474 |       po = ra.DataBlock().Begin()+ra.Offset(ka,j);
 | 
|---|
| 475 |       for(k=0; k<gpas; k+=step)  
 | 
|---|
| 476 |         po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
 | 
|---|
| 477 |     }
 | 
|---|
| 478 |   }
 | 
|---|
| 479 |   return(ra);
 | 
|---|
| 480 | }
 | 
|---|
| 481 | 
 | 
|---|
| 482 | 
 | 
|---|
| 483 | ///////////////////////////////////////////////////////////////
 | 
|---|
| 484 | #ifdef __CXX_PRAGMA_TEMPLATES__
 | 
|---|
| 485 | #pragma define_template MathArray<r_4>
 | 
|---|
| 486 | #pragma define_template MathArray<r_8>
 | 
|---|
| 487 | #pragma define_template ComplexMathArray<r_4>
 | 
|---|
| 488 | #pragma define_template ComplexMathArray<r_8>
 | 
|---|
| 489 | #endif
 | 
|---|
| 490 | 
 | 
|---|
| 491 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
 | 
|---|
| 492 | namespace SOPHYA {
 | 
|---|
| 493 | template class MathArray<r_4>;
 | 
|---|
| 494 | template class MathArray<r_8>;
 | 
|---|
| 495 | template class ComplexMathArray<r_4>;
 | 
|---|
| 496 | template class ComplexMathArray<r_8>;
 | 
|---|
| 497 | }
 | 
|---|
| 498 | #endif
 | 
|---|