1 | // Usuall mathematical functions and operations on arrays
|
---|
2 | // R. Ansari, C.Magneville 03/2000
|
---|
3 |
|
---|
4 | #include "sopnamsp.h"
|
---|
5 | #include "machdefs.h"
|
---|
6 | #include <math.h>
|
---|
7 | #include "matharr.h"
|
---|
8 |
|
---|
9 | // ----------------------------------------------------
|
---|
10 | // Application d'une fonction
|
---|
11 | // ----------------------------------------------------
|
---|
12 |
|
---|
13 | /*!
|
---|
14 | \class SOPHYA::MathArray
|
---|
15 | \ingroup TArray
|
---|
16 | Class for simple mathematical operation on arrays
|
---|
17 | \warning Instanciated only for \b real and \b double (r_4, r_8) type arrays
|
---|
18 | */
|
---|
19 |
|
---|
20 | //! Apply Function In Place (function double version)
|
---|
21 | /*!
|
---|
22 | \param a : array to be replaced in place
|
---|
23 | \param f : function for replacement
|
---|
24 | \return Return an array \b a filled with function f(a(i,j))
|
---|
25 | */
|
---|
26 | template <class T>
|
---|
27 | TArray<T>& MathArray<T>::ApplyFunctionInPlace(TArray<T> & a, Arr_DoubleFunctionOfX f)
|
---|
28 | {
|
---|
29 | if (a.NbDimensions() < 1)
|
---|
30 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlace(TArray<T> & a..) Not Allocated Array a !");
|
---|
31 | T * pe;
|
---|
32 | sa_size_t j,k;
|
---|
33 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
34 | sa_size_t step = a.AvgStep();
|
---|
35 | sa_size_t maxx = a.Size()*step;
|
---|
36 | pe = a.Data();
|
---|
37 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((double)pe[k]));
|
---|
38 | }
|
---|
39 | else { // Non regular data spacing ...
|
---|
40 | int_4 ka = a.MaxSizeKA();
|
---|
41 | sa_size_t step = a.Step(ka);
|
---|
42 | sa_size_t gpas = a.Size(ka)*step;
|
---|
43 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
44 | for(j=0; j<naxa; j++) {
|
---|
45 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
46 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((double)pe[k]));
|
---|
47 | }
|
---|
48 | }
|
---|
49 | return(a);
|
---|
50 | }
|
---|
51 |
|
---|
52 | //! Apply Function In Place (function float version)
|
---|
53 | /*!
|
---|
54 | \param a : array to be replaced in place
|
---|
55 | \param f : function for replacement
|
---|
56 | \return Return an array \b a filled with function f(a(i,j))
|
---|
57 | */
|
---|
58 | template <class T>
|
---|
59 | TArray<T>& MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a, Arr_FloatFunctionOfX f)
|
---|
60 | {
|
---|
61 | if (a.NbDimensions() < 1)
|
---|
62 | throw RangeCheckError("MathArray<T>::ApplyFunctionInPlaceF(TArray<T> & a..) Not Allocated Array a !");
|
---|
63 | T * pe;
|
---|
64 | sa_size_t j,k;
|
---|
65 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
66 | sa_size_t step = a.AvgStep();
|
---|
67 | sa_size_t maxx = a.Size()*step;
|
---|
68 | pe = a.Data();
|
---|
69 | for(k=0; k<maxx; k+=step ) pe[k] = (T)(f((float)pe[k]));
|
---|
70 | }
|
---|
71 | else { // Non regular data spacing ...
|
---|
72 | int_4 ka = a.MaxSizeKA();
|
---|
73 | sa_size_t step = a.Step(ka);
|
---|
74 | sa_size_t gpas = a.Size(ka)*step;
|
---|
75 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
76 | for(j=0; j<naxa; j++) {
|
---|
77 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
78 | for(k=0; k<gpas; k+=step) pe[k] = (T)(f((float)pe[k]));
|
---|
79 | }
|
---|
80 | }
|
---|
81 | return(a);
|
---|
82 | }
|
---|
83 |
|
---|
84 |
|
---|
85 | //! Apply Function (function double version)
|
---|
86 | /*!
|
---|
87 | \param a : argument array of the function
|
---|
88 | \param f : function for replacement
|
---|
89 | \return Return a new array filled with function f(a(i,j))
|
---|
90 | */
|
---|
91 | template <class T>
|
---|
92 | TArray<T> MathArray<T>::ApplyFunction(TArray<T> const & a, Arr_DoubleFunctionOfX f)
|
---|
93 | {
|
---|
94 | TArray<T> ra;
|
---|
95 | ra = a;
|
---|
96 | ApplyFunctionInPlace(ra, f);
|
---|
97 | return(ra);
|
---|
98 | }
|
---|
99 |
|
---|
100 | //! Apply Function (function float version)
|
---|
101 | /*!
|
---|
102 | \param a : argument array of the function
|
---|
103 | \param f : function for replacement
|
---|
104 | \return Return a new array filled with function f(a(i,j))
|
---|
105 | */
|
---|
106 | template <class T>
|
---|
107 | TArray<T> MathArray<T>::ApplyFunctionF(TArray<T> const & a, Arr_FloatFunctionOfX f)
|
---|
108 | {
|
---|
109 | TArray<T> ra;
|
---|
110 | ra = a;
|
---|
111 | ApplyFunctionInPlaceF(ra, f);
|
---|
112 | return(ra);
|
---|
113 | }
|
---|
114 |
|
---|
115 | //! Compute \b mean and \b sigma of elements of array \b a, return \b mean
|
---|
116 | template <class T>
|
---|
117 | double MathArray<T>::MeanSigma(TArray<T> const & a, double & mean, double & sig)
|
---|
118 | {
|
---|
119 | if (a.NbDimensions() < 1)
|
---|
120 | throw RangeCheckError("MathArray<T>::MeanSigma(TArray<T> const & a..) Not Allocated Array a !");
|
---|
121 | const T * pe;
|
---|
122 | sa_size_t j,k;
|
---|
123 | mean=0.;
|
---|
124 | sig = 0.;
|
---|
125 | double valok;
|
---|
126 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
127 | sa_size_t step = a.AvgStep();
|
---|
128 | sa_size_t maxx = a.Size()*step;
|
---|
129 | pe = a.Data();
|
---|
130 | for(k=0; k<maxx; k+=step ) {
|
---|
131 | valok = (double) pe[k];
|
---|
132 | mean += valok; sig += valok*valok;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | else { // Non regular data spacing ...
|
---|
136 | int_4 ka = a.MaxSizeKA();
|
---|
137 | sa_size_t step = a.Step(ka);
|
---|
138 | sa_size_t gpas = a.Size(ka)*step;
|
---|
139 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
140 | for(j=0; j<naxa; j++) {
|
---|
141 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
142 | for(k=0; k<gpas; k+=step) {
|
---|
143 | valok = (double) pe[k];
|
---|
144 | mean += valok; sig += valok*valok;
|
---|
145 | }
|
---|
146 | }
|
---|
147 | }
|
---|
148 | double dsz = (double)(a.Size());
|
---|
149 | mean /= dsz;
|
---|
150 | if (dsz > 1.5) {
|
---|
151 | sig = sig/dsz - mean*mean;
|
---|
152 | sig *= (dsz/(dsz-1));
|
---|
153 | if (sig >= 0.) sig = sqrt(sig);
|
---|
154 | }
|
---|
155 | else sig = 0.;
|
---|
156 | return(mean);
|
---|
157 | }
|
---|
158 |
|
---|
159 |
|
---|
160 | //-------------------------------------------------------------------------------
|
---|
161 | // Definition utilitaire d'application de fonction
|
---|
162 | inline complex<r_8> ApplyComplexDoubleFunction(complex<r_8> z,
|
---|
163 | Arr_ComplexDoubleFunctionOfX f)
|
---|
164 | {
|
---|
165 | return(f(z));
|
---|
166 | }
|
---|
167 |
|
---|
168 | inline complex<r_4> ApplyComplexDoubleFunction(complex<r_4> z,
|
---|
169 | Arr_ComplexDoubleFunctionOfX f)
|
---|
170 | {
|
---|
171 | complex<r_8> zd((r_8)z.real(), (r_8)z.imag());
|
---|
172 | zd = f(zd);
|
---|
173 | complex<r_4> zr((r_4)zd.real(), (r_4)zd.imag());
|
---|
174 | return(zr);
|
---|
175 | }
|
---|
176 |
|
---|
177 | //-------------------------------------------------------------------------------
|
---|
178 |
|
---|
179 | /*!
|
---|
180 | \class SOPHYA::ComplexMathArray
|
---|
181 | \ingroup TArray
|
---|
182 | Class for simple mathematical operation on arrays
|
---|
183 | \warning Instanciated only for \b real and \b double (r_4, r_8) complex arrays
|
---|
184 | */
|
---|
185 |
|
---|
186 | //! Apply Function In Place (complex arrays)
|
---|
187 | /*!
|
---|
188 | \param a : complex array to be replaced in place
|
---|
189 | \param f : function for replacement
|
---|
190 | \return Return an array \b a filled with function f(a(i,j))
|
---|
191 | */
|
---|
192 | template <class T>
|
---|
193 | TArray< complex<T> >& ComplexMathArray<T>::ApplyFunctionInPlace(TArray< complex<T> > & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
194 | {
|
---|
195 | if (a.NbDimensions() < 1)
|
---|
196 | throw RangeCheckError("ComplexMathArray< complex<T> >::ApplyFunctionInPlace(TArray< complex<T> > & a..) Not Allocated Array a !");
|
---|
197 | complex<T> * pe;
|
---|
198 | sa_size_t j,k;
|
---|
199 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
200 | sa_size_t step = a.AvgStep();
|
---|
201 | sa_size_t maxx = a.Size()*step;
|
---|
202 | pe = a.Data();
|
---|
203 | for(k=0; k<maxx; k+=step ) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
204 | }
|
---|
205 | else { // Non regular data spacing ...
|
---|
206 | int_4 ka = a.MaxSizeKA();
|
---|
207 | sa_size_t step = a.Step(ka);
|
---|
208 | sa_size_t gpas = a.Size(ka)*step;
|
---|
209 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
210 | for(j=0; j<naxa; j++) {
|
---|
211 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
212 | for(k=0; k<gpas; k+=step) pe[k] = ApplyComplexDoubleFunction(pe[k],f);
|
---|
213 | }
|
---|
214 | }
|
---|
215 | return(a);
|
---|
216 | }
|
---|
217 |
|
---|
218 |
|
---|
219 |
|
---|
220 | //! Apply Function (complex arrays)
|
---|
221 | /*!
|
---|
222 | \param a : argument array of the function
|
---|
223 | \param f : function for replacement
|
---|
224 | \return Return a new array filled with function f(a(i,j))
|
---|
225 | */
|
---|
226 | template <class T>
|
---|
227 | TArray< complex<T> > ComplexMathArray<T>::ApplyFunction(TArray< complex<T> > const & a, Arr_ComplexDoubleFunctionOfX f)
|
---|
228 | {
|
---|
229 | TArray< complex<T> > ra;
|
---|
230 | ra = a;
|
---|
231 | ApplyFunctionInPlace(ra, f);
|
---|
232 | return(ra);
|
---|
233 | }
|
---|
234 |
|
---|
235 | //! Create a complex array, from a real and an imaginary arrays
|
---|
236 | /*!
|
---|
237 | \param p_real : array containing the real part of the complex output array
|
---|
238 | \param p_imag : array containing the imaginary part of the complex output array
|
---|
239 | \return Return a new complex array build from \b p_real and \b p_imag
|
---|
240 | */
|
---|
241 | template <class T>
|
---|
242 | TArray< complex<T> > ComplexMathArray<T>::FillFrom(TArray<T> const & p_real,
|
---|
243 | TArray<T> const & p_imag)
|
---|
244 | {
|
---|
245 | if (p_real.NbDimensions() < 1)
|
---|
246 | throw RangeCheckError("ComplexMathArray<T>::FillFrom() - Not Allocated Array ! ");
|
---|
247 | bool smo;
|
---|
248 | if (!p_real.CompareSizes(p_imag, smo))
|
---|
249 | throw(SzMismatchError("ComplexMathArray<T>::FillFrom() SizeMismatch")) ;
|
---|
250 |
|
---|
251 | TArray< complex<T> > ra;
|
---|
252 | ra.ReSize(p_real);
|
---|
253 |
|
---|
254 | complex<T> * pe;
|
---|
255 | const T * per;
|
---|
256 | const T * pei;
|
---|
257 | sa_size_t j,k,ka;
|
---|
258 | if (smo && (p_real.AvgStep() > 0) && (p_imag.AvgStep() > 0)) { // regularly spaced elements
|
---|
259 | sa_size_t step = p_real.AvgStep();
|
---|
260 | sa_size_t stepa = p_imag.AvgStep();
|
---|
261 | sa_size_t maxx = p_real.Size()*step;
|
---|
262 | per = p_real.Data();
|
---|
263 | pei = p_imag.Data();
|
---|
264 | pe = ra.Data();
|
---|
265 | for(k=0, ka=0; k<maxx; k+=step, ka+=stepa )
|
---|
266 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
267 | }
|
---|
268 | else { // Non regular data spacing ...
|
---|
269 | int_4 ax,axa;
|
---|
270 | sa_size_t step, stepa;
|
---|
271 | sa_size_t gpas, naxa;
|
---|
272 | p_real.GetOpeParams(p_imag, smo, ax, axa, step, stepa, gpas, naxa);
|
---|
273 | for(j=0; j<naxa; j++) {
|
---|
274 | per = p_real.Data()+p_real.Offset(ax,j);
|
---|
275 | pei = p_imag.Data()+p_imag.Offset(axa,j);
|
---|
276 | pe = ra.Data()+ra.Offset(ax,j);
|
---|
277 | for(k=0, ka=0; k<gpas; k+=step, ka+=stepa)
|
---|
278 | pe[k] = complex<T>(per[k], pei[ka]) ;
|
---|
279 | }
|
---|
280 | }
|
---|
281 | return(ra);
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | //! Returns the real part of the complex input array.
|
---|
286 | /*!
|
---|
287 | \param a : input complex array
|
---|
288 | \return Return a new array filled with the real part of the input complex array elements
|
---|
289 | */
|
---|
290 |
|
---|
291 | template <class T>
|
---|
292 | TArray<T> ComplexMathArray<T>::real(TArray< complex<T> > const & a)
|
---|
293 | {
|
---|
294 | if (a.NbDimensions() < 1)
|
---|
295 | throw RangeCheckError("ComplexMathArray< complex<T> >::real(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
296 | TArray<T> ra;
|
---|
297 | ra.ReSize(a);
|
---|
298 |
|
---|
299 | const complex<T> * pe;
|
---|
300 | T * po;
|
---|
301 | sa_size_t j,k;
|
---|
302 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
303 | sa_size_t step = a.AvgStep();
|
---|
304 | sa_size_t maxx = a.Size()*step;
|
---|
305 | pe = a.Data();
|
---|
306 | po = ra.Data();
|
---|
307 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].real();
|
---|
308 | }
|
---|
309 | else { // Non regular data spacing ...
|
---|
310 | int_4 ka = a.MaxSizeKA();
|
---|
311 | sa_size_t step = a.Step(ka);
|
---|
312 | sa_size_t gpas = a.Size(ka)*step;
|
---|
313 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
314 | for(j=0; j<naxa; j++) {
|
---|
315 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
316 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
317 | for(k=0; k<gpas; k+=step) po[k] = pe[k].real();
|
---|
318 | }
|
---|
319 | }
|
---|
320 | return(ra);
|
---|
321 | }
|
---|
322 |
|
---|
323 | //! Returns the imaginary part of the complex input array.
|
---|
324 | /*!
|
---|
325 | \param a : input complex array
|
---|
326 | \return Return a new array filled with the imaginary part of the input complex array elements
|
---|
327 | */
|
---|
328 |
|
---|
329 | template <class T>
|
---|
330 | TArray<T> ComplexMathArray<T>::imag(TArray< complex<T> > const & a)
|
---|
331 | {
|
---|
332 | if (a.NbDimensions() < 1)
|
---|
333 | throw RangeCheckError("ComplexMathArray< complex<T> >::imag(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
334 | TArray<T> ra;
|
---|
335 | ra.ReSize(a);
|
---|
336 |
|
---|
337 | const complex<T> * pe;
|
---|
338 | T * po;
|
---|
339 | sa_size_t j,k;
|
---|
340 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
341 | sa_size_t step = a.AvgStep();
|
---|
342 | sa_size_t maxx = a.Size()*step;
|
---|
343 | pe = a.Data();
|
---|
344 | po = ra.Data();
|
---|
345 | for(k=0; k<maxx; k+=step ) po[k] = pe[k].imag();
|
---|
346 | }
|
---|
347 | else { // Non regular data spacing ...
|
---|
348 | int_4 ka = a.MaxSizeKA();
|
---|
349 | sa_size_t step = a.Step(ka);
|
---|
350 | sa_size_t gpas = a.Size(ka)*step;
|
---|
351 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
352 | for(j=0; j<naxa; j++) {
|
---|
353 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
354 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
355 | for(k=0; k<gpas; k+=step) po[k] = pe[k].imag();
|
---|
356 | }
|
---|
357 | }
|
---|
358 | return(ra);
|
---|
359 | }
|
---|
360 |
|
---|
361 | //! Returns the module squared of the complex input array.
|
---|
362 | /*!
|
---|
363 | \param a : input complex array
|
---|
364 | \return Return a new array filled with the module squared of the input complex array elements
|
---|
365 | */
|
---|
366 |
|
---|
367 | template <class T>
|
---|
368 | TArray<T> ComplexMathArray<T>::module2(TArray< complex<T> > const & a)
|
---|
369 | {
|
---|
370 | if (a.NbDimensions() < 1)
|
---|
371 | throw RangeCheckError("ComplexMathArray< complex<T> >::module2(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
372 | TArray<T> ra;
|
---|
373 | ra.ReSize(a);
|
---|
374 |
|
---|
375 | const complex<T> * pe;
|
---|
376 | T * po;
|
---|
377 | sa_size_t j,k;
|
---|
378 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
379 | sa_size_t step = a.AvgStep();
|
---|
380 | sa_size_t maxx = a.Size()*step;
|
---|
381 | pe = a.Data();
|
---|
382 | po = ra.Data();
|
---|
383 | for(k=0; k<maxx; k+=step )
|
---|
384 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
385 | }
|
---|
386 | else { // Non regular data spacing ...
|
---|
387 | int_4 ka = a.MaxSizeKA();
|
---|
388 | sa_size_t step = a.Step(ka);
|
---|
389 | sa_size_t gpas = a.Size(ka)*step;
|
---|
390 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
391 | for(j=0; j<naxa; j++) {
|
---|
392 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
393 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
394 | for(k=0; k<gpas; k+=step)
|
---|
395 | po[k] = (pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag());
|
---|
396 | }
|
---|
397 | }
|
---|
398 | return(ra);
|
---|
399 | }
|
---|
400 |
|
---|
401 | //! Returns the module of the complex input array.
|
---|
402 | /*!
|
---|
403 | \param a : input complex array
|
---|
404 | \return Return a new array filled with the module of the input complex array elements
|
---|
405 | */
|
---|
406 |
|
---|
407 | template <class T>
|
---|
408 | TArray<T> ComplexMathArray<T>::module(TArray< complex<T> > const & a)
|
---|
409 | {
|
---|
410 | if (a.NbDimensions() < 1)
|
---|
411 | throw RangeCheckError("ComplexMathArray< complex<T> >::module(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
412 | TArray<T> ra;
|
---|
413 | ra.ReSize(a);
|
---|
414 |
|
---|
415 | const complex<T> * pe;
|
---|
416 | T * po;
|
---|
417 | sa_size_t j,k;
|
---|
418 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
419 | sa_size_t step = a.AvgStep();
|
---|
420 | sa_size_t maxx = a.Size()*step;
|
---|
421 | pe = a.Data();
|
---|
422 | po = ra.Data();
|
---|
423 | for(k=0; k<maxx; k+=step )
|
---|
424 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
425 | }
|
---|
426 | else { // Non regular data spacing ...
|
---|
427 | int_4 ka = a.MaxSizeKA();
|
---|
428 | sa_size_t step = a.Step(ka);
|
---|
429 | sa_size_t gpas = a.Size(ka)*step;
|
---|
430 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
431 | for(j=0; j<naxa; j++) {
|
---|
432 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
433 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
434 | for(k=0; k<gpas; k+=step)
|
---|
435 | po[k] = sqrt((double)(pe[k].real()*pe[k].real()+pe[k].imag()*pe[k].imag()));
|
---|
436 | }
|
---|
437 | }
|
---|
438 | return(ra);
|
---|
439 | }
|
---|
440 |
|
---|
441 |
|
---|
442 | //! Returns the phase of the complex input array.
|
---|
443 | /*!
|
---|
444 | \param a : input complex array
|
---|
445 | \return Return a new array filled with the phase of the input complex array elements
|
---|
446 | */
|
---|
447 |
|
---|
448 | template <class T>
|
---|
449 | TArray<T> ComplexMathArray<T>::phase(TArray< complex<T> > const & a)
|
---|
450 | {
|
---|
451 | if (a.NbDimensions() < 1)
|
---|
452 | throw RangeCheckError("ComplexMathArray< complex<T> >::phase(TArray< complex<T> >& a) Not Allocated Array a !");
|
---|
453 | TArray<T> ra;
|
---|
454 | ra.ReSize(a);
|
---|
455 |
|
---|
456 | const complex<T> * pe;
|
---|
457 | T * po;
|
---|
458 | sa_size_t j,k;
|
---|
459 | if (a.AvgStep() > 0) { // regularly spaced elements
|
---|
460 | sa_size_t step = a.AvgStep();
|
---|
461 | sa_size_t maxx = a.Size()*step;
|
---|
462 | pe = a.Data();
|
---|
463 | po = ra.Data();
|
---|
464 | for(k=0; k<maxx; k+=step )
|
---|
465 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
466 | }
|
---|
467 | else { // Non regular data spacing ...
|
---|
468 | int_4 ka = a.MaxSizeKA();
|
---|
469 | sa_size_t step = a.Step(ka);
|
---|
470 | sa_size_t gpas = a.Size(ka)*step;
|
---|
471 | sa_size_t naxa = a.Size()/a.Size(ka);
|
---|
472 | for(j=0; j<naxa; j++) {
|
---|
473 | pe = a.DataBlock().Begin()+a.Offset(ka,j);
|
---|
474 | po = ra.DataBlock().Begin()+ra.Offset(ka,j);
|
---|
475 | for(k=0; k<gpas; k+=step)
|
---|
476 | po[k] = atan2((double)pe[k].imag(), (double)pe[k].real());
|
---|
477 | }
|
---|
478 | }
|
---|
479 | return(ra);
|
---|
480 | }
|
---|
481 |
|
---|
482 |
|
---|
483 | ///////////////////////////////////////////////////////////////
|
---|
484 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
485 | #pragma define_template MathArray<r_4>
|
---|
486 | #pragma define_template MathArray<r_8>
|
---|
487 | #pragma define_template ComplexMathArray<r_4>
|
---|
488 | #pragma define_template ComplexMathArray<r_8>
|
---|
489 | #endif
|
---|
490 |
|
---|
491 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
492 | namespace SOPHYA {
|
---|
493 | template class MathArray<r_4>;
|
---|
494 | template class MathArray<r_8>;
|
---|
495 | template class ComplexMathArray<r_4>;
|
---|
496 | template class ComplexMathArray<r_8>;
|
---|
497 | }
|
---|
498 | #endif
|
---|