source: Sophya/trunk/SophyaLib/TArray/sopemtx.cc@ 926

Last change on this file since 926 was 926, checked in by ansari, 25 years ago

documentation cmv 13/4/00

File size: 20.6 KB
Line 
1// C.Magneville, R.Ansari 03/2000
2
3#include "machdefs.h"
4#include <stdio.h>
5#include <iostream.h>
6#include <complex>
7#include <math.h>
8#include "sopemtx.h"
9#include "smathconst.h"
10
11////////////////////////////////////////////////////////////////
12// -------------------------------------------------------------
13// La classe de gestion des lignes et colonnes d'une matrice
14// -------------------------------------------------------------
15////////////////////////////////////////////////////////////////
16
17//! Class of line, column or diagonal of a TMatrix
18/*!
19 A TMatrixRC represents a line, a column or the diagonal of a TMatrix
20 */
21template <class T>
22class TMatrixRC {
23public:
24 //! Define type of TMatrixRC
25 enum TRCKind {
26 TmatrixRow=0, //!< TMatrixRC ligne
27 TmatrixCol=1, //!< TMatrixRC column
28 TmatrixDiag=2 //!< TMatrixRC diagonal
29 };
30 TMatrixRC();
31 TMatrixRC(TMatrix<T>& m, TRCKind kind, uint_4 index=0);
32 virtual ~TMatrixRC() {}
33
34 // Acces aux rangees et colonnes de matrices
35 static TMatrixRC<T> Row(TMatrix<T> & m, uint_4 r);
36 static TMatrixRC<T> Col(TMatrix<T> & m, uint_4 c);
37 static TMatrixRC<T> Diag(TMatrix<T> & m);
38
39 // ---- A virer $CHECK$ Reza 03/2000
40 // int_4 Next();
41 // int_4 Prev();
42 int_4 SetCol(int_4 c);
43 int_4 SetRow(int_4 r);
44 int_4 SetDiag();
45
46 static uint_4 Step(const TMatrix<T>& m, TRCKind rckind);
47 static T* Org(const TMatrix<T>&, TRCKind rckind, uint_4 ind=0);
48
49 //! Return the kind of TMatrix (line,column,diagonal)
50 TRCKind Kind() const { return kind; }
51 uint_4 NElts() const;
52 T& operator()(uint_4 i);
53 T operator()(uint_4 i) const;
54
55
56 TMatrixRC<T>& operator = (const TMatrixRC<T>& rc);
57
58// ---- A virer $CHECK$ Reza 03/2000
59// TVector<T> GetVect() const;
60// TMatrixRC<T>& operator += (const TMatrixRC<T>& rc);
61// TMatrixRC<T>& operator -= (const TMatrixRC<T>& rc);
62
63 TMatrixRC<T>& operator *= (T x);
64 TMatrixRC<T>& operator /= (T x);
65
66// TMatrixRC<T>& operator -= (T x);
67// TMatrixRC<T>& operator += (T x);
68
69
70 TMatrixRC<T>& LinComb(T a, T b, const TMatrixRC& rc, uint_4 first=0);
71 TMatrixRC<T>& LinComb(T b, const TMatrixRC<T>& rc, uint_4 first=0);
72
73 uint_4 IMaxAbs(uint_4 first=0);
74 void Print(ostream & os) const ;
75
76 static void Swap(TMatrixRC<T>& rc1, TMatrixRC<T>& rc2);
77
78 //! Define Absolute value for uint_1
79 inline static double Abs_Value(uint_1 v) {return (double) v;}
80 //! Define Absolute value for uint_2
81 inline static double Abs_Value(uint_2 v) {return (double) v;}
82 //! Define Absolute value for int_2
83 inline static double Abs_Value(int_2 v) {return (v>0)? (double) v: (double) -v;}
84 //! Define Absolute value for int_4
85 inline static double Abs_Value(int_4 v) {return (v>0)? (double) v: (double) -v;}
86 //! Define Absolute value for int_8
87 inline static double Abs_Value(int_8 v) {return (v>0)? (double) v: (double) -v;}
88 //! Define Absolute value for uint_4
89 inline static double Abs_Value(uint_4 v) {return (double) v;}
90 //! Define Absolute value for uint_8
91 inline static double Abs_Value(uint_8 v) {return (double) v;}
92 //! Define Absolute value for r_4
93 inline static double Abs_Value(r_4 v) {return (double) fabsf(v);}
94 //! Define Absolute value for r_8
95 inline static double Abs_Value(r_8 v) {return fabs(v);}
96 //! Define Absolute value for complex r_4
97 inline static double Abs_Value(complex<r_4> v)
98 {return sqrt(v.real()*v.real()+v.imag()*v.imag());}
99 //! Define Absolute value for complex r_8
100 inline static double Abs_Value(complex<r_8> v)
101 {return sqrt(v.real()*v.real()+v.imag()*v.imag());}
102
103protected:
104 TMatrix<T>* matrix; //!< pointer to the TMatrix
105 T* data; //!< pointer to the beginnig of interesting datas
106 int_4 index; //!< index of the line/column
107 uint_4 step; //!< step of the line/column
108 TRCKind kind; //!< type: line, column or diagonal
109};
110
111
112//! Multiply two TMatrixRC
113template <class T>
114inline T operator * (const TMatrixRC<T>& a, const TMatrixRC<T>& b)
115 {
116 if ( a.NElts() != b.NElts() )
117 throw(SzMismatchError("TMatrixRC::operator * size mismatch\n"));
118 if ( a.Kind() != b.Kind() )
119 throw(SzMismatchError("TMatrixRC::operator * type mismatch\n"));
120 T sum = 0;
121 for(uint_4 i=0; i<a.NElts(); i++) sum += a(i)*b(i);
122 return sum;
123 }
124
125//! Get the step in datas for a TMatrix for type rckind (line/col/diag)
126template <class T>
127inline uint_4 TMatrixRC<T>::Step(const TMatrix<T>& m, TRCKind rckind)
128 { switch (rckind) { case TmatrixRow : return m.Step(m.ColsKA());
129 case TmatrixCol : return m.Step(m.RowsKA());
130 case TmatrixDiag : return (m.Step(m.RowsKA())+m.Step(m.ColsKA())); }
131 return 0; }
132
133/*! Get the origin of datas for a TMatrix for type rckind and
134 number index (line/col/diag). ex: origine for line "index". */
135template <class T>
136inline T* TMatrixRC<T>::Org(const TMatrix<T>& m, TRCKind rckind, uint_4 index)
137 { switch (rckind) { case TmatrixRow : return const_cast<T *>(&(m(index,0)));
138 case TmatrixCol : return const_cast<T *>(&(m(0,index)));
139 case TmatrixDiag : return const_cast<T *>(m.Data()); }
140 return NULL; }
141
142//! return number of elements for a TMatrixRC
143template <class T> inline uint_4 TMatrixRC<T>::NElts() const
144 { if (!matrix) return 0;
145 switch (kind) { case TmatrixRow : return matrix->NCols();
146 case TmatrixCol : return matrix->NRows();
147 case TmatrixDiag : return matrix->NCols(); }
148 return 0; }
149
150//! access of element \b i
151template <class T>
152inline T& TMatrixRC<T>::operator()(uint_4 i) {return data[i*step];}
153//! access of element \b i
154template <class T>
155inline T TMatrixRC<T>::operator()(uint_4 i) const {return data[i*step];}
156
157////////////////////////////////////////////////////////////////
158//! Typedef to simplifier TMatrixRC<r_8>
159typedef TMatrixRC<r_8> MatrixRC;
160
161
162//! Default constructor
163template <class T> TMatrixRC<T>::TMatrixRC()
164: matrix(NULL), data(NULL), index(0), step(0)
165{}
166
167//! Constructor
168/*!
169 \param m : matrix
170 \param rckind : select line, column or diagonal
171 \param ind : number of the line or column
172*/
173template <class T> TMatrixRC<T>::TMatrixRC(TMatrix<T>& m,TRCKind rckind,uint_4 ind)
174: matrix(&m), data(Org(m,rckind,ind)),
175 index(ind), step(Step(m,rckind)), kind(rckind)
176{
177if (kind == TmatrixDiag && m.NCols() != m.NRows())
178 throw(SzMismatchError("TMatrixRC::TMatrixRC(...,TmatrixDiag,...) size mismatch\n"));
179}
180
181////////////////////////////////////////////////////////////////
182// Acces aux rangees et colonnes de matrices
183
184//! Return TMatrixRC for line \b r of matrix \b m
185template <class T>
186TMatrixRC<T> TMatrixRC<T>::Row(TMatrix<T> & m, uint_4 r)
187{
188TMatrixRC<T> rc(m, TmatrixRow, r);
189return rc;
190}
191
192//! Return TMatrixRC for column \b r of matrix \b m
193template <class T>
194TMatrixRC<T> TMatrixRC<T>::Col(TMatrix<T> & m, uint_4 c)
195{
196TMatrixRC<T> rc(m, TmatrixCol, c);
197return rc;
198}
199
200//! Return TMatrixRC for diagonal of matrix \b m
201template <class T>
202TMatrixRC<T> TMatrixRC<T>::Diag(TMatrix<T> & m)
203{
204TMatrixRC<T> rc(m, TmatrixDiag);
205return rc;
206}
207
208
209// ---- A virer $CHECK$ Reza 03/2000
210// template <class T> int_4 TMatrixRC<T>::Next()
211// {
212// if (!matrix || kind==TmatrixDiag) return -1;
213// index++;
214// if(kind == TmatrixRow) {
215// if(index > (int_4)matrix->NRows()) {index = (int_4)matrix->NRows(); return -1;}
216// data += matrix->NCols();
217// } else {
218// if (index > (int_4)matrix->NCols()) {index = (int_4)matrix->NCols(); return -1;}
219// data++;
220// }
221// return index;
222// }
223
224// template <class T> int_4 TMatrixRC<T>::Prev()
225// {
226// if (!matrix || kind == TmatrixDiag) return -1;
227// index--;
228// if(index < 0) {index = 0; return -1;}
229// if(kind == TmatrixRow) data -= matrix->NCols();
230// else data--;
231// return index;
232// }
233
234//! Set column \b c for this TMatrixRC
235template <class T> int_4 TMatrixRC<T>::SetCol(int_4 c)
236{
237if(!matrix) return -1;
238if(c<0 || c>(int_4)matrix->NCols()) return -1;
239kind = TmatrixCol;
240index = c;
241step = Step(*matrix, TmatrixCol);
242data = Org(*matrix, TmatrixCol, c);
243return c;
244}
245
246//! Set line \b r for this TMatrixRC
247template <class T> int_4 TMatrixRC<T>::SetRow(int_4 r)
248{
249if(!matrix) return -1;
250if(r<0 && r>(int_4)matrix->NRows()) return -1;
251kind = TmatrixRow;
252index = r;
253step = Step(*matrix, TmatrixRow);
254data = Org(*matrix, TmatrixRow, r);
255return r;
256}
257
258//! Set line diaginal for this TMatrixRC
259template <class T> int_4 TMatrixRC<T>::SetDiag()
260{
261if (!matrix) return -1;
262if (matrix->NCols() != matrix->NRows())
263 throw(SzMismatchError("TMatrixRC::SetDiag size mismatch\n"));
264kind = TmatrixDiag;
265index = 0;
266step = Step(*matrix, TmatrixDiag);
267data = Org(*matrix, TmatrixDiag);
268return 0;
269}
270
271//! Operator =
272template <class T> TMatrixRC<T>& TMatrixRC<T>::operator = (const TMatrixRC<T>& rc)
273{
274matrix = rc.matrix;
275data = rc.data;
276index = rc.index;
277step = rc.step;
278kind = rc.kind;
279return *this;
280}
281
282// ---- A virer $CHECK$ Reza 03/2000
283// template <class T> TVector<T> TMatrixRC<T>::GetVect() const
284// {
285// TVector<T> v(NElts());
286// for (uint_4 i=0; i<NElts(); i++) v(i) = (*this)(i);
287// return v;
288// }
289
290// template <class T> TMatrixRC<T>& TMatrixRC<T>::operator += (const TMatrixRC<T>& rc)
291// {
292// if ( NElts() != rc.NElts() )
293// throw(SzMismatchError("TMatrixRC::operator+= size mismatch\n"));
294// if ( kind != rc.kind )
295// throw(SzMismatchError("TMatrixRC::operator+= type mismatch\n"));
296// for (uint_4 i=0; i<NElts(); i++) (*this)(i) += rc(i);
297// return *this;
298// }
299
300// template <class T> TMatrixRC<T>& TMatrixRC<T>::operator -= (const TMatrixRC<T>& rc)
301// {
302// if( NElts() != rc.NElts() )
303// throw(SzMismatchError("TMatrixRC::operator-= size mismatch\n"));
304// if( kind != rc.kind )
305// throw(SzMismatchError("TMatrixRC::operator-= type mismatch\n"));
306// for(uint_4 i=0; i<NElts(); i++) (*this)(i) -= rc(i);
307// return *this;
308// }
309
310//! Operator to multiply by constant \b x
311template <class T> TMatrixRC<T>& TMatrixRC<T>::operator *= (T x)
312{
313for(uint_4 i=0; i<NElts(); i++) (*this)(i) *= x;
314return *this;
315}
316
317//! Operator to divide by constant \b x
318template <class T> TMatrixRC<T>& TMatrixRC<T>::operator /= (T x)
319{
320for(uint_4 i=0; i<NElts(); i++) (*this)(i) /= x;
321return *this;
322}
323
324
325// ---- A virer $CHECK$ Reza 03/2000
326// template <class T> TMatrixRC<T>& TMatrixRC<T>::operator -= (T x)
327// {
328// for(uint_4 i=0; i<NElts(); i++) (*this)(i) -= x;
329// return *this;
330// }
331
332// template <class T> TMatrixRC<T>& TMatrixRC<T>::operator += (T x)
333// {
334// for(uint_4 i=0; i<NElts(); i++) (*this)(i) += x;
335// return *this;
336// }
337
338//! Linear combination
339/*!
340 Do : \f$ MRC(i) = MRC(i)*a + rc(i)*b \f$
341 \return *this
342 */
343template <class T>
344TMatrixRC<T>& TMatrixRC<T>::LinComb(T a, T b, const TMatrixRC<T>& rc, uint_4 first)
345{
346if ( NElts() != rc.NElts() )
347 throw(SzMismatchError("TMatrixRC::LinComb size mismatch\n"));
348if ( kind != rc.kind )
349 throw(SzMismatchError("TMatrixRC::LinComb type mismatch\n"));
350for(uint_4 i=first; i<NElts(); i++) (*this)(i) = (*this)(i)*a + rc(i)*b;
351return *this;
352}
353
354//! Linear combination
355/*!
356 Do : \f$ MRC(i) = MRC(i) + rc(i)*b \f$
357 */
358template <class T>
359TMatrixRC<T>& TMatrixRC<T>::LinComb(T b, const TMatrixRC<T>& rc, uint_4 first)
360{
361if ( NElts() != rc.NElts() )
362 throw(SzMismatchError("TMatrixRC::LinComb size mismatch\n"));
363if ( kind != rc.kind )
364 throw(SzMismatchError("TMatrixRC::LinComb type mismatch\n"));
365for(uint_4 i=first; i<NElts(); i++) (*this)(i) += rc(i)*b;
366return *this;
367}
368
369//! Find maximum absolute value in TMatrixRC, search begin at \b first
370template <class T> uint_4 TMatrixRC<T>::IMaxAbs(uint_4 first)
371{
372if (first>NElts())
373 throw(SzMismatchError("TMatrixRC::IMaxAbs size mismatch\n"));
374uint_4 imax = first;
375double vmax = Abs_Value((*this)(first));
376for(uint_4 i=first+1; i<NElts(); i++) {
377 double v = Abs_Value((*this)(i));
378 if(v > vmax) {vmax = v; imax = i;}
379}
380return imax;
381}
382
383//! Print on stream \b os
384template <class T>
385void TMatrixRC<T>::Print(ostream & os) const
386{
387 os << " TMatrixRC<T>::Print(ostream & os) " << NElts() << " Kind="
388 << kind << " Index=" << index << " Step= " << step << endl;
389 for(uint_4 i=0; i<NElts(); i++) {
390 os << (*this)(i);
391 if (kind == TmatrixCol) os << endl;
392 else os << ", ";
393 }
394 os << endl;
395}
396
397//! Swap two TMatrixRC of the same kind
398template <class T>
399void TMatrixRC<T>::Swap(TMatrixRC<T>& rc1, TMatrixRC<T>& rc2)
400{
401if(rc1.NElts() != rc2.NElts())
402 throw(SzMismatchError("TMatrixRC::Swap size mismatch\n"));
403if(rc1.kind != rc2.kind)
404 throw(SzMismatchError("TMatrixRC::Swap type mismatch\n"));
405if(rc1.data == rc2.data) return;
406for(uint_4 i=0; i<rc1.NElts(); i++)
407 {T tmp = rc1(i); rc1(i) = rc2(i); rc2(i) = tmp;}
408}
409
410
411////////////////////////////////////////////////////////////////
412// -------------------------------------------------------------
413// La classe de calcul simple sur les TMatrix
414// -------------------------------------------------------------
415////////////////////////////////////////////////////////////////
416
417//**** Pour inversion
418#ifndef M_LN2
419#define M_LN2 0.69314718055994530942
420#endif
421#ifndef LN_MINDOUBLE
422#define LN_MINDOUBLE (M_LN2 * (DMINEXP - 1))
423#endif
424#ifndef LN_MAXDOUBLE
425#define LN_MAXDOUBLE (M_LN2 * DMAXEXP)
426#endif
427
428//! Gaussian pivoting
429/*!
430 Diagonalize matrix \b a, doing the same opreations on matrix \b b
431 \return determinat of \b a
432 */
433template <class T>
434T SimpleMatrixOperation<T>::GausPiv(TMatrix<T>& a, TMatrix<T>& b)
435// Pivot de Gauss
436// * Attention: egcs impose que cette fonction soit mise dans le .cc
437// avant ::Inverse() (car Inverse() l'utilise)
438// {TMatrix A(a); TMatrix B(b); return (T) TMatrix::GausPiv(A,B);}
439{
440uint_4 n = a.NRows();
441if(n!=b.NRows())
442 throw(SzMismatchError("TMatrix::GausPiv size mismatch\n"));
443// On fait une normalisation un peu brutale...
444double vmin=MAXDOUBLE;
445double vmax=0;
446for(uint_4 iii=0; iii<a.NRows(); iii++)
447 for(uint_4 jjj=0; jjj<a.NCols(); jjj++) {
448 double v = TMatrixRC<T>::Abs_Value(a(iii,jjj));
449 if(v>vmax) vmax = v;
450 if(v<vmin && v>0) vmin = v;
451}
452double nrm = sqrt(vmin*vmax);
453if(nrm > 1.e5 || nrm < 1.e-5) {
454 a /= (T) nrm;
455 b /= (T) nrm;
456 //cout << "normalisation matrice " << nrm << endl;
457} else nrm=1;
458
459T det = 1;
460if(nrm != 1) {
461 double ld = a.NRows() * log(nrm);
462 if (ld <= LN_MINDOUBLE || ld >= LN_MAXDOUBLE) {
463 // cerr << "TMatrix warning, overflow for det" << endl;
464 } else {
465 det = (T) exp(ld);
466 }
467}
468
469TMatrixRC<T> pivRowa(a,TMatrixRC<T>::TmatrixRow);
470TMatrixRC<T> pivRowb(b,TMatrixRC<T>::TmatrixRow);
471
472for(uint_4 k=0; k<n-1; k++) {
473 uint_4 iPiv = TMatrixRC<T>::Col(a, k).IMaxAbs(k);
474 if(iPiv != k) {
475 TMatrixRC<T> aIPiv(TMatrixRC<T>::Row(a,iPiv));
476 TMatrixRC<T> aK(TMatrixRC<T>::Row(a, k));
477 TMatrixRC<T>::Swap(aIPiv,aK);
478 TMatrixRC<T> bIPiv(TMatrixRC<T>::Row(b, iPiv));
479 TMatrixRC<T> bK(TMatrixRC<T>::Row(b, k));
480 TMatrixRC<T>::Swap(bIPiv,bK);
481 }
482 T pivot = a(k,k);
483 if( TMatrixRC<T>::Abs_Value(pivot) < 1.e-50 ) return (T) 0;
484 //det *= pivot;
485 pivRowa.SetRow(k); // to avoid constructors
486 pivRowb.SetRow(k);
487 for (uint_4 i=k+1; i<n; i++) {
488 T r = -a(i,k)/pivot;
489 TMatrixRC<T>::Row(a, i).LinComb(r, pivRowa); // + rapide que -= r * pivRowa
490 TMatrixRC<T>::Row(b, i).LinComb(r, pivRowb);
491 }
492}
493det *= a(n-1, n-1);
494
495// on remonte
496for(uint_4 kk=n-1; kk>0; kk--) {
497 T pivot = a(kk,kk);
498 if( TMatrixRC<T>::Abs_Value(pivot) <= 1.e-50 ) return (T) 0;
499 pivRowa.SetRow(kk); // to avoid constructors
500 pivRowb.SetRow(kk);
501 for(uint_4 jj=0; jj<kk; jj++) {
502 T r = -a(jj,kk)/pivot;
503 TMatrixRC<T>::Row(a, jj).LinComb(r, pivRowa);
504 TMatrixRC<T>::Row(b, jj).LinComb(r, pivRowb);
505 }
506}
507
508for(uint_4 l=0; l<n; l++) {
509 if( TMatrixRC<T>::Abs_Value(a(l,l)) <= 1.e-50 ) return (T) 0;
510 TMatrixRC<T>::Row(b, l) /= a(l,l);
511}
512
513return det;
514}
515
516//! Return the inverse matrix of \b A
517template <class T>
518TMatrix<T> SimpleMatrixOperation<T>::Inverse(TMatrix<T> const & A)
519{
520TMatrix<T> a(A);
521TMatrix<T> b(a.NCols(),a.NRows()); b = IdentityMatrix(1.);
522if( TMatrixRC<T>::Abs_Value(GausPiv(a,b)) < 1.e-50)
523 throw(MathExc("TMatrix Inverse() Singular Matrix"));
524return b;
525}
526
527
528////////////////////////////////////////////////////////////////
529// -------------------------------------------------------------
530// La classe fit lineaire
531// -------------------------------------------------------------
532////////////////////////////////////////////////////////////////
533
534LinFitter::LinFitter()
535{
536}
537
538LinFitter::~LinFitter()
539{
540}
541
542double LinFitter::LinFit(const Vector& x, const Vector& y, int nf,
543 double (*f)(int, double), Vector& c)
544{
545 int n = x.NElts();
546 if (n != y.NElts()) THROW(sizeMismatchErr);
547
548 Matrix fx(nf, n);
549 for (int i=0; i<nf; i++)
550 for (int j=0; j<n; j++)
551 fx(i,j) = f(i,x(j));
552
553 return LinFit(fx,y,c);
554}
555
556
557
558double LinFitter::LinFit(const Matrix& fx, const Vector& y, Vector& c)
559{
560 int n = y.NElts();
561 if ( n != fx.NCol()) THROW(sizeMismatchErr);
562
563 int nf = fx.NRows();
564
565 Matrix a(nf,nf);
566
567 for (int j=0; j<nf; j++)
568 for (int k=j; k<nf; k++)
569 a(j,k) = a(k,j) = TMatrixRC<r_8>::Row(const_cast<Matrix &>(fx), j)
570
571 * TMatrixRC<r_8>::Row(const_cast<Matrix &>(fx), k); /* $CHECK$ Reza 10/3/2000 */
572
573 c = fx * y;
574
575 if (SimpleMatrixOperation<r_8>::GausPiv(a,c) == 0) THROW(singMatxErr); /* $CHECK$ Reza 10/3/2000 */
576
577 double xi2 = 0;
578
579 for (int k=0; k<n; k++) {
580 double x = 0;
581 for (int i=0; i<nf; i++)
582 x += c(i) * fx(i,k);
583 x -= y(k);
584 xi2 += x*x;
585 }
586 return xi2;
587}
588
589
590
591double LinFitter::LinFit(const Vector& x, const Vector& y, const Vector& errY2, int nf,
592 double (*f)(int, double), Vector& c, Vector& errC)
593{
594 int n = x.NElts();
595 if (n != y.NElts()) THROW(sizeMismatchErr);
596
597 Matrix fx(nf, n);
598 for (int i=0; i<nf; i++)
599 for (int j=0; j<n; j++)
600 fx(i,j) = f(i,x(j));
601
602 return LinFit(fx,y,errY2,c,errC);
603}
604
605
606double LinFitter::LinFit(const Matrix& fx, const Vector& y, const Vector& errY2,
607 Vector& c, Vector& errC)
608{
609 int n = y.NElts();
610 if ( n != errY2.NElts()) THROW(sizeMismatchErr);
611 if ( n != fx.NCol()) THROW(sizeMismatchErr);
612
613 int nf = fx.NRows();
614
615 Matrix a(nf,nf);
616
617 c.Realloc(nf);
618 errC.Realloc(nf);
619
620 for (int j=0; j<nf; j++)
621 for (int k=j; k<nf; k++) {
622 double x=0;
623 for (int l=0; l<n; l++)
624 x += fx(j,l) * fx(k,l) / errY2(l); // Matrice a inverser
625 a(j,k) = a(k,j) = x;
626 }
627
628 Matrix d(nf,nf+1);
629 for (int k=0; k<nf; k++) {
630 double x=0;
631 for (int l=0; l<n; l++)
632 x += fx(k,l) * y(l) / errY2(l); // Second membre 1ere colonne
633 d(k,0) = x;
634 for (int m=1; m<=nf; m++)
635 d(k,m) = (k==m) ? 1 : 0; // Reste second membre = Id.
636 }
637
638 if (SimpleMatrixOperation<r_8>::GausPiv(a,d) == 0) THROW(singMatxErr); /* $CHECK$ Reza 10/3/2000 */
639
640 for (int l=0; l<nf; l++) {
641 c(l) = d(l,0); // Parametres = 1ere colonne
642 errC(l) = d(l,l+1); // Erreurs = diag inverse.
643 }
644
645 double xi2 = 0;
646
647 for (int jj=0; jj<n; jj++) {
648 double x = 0;
649 for (int ii=0; ii<nf; ii++)
650 x += c(ii) * fx(ii,jj);
651 x -= y(jj);
652 xi2 += x*x/errY2(jj);
653 }
654 return xi2;
655}
656
657
658void _ZZ_TestTMatrixRC_YY_(TMatrix<r_8> & m)
659{
660 cout << " ::::: _ZZ_TestTMatrixRC_YY_ :::: M= \n" << m << endl;
661 TMatrixRC<r_8> l0 = TMatrixRC<r_8>::Row(m,0);
662 cout << "TMatrixRC<r_8>::Row(m,0) = \n" ;
663 l0.Print(cout);
664 TMatrixRC<r_8> l1 = TMatrixRC<r_8>::Row(m,1);
665 cout << "TMatrixRC<r_8>::Row(m,1) = \n" ;
666 l1.Print(cout);
667 l0.SetRow(2);
668 cout << "TMatrixRC<r_8>::l0.SetRow(2 = \n" ;
669 l0.Print(cout);
670
671 TMatrixRC<r_8> c0 = TMatrixRC<r_8>::Col(m,0);
672 cout << "TMatrixRC<r_8>::Col(m,0) = \n" ;
673 c0.Print(cout);
674 TMatrixRC<r_8> c1 = TMatrixRC<r_8>::Col(m,1);
675 cout << "TMatrixRC<r_8>::Col(m,1) = \n" ;
676 c1.Print(cout);
677 c0.SetCol(2);
678 cout << "TMatrixRC<r_8>::c0.SetCol(2) = \n" ;
679 c0.Print(cout);
680 TMatrixRC<r_8> c00 = TMatrixRC<r_8>::Col(m,0);
681 TMatrixRC<r_8>::Swap(c0, c00);
682 cout << " ::::: M Apres Swap = \n" << m << endl;
683
684}
685
686///////////////////////////////////////////////////////////////
687#ifdef __CXX_PRAGMA_TEMPLATES__
688// Instances gestion lignes/colonnes
689#pragma define_template TMatrixRC<int_4>
690#pragma define_template TMatrixRC<r_4>
691#pragma define_template TMatrixRC<r_8>
692#pragma define_template TMatrixRC< complex<r_4> >
693#pragma define_template TMatrixRC< complex<r_8> >
694#pragma define_template SimpleMatrixOperation<int_4>
695#pragma define_template SimpleMatrixOperation<r_4>
696#pragma define_template SimpleMatrixOperation<r_8>
697#pragma define_template SimpleMatrixOperation< complex<r_4> >
698#pragma define_template SimpleMatrixOperation< complex<r_8> >
699#endif
700
701#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
702// Instances gestion lignes/colonnes
703template class TMatrixRC<int_4>;
704template class TMatrixRC<r_4>;
705template class TMatrixRC<r_8>;
706template class TMatrixRC< complex<r_4> >;
707template class TMatrixRC< complex<r_8> >;
708template class SimpleMatrixOperation<int_4>;
709template class SimpleMatrixOperation<r_4>;
710template class SimpleMatrixOperation<r_8>;
711template class SimpleMatrixOperation< complex<r_4> >;
712template class SimpleMatrixOperation< complex<r_8> >;
713#endif
Note: See TracBrowser for help on using the repository browser.