1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
2 | #ifndef SOpeMatrix_SEEN
|
---|
3 | #define SOpeMatrix_SEEN
|
---|
4 |
|
---|
5 | #include "machdefs.h"
|
---|
6 | #include "tmatrix.h"
|
---|
7 | #include "tvector.h"
|
---|
8 |
|
---|
9 | // doivent imperativement reste avant le namespace SOPHYA !
|
---|
10 | /*!
|
---|
11 | \class SOPHYA::SimpleMatrixOperation
|
---|
12 | \ingroup TArray
|
---|
13 | Class for simple operation on TMatrix
|
---|
14 | \sa TMatrix TArray
|
---|
15 | */
|
---|
16 | /*!
|
---|
17 | \class SOPHYA::LinFitter
|
---|
18 | \ingroup TArray
|
---|
19 | Class for linear fitting
|
---|
20 | \sa TMatrix TArray
|
---|
21 | */
|
---|
22 |
|
---|
23 | namespace SOPHYA {
|
---|
24 |
|
---|
25 | ////////////////////////////////////////////////////////////////
|
---|
26 | //! Class for simple operation on TMatrix
|
---|
27 | template <class T>
|
---|
28 | class SimpleMatrixOperation {
|
---|
29 | public:
|
---|
30 | static TMatrix<T> Inverse(TMatrix<T> const & A);
|
---|
31 | static T GausPiv(TMatrix<T>& A, TMatrix<T>& B);
|
---|
32 | };
|
---|
33 |
|
---|
34 | ////////////////////////////////////////////////////////////////
|
---|
35 | // Resolution du systeme A*C = B
|
---|
36 | //! Solve A*C = B for C in place and return determinant
|
---|
37 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
38 | inline r_4 LinSolveInPlace(TMatrix<r_4>& a, TVector<r_4>& b)
|
---|
39 | {
|
---|
40 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
41 | throw(SzMismatchError("LinSolveInPlace(TMatrix<r_4>,TVector<r_4>) size mismatch"));
|
---|
42 | return SimpleMatrixOperation<r_4>::GausPiv(a,b);
|
---|
43 | }
|
---|
44 |
|
---|
45 | //! Solve A*X = B in place and return determinant
|
---|
46 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
47 | inline r_8 LinSolveInPlace(TMatrix<r_8>& a, TVector<r_8>& b)
|
---|
48 | {
|
---|
49 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
50 | throw(SzMismatchError("LinSolveInPlace(TMatrix<r_8>,TVector<r_8>) size mismatch"));
|
---|
51 | return SimpleMatrixOperation<r_8>::GausPiv(a,b);
|
---|
52 | }
|
---|
53 |
|
---|
54 | //! Solve A*X = B in place and return determinant
|
---|
55 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
56 | inline complex<r_4> LinSolveInPlace(TMatrix< complex<r_4> >& a, TVector< complex<r_4> >& b)
|
---|
57 | {
|
---|
58 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
59 | throw(SzMismatchError("LinSolveInPlace(TMatrix< complex<r_4> >,TVector< complex<r_4> >) size mismatch"));
|
---|
60 | return SimpleMatrixOperation< complex<r_4> >::GausPiv(a,b);
|
---|
61 | }
|
---|
62 |
|
---|
63 | //! Solve A*X = B in place and return determinant
|
---|
64 | /*! \ingroup TArray \fn LinSolveInPlace */
|
---|
65 | inline complex<r_8> LinSolveInPlace(TMatrix< complex<r_8> >& a, TVector< complex<r_8> >& b)
|
---|
66 | {
|
---|
67 | if(a.NCols() != b.NRows() || a.NCols() != a.NRows())
|
---|
68 | throw(SzMismatchError("LinSolveInPlace(TMatrix< complex<r_8> >,TVector< complex<r_8> >) size mismatch"));
|
---|
69 | return SimpleMatrixOperation< complex<r_8> >::GausPiv(a,b);
|
---|
70 | }
|
---|
71 |
|
---|
72 | ////////////////////////////////////////////////////////////////
|
---|
73 | // Resolution du systeme A*C = B, avec C retourne dans B
|
---|
74 | //! Solve A*C = B and return C and determinant
|
---|
75 | /*! \ingroup TArray \fn LinSolve */
|
---|
76 | inline r_4 LinSolve(const TMatrix<r_4>& a, const TVector<r_4>& b, TVector<r_4>& c) {
|
---|
77 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
78 | throw(SzMismatchError("LinSolve(TMatrix<r_4>,TVector<r_4>) size mismatch"));
|
---|
79 | c = b; TMatrix<r_4> a1(a);
|
---|
80 | return SimpleMatrixOperation<r_4>::GausPiv(a1,c);
|
---|
81 | }
|
---|
82 |
|
---|
83 | //! Solve A*C = B and return C and determinant
|
---|
84 | /*! \ingroup TArray \fn LinSolve */
|
---|
85 | inline r_8 LinSolve(const TMatrix<r_8>& a, const TVector<r_8>& b, TVector<r_8>& c) {
|
---|
86 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
87 | throw(SzMismatchError("LinSolve(TMatrix<r_8>,TVector<r_8>) size mismatch"));
|
---|
88 | c = b; TMatrix<r_8> a1(a);
|
---|
89 | return SimpleMatrixOperation<r_8>::GausPiv(a1,c);
|
---|
90 | }
|
---|
91 |
|
---|
92 | //! Solve A*C = B and return C and determinant
|
---|
93 | /*! \ingroup TArray \fn LinSolve */
|
---|
94 | inline complex<r_4> LinSolve(const TMatrix< complex<r_4> >& a, const TVector< complex<r_4> >& b, TVector< complex<r_4> >& c) {
|
---|
95 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
96 | throw(SzMismatchError("LinSolve(TMatrix< complex<r_4> >,TVector< complex<r_4> >) size mismatch"));
|
---|
97 | c = b; TMatrix< complex<r_4> > a1(a);
|
---|
98 | return SimpleMatrixOperation< complex<r_4> >::GausPiv(a1,c);
|
---|
99 | }
|
---|
100 |
|
---|
101 | //! Solve A*C = B and return C and determinant
|
---|
102 | /*! \ingroup TArray \fn LinSolve */
|
---|
103 | inline complex<r_8> LinSolve(const TMatrix< complex<r_8> >& a, const TVector< complex<r_8> >& b, TVector< complex<r_8> >& c) {
|
---|
104 | if(a.NCols()!=b.NRows() || a.NCols()!=a.NRows())
|
---|
105 | throw(SzMismatchError("LinSolve(TMatrix< complex<r_8> >,TVector< complex<r_8> >) size mismatch"));
|
---|
106 | c = b; TMatrix< complex<r_8> > a1(a);
|
---|
107 | return SimpleMatrixOperation< complex<r_8> >::GausPiv(a1,c);
|
---|
108 | }
|
---|
109 |
|
---|
110 | ////////////////////////////////////////////////////////////////
|
---|
111 | // Inverse d'une matrice
|
---|
112 | //! To inverse a TMatrix
|
---|
113 | /*! \ingroup TArray \fn Inverse */
|
---|
114 | inline TMatrix<r_4> Inverse(TMatrix<r_4> const & A)
|
---|
115 | {return SimpleMatrixOperation<r_4>::Inverse(A);}
|
---|
116 | //! To inverse a TMatrix
|
---|
117 | /*! \ingroup TArray \fn Inverse */
|
---|
118 | inline TMatrix<r_8> Inverse(TMatrix<r_8> const & A)
|
---|
119 | {return SimpleMatrixOperation<r_8>::Inverse(A);}
|
---|
120 | //! To inverse a TMatrix
|
---|
121 | /*! \ingroup TArray \fn Inverse */
|
---|
122 | inline TMatrix< complex<r_4> > Inverse(TMatrix< complex<r_4> > const & A)
|
---|
123 | {return SimpleMatrixOperation< complex<r_4> >::Inverse(A);}
|
---|
124 | //! To inverse a TMatrix
|
---|
125 | /*! \ingroup TArray \fn Inverse */
|
---|
126 | inline TMatrix< complex<r_8> > Inverse(TMatrix< complex<r_8> > const & A)
|
---|
127 | {return SimpleMatrixOperation< complex<r_8> >::Inverse(A);}
|
---|
128 |
|
---|
129 | //--------------------------------------
|
---|
130 | // Linear fitting
|
---|
131 | //--------------------------------------
|
---|
132 |
|
---|
133 | //! Class for linear fitting
|
---|
134 | class LinFitter {
|
---|
135 | public :
|
---|
136 | LinFitter();
|
---|
137 | virtual ~LinFitter();
|
---|
138 |
|
---|
139 | double LinFit(const Vector& x, const Vector& y, int nf,
|
---|
140 | double (*f)(int, double), Vector& c);
|
---|
141 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1;
|
---|
142 |
|
---|
143 | double LinFit(const Matrix& fx, const Vector& y, Vector& c);
|
---|
144 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
145 | // la matrice fx contient les valeurs des f:
|
---|
146 | // fx(i,j) = f(i, x(j)).
|
---|
147 |
|
---|
148 | double LinFit(const Vector& x, const Vector& y, const Vector& errY2, int nf,
|
---|
149 | double (*f)(int, double), Vector& c, Vector& errC);
|
---|
150 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
151 | // errY2 contient les carres des erreurs sur les Y.
|
---|
152 | // au retour, errC contient les erreurs sur les coefs.
|
---|
153 |
|
---|
154 | double LinFit(const Matrix& fx, const Vector& y, const Vector& errY2,
|
---|
155 | Vector& c, Vector& errC);
|
---|
156 | // fit lineaire des y en tant que somme de c(i)f(i,x), i=0..nf-1,
|
---|
157 | // la matrice fx contient les valeurs des f:
|
---|
158 | // fx(i,j) = f(i, x(j)).
|
---|
159 | // errY2 contient les carres des erreurs sur les Y.
|
---|
160 | // au retour, errC contient les erreurs sur les coefs.
|
---|
161 | };
|
---|
162 |
|
---|
163 |
|
---|
164 | } // Fin du namespace
|
---|
165 |
|
---|
166 | #endif
|
---|