| 1 | // This may look like C code, but it is really -*- C++ -*- | 
|---|
| 2 | // This code is part of the SOPHYA library | 
|---|
| 3 | //  (C) Univ. Paris-Sud   (C) LAL-IN2P3/CNRS   (C) IRFU-CEA | 
|---|
| 4 | //  (C) R. Ansari, C.Magneville    2009-2010 | 
|---|
| 5 |  | 
|---|
| 6 | #ifndef SYMMTX_H_SEEN | 
|---|
| 7 | #define SYMMTX_H_SEEN | 
|---|
| 8 |  | 
|---|
| 9 | #include "spesqmtx.h" | 
|---|
| 10 |  | 
|---|
| 11 | namespace SOPHYA { | 
|---|
| 12 |  | 
|---|
| 13 | /*! | 
|---|
| 14 | \class SymmetricMatrix | 
|---|
| 15 | \ingroup TArray | 
|---|
| 16 | \brief Class representing a symmetric matrix. | 
|---|
| 17 |  | 
|---|
| 18 | The symmetric matrix is represented in memory as column packed, | 
|---|
| 19 | corresponding to the lower triangular part, as illustrated below for a 5x5 matrix. | 
|---|
| 20 | \verbatim | 
|---|
| 21 | 5x5 symmetric.Matrix, Size= 5*(5+1)/2 = 15 independent elements (0 ... 14) | 
|---|
| 22 | | 0                  | | 
|---|
| 23 | | 1   5              | | 
|---|
| 24 | | 2   6   9          | | 
|---|
| 25 | | 3   7   10  12     | | 
|---|
| 26 | | 4   8   11  13  14 | | 
|---|
| 27 | \endverbatim | 
|---|
| 28 |  | 
|---|
| 29 | This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like | 
|---|
| 30 | reference sharing and counting, arithmetic operators ... However, this class has no | 
|---|
| 31 | sub matrix extraction method. | 
|---|
| 32 | */ | 
|---|
| 33 |  | 
|---|
| 34 | template <class T> | 
|---|
| 35 | class SymmetricMatrix : public SpecialSquareMatrix<T> { | 
|---|
| 36 | public : | 
|---|
| 37 |  | 
|---|
| 38 | #include "spesqmtx_tsnl.h" | 
|---|
| 39 |  | 
|---|
| 40 | //! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used | 
|---|
| 41 | explicit SymmetricMatrix() | 
|---|
| 42 | : SpecialSquareMatrix<T>(C_SymmetricMatrix) | 
|---|
| 43 | { | 
|---|
| 44 |  | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | //! Instanciate a triangular matrix from the number of rows (rowSize must be > 0) | 
|---|
| 48 | explicit SymmetricMatrix(sa_size_t rowSize) | 
|---|
| 49 | : SpecialSquareMatrix<T>(rowSize, C_SymmetricMatrix) | 
|---|
| 50 | { | 
|---|
| 51 | if (rowSize < 1) | 
|---|
| 52 | throw ParmError("SymmetricMatrix<T>::SymmetricMatrix(rsz) rsz <= 0"); | 
|---|
| 53 | mElems.ReSize((rowSize*(rowSize+1)/2) ); | 
|---|
| 54 | mInfo = NULL; | 
|---|
| 55 | } | 
|---|
| 56 |  | 
|---|
| 57 | //! Copy constructor (possibility of sharing datas) | 
|---|
| 58 | SymmetricMatrix(SymmetricMatrix<T> const & a,  bool share=false) | 
|---|
| 59 | : SpecialSquareMatrix<T>(a, share) | 
|---|
| 60 | { | 
|---|
| 61 | } | 
|---|
| 62 |  | 
|---|
| 63 | //! Copy constructor (possibility of sharing datas) | 
|---|
| 64 | SymmetricMatrix(SpecialSquareMatrix<T> const & a,  bool share=false) | 
|---|
| 65 | : SpecialSquareMatrix<T>(a, share) | 
|---|
| 66 | { | 
|---|
| 67 | if (a.MtxType() != C_SymmetricMatrix) | 
|---|
| 68 | throw TypeMismatchExc("SymmetricMatrix(a) a NOT a SymmetricMatrix"); | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | /*! | 
|---|
| 72 | \brief Create a lower triangular matrix from a square matrix. | 
|---|
| 73 | Elements above the diagonal are ignored. | 
|---|
| 74 | */ | 
|---|
| 75 | explicit SymmetricMatrix(TMatrix<T> const & mx) | 
|---|
| 76 | : SpecialSquareMatrix<T>(C_SymmetricMatrix) | 
|---|
| 77 | { | 
|---|
| 78 | if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1)) | 
|---|
| 79 | throw ParmError("SymmetricMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix"); | 
|---|
| 80 | SetSize(mx.NRows()); | 
|---|
| 81 | for(sa_size_t l=0; l<NRows(); l++) | 
|---|
| 82 | for(sa_size_t m=0; m<=l; m++) (*this)(l,m) = mx(l,m); | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | //! Sets or change the triangular matrix size, specifying the new number of rows | 
|---|
| 86 | virtual void SetSize(sa_size_t rowSize) | 
|---|
| 87 | { | 
|---|
| 88 | if (rowSize < 1) | 
|---|
| 89 | throw ParmError("SymmetricMatrix<T>::SetSize(rsz) rsz <= 0"); | 
|---|
| 90 | if (rowSize == mNrows)  return; | 
|---|
| 91 | mNrows=rowSize; | 
|---|
| 92 | mElems.ReSize(mNrows*(mNrows+1)/2); | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | //! Return number of rows (for compatibility with the old TriangularMatrix interface) | 
|---|
| 96 | inline  sa_size_t rowNumber() const {return (int_4)mNrows;} | 
|---|
| 97 |  | 
|---|
| 98 | //! Return the object (triangular matrix) as a standard square matrix | 
|---|
| 99 | virtual TMatrix<T> ConvertToStdMatrix() const | 
|---|
| 100 | { | 
|---|
| 101 | if (mNrows < 1) | 
|---|
| 102 | throw SzMismatchError("SymmetricMatrix<T>::ConvertToStdMatrix() (this) not allocated !"); | 
|---|
| 103 | SOPHYA::TMatrix<T> mx(NRows(), NRows()); | 
|---|
| 104 | for(sa_size_t l=0; l<NRows(); l++) | 
|---|
| 105 | for(sa_size_t m=0; m<=l; m++) mx(l,m) = mx(m,l) = (*this)(l,m); | 
|---|
| 106 | return mx; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | //--- Operateurs = (T b) , = (SymmetricMatrix<T> b) | 
|---|
| 110 | //! operator = a , to set all elements to the value \b a | 
|---|
| 111 | inline SymmetricMatrix<T>& operator = (T a) | 
|---|
| 112 | {  SetCst(a);  return (*this);  } | 
|---|
| 113 | //! operator = SymmetricMatrix<T> a , element by element copy operator | 
|---|
| 114 | inline SymmetricMatrix<T>& operator = (SymmetricMatrix<T> const & a) | 
|---|
| 115 | {  Set(a); return (*this); } | 
|---|
| 116 | //! operator = Sequence seq | 
|---|
| 117 | inline SymmetricMatrix<T>& operator = (Sequence const & seq) | 
|---|
| 118 | {  SetSeq(seq); return (*this); } | 
|---|
| 119 |  | 
|---|
| 120 |  | 
|---|
| 121 | //--- Operateurs d'acces aux elements | 
|---|
| 122 | //! Element access operator (R/W): access to elements row \b r and column \b c | 
|---|
| 123 | inline T& operator()(sa_size_t r, sa_size_t c) | 
|---|
| 124 | { | 
|---|
| 125 | if ((r<0)||(r>=mNrows)) | 
|---|
| 126 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())"); | 
|---|
| 127 | if (c>r) { sa_size_t rc = r; r=c; c=rc; } | 
|---|
| 128 | // the inferior triangular part of the matrix is stored column by column | 
|---|
| 129 | return(mElems(r+ mNrows*c-c*(c+1)/2)); | 
|---|
| 130 | } | 
|---|
| 131 | //! Element access operator (RO): access to elements row \b l and column \b m | 
|---|
| 132 | inline T operator()(sa_size_t r, sa_size_t c) const | 
|---|
| 133 | { | 
|---|
| 134 | if ((r<0)||(r>=mNrows)) | 
|---|
| 135 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())"); | 
|---|
| 136 | if (c>r) { sa_size_t rc = r; r=c; c=rc; } | 
|---|
| 137 | // the inferior triangular part of the matrix is stored column by column | 
|---|
| 138 | return(mElems(r+ mNrows*c-c*(c+1)/2)); | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j)) | 
|---|
| 142 | inline const T* columnData(sa_size_t j)  const {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;} | 
|---|
| 143 |  | 
|---|
| 144 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j)) | 
|---|
| 145 | inline T* columnData(sa_size_t j) {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;} | 
|---|
| 146 |  | 
|---|
| 147 | //! compute the position of the element \b tm(i,j) relative to the first element | 
|---|
| 148 | inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const | 
|---|
| 149 | { | 
|---|
| 150 | //  return(i*(i+1)/2+j); | 
|---|
| 151 | // the (inferior triangular )matrix is stored column by column | 
|---|
| 152 | return(i+ mNrows*j-j*(j+1)/2); | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | //! Triangular Matrix product (multiplication) : ret_matrix = (*this) * tmx | 
|---|
| 156 | TMatrix<T> Multiply(SymmetricMatrix<T> const & tmx) const | 
|---|
| 157 | { | 
|---|
| 158 | if (NRows() != tmx.NRows()) | 
|---|
| 159 | throw SzMismatchError("Matrix<T>::Multiply(SymmetricMatrix<T> tmx): different sizes"); | 
|---|
| 160 | // codage peu efficace : on utilise la multiplication de matrices generales ... | 
|---|
| 161 | TMatrix<T> a = ConvertToStdMatrix(); | 
|---|
| 162 | TMatrix<T> b = tmx.ConvertToStdMatrix(); | 
|---|
| 163 | return (a.Multiply(b)); | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | //! Matrix product (multiplication) : ret_matrix = (*this) * mx | 
|---|
| 167 | TMatrix<T> MultiplySG(TMatrix<T> const & mx) const | 
|---|
| 168 | { | 
|---|
| 169 | if (NCols() != mx.NRows()) | 
|---|
| 170 | throw SzMismatchError("SymmetricMatrix<T>::MultiplySG(TMatrix<T> mx): NCols()!=mx.NRows()"); | 
|---|
| 171 | TMatrix<T> a = ConvertToStdMatrix(); | 
|---|
| 172 | return a.Multiply(mx); | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | //! Matrix product (multiplication) : ret_matrix = mx * (*this) | 
|---|
| 176 | TMatrix<T> MultiplyGS(TMatrix<T> const & mx) const | 
|---|
| 177 | { | 
|---|
| 178 | if (NRows() != mx.NCols()) | 
|---|
| 179 | throw SzMismatchError("SymmetricMatrix<T>::MultiplyGS(TMatrix<T> mx): NRows()!=mx.NCols()"); | 
|---|
| 180 | TMatrix<T> a = ConvertToStdMatrix(); | 
|---|
| 181 | return mx.Multiply(a); | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | //! ASCII dump/print of the triangular matrix object (set nbLignes=-1 for dumping the complete matrix) | 
|---|
| 185 | ostream& Print(ostream& os, sa_size_t nbLignes=0) const | 
|---|
| 186 | { | 
|---|
| 187 | os << "SymmetricMatrix< " << typeid(T).name() | 
|---|
| 188 | << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl; | 
|---|
| 189 | if (nbLignes == 0) return os; | 
|---|
| 190 | if (nbLignes < 0 ) nbLignes = mNrows; | 
|---|
| 191 | if (nbLignes > mNrows ) nbLignes = mNrows; | 
|---|
| 192 | for (sa_size_t r=0; r<nbLignes; r++)  { | 
|---|
| 193 | os << "Row[" << r << "]: " ; | 
|---|
| 194 | for (sa_size_t c=0; c<NRows(); c++) | 
|---|
| 195 | os << " " << (*this)(r,c); | 
|---|
| 196 | os << endl; | 
|---|
| 197 | } | 
|---|
| 198 | if (nbLignes < mNrows)  os << " ... ... ... " << endl; | 
|---|
| 199 | return os; | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | protected: | 
|---|
| 203 | }; | 
|---|
| 204 |  | 
|---|
| 205 | //----- Surcharge d'operateurs C = A * B (multiplication matricielle) | 
|---|
| 206 | /*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const SymmetricMatrix<T>&) | 
|---|
| 207 | \brief * : SymmetricMatrix multiplication \b a and \b b */ | 
|---|
| 208 | template <class T> | 
|---|
| 209 | inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const SymmetricMatrix<T>& b) | 
|---|
| 210 | { return(a.Multiply(b)); } | 
|---|
| 211 |  | 
|---|
| 212 | /*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const TMatrix<T>&) | 
|---|
| 213 | \brief * : Matrix multiplication SymmetricMatrix (\b a ) *  TMatrix<T> ( \b b ) */ | 
|---|
| 214 | template <class T> | 
|---|
| 215 | inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const TMatrix<T>& b) | 
|---|
| 216 | { return(a.MultiplySG(b)); } | 
|---|
| 217 |  | 
|---|
| 218 | /*! \ingroup TArray \fn operator*(const TMatrix<T>&,const SymmetricMatrix<T>&) | 
|---|
| 219 | \brief * : Matrix multiplication TMatrix (\b a ) *  SymmetricMatrix<T> ( \b b ) */ | 
|---|
| 220 | template <class T> | 
|---|
| 221 | inline TMatrix<T> operator * (const TMatrix<T>& a, const SymmetricMatrix<T>& b) | 
|---|
| 222 | { return(b.MultiplyGS(a)); } | 
|---|
| 223 |  | 
|---|
| 224 |  | 
|---|
| 225 | }   // namespace SOPHYA | 
|---|
| 226 |  | 
|---|
| 227 | #endif | 
|---|