source: Sophya/trunk/SophyaLib/TArray/symmtx.h@ 4007

Last change on this file since 4007 was 3870, checked in by ansari, 15 years ago

correction commentaires pour doxygen, Reza 12/08/2010

File size: 7.9 KB
Line 
1// This may look like C code, but it is really -*- C++ -*-
2// This code is part of the SOPHYA library
3// (C) Univ. Paris-Sud (C) LAL-IN2P3/CNRS (C) IRFU-CEA
4// (C) R. Ansari, C.Magneville 2009-2010
5
6#ifndef SYMMTX_H_SEEN
7#define SYMMTX_H_SEEN
8
9#include "spesqmtx.h"
10
11namespace SOPHYA {
12
13/*!
14 \class SymmetricMatrix
15 \ingroup TArray
16 \brief Class representing a symmetric matrix.
17
18 The symmetric matrix is represented in memory as column packed,
19 corresponding to the lower triangular part, as illustrated below for a 5x5 matrix.
20 \verbatim
21 5x5 symmetric.Matrix, Size= 5*(5+1)/2 = 15 independent elements (0 ... 14)
22 | 0 |
23 | 1 5 |
24 | 2 6 9 |
25 | 3 7 10 12 |
26 | 4 8 11 13 14 |
27 \endverbatim
28
29 This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like
30 reference sharing and counting, arithmetic operators ... However, this class has no
31 sub matrix extraction method.
32*/
33
34template <class T>
35class SymmetricMatrix : public SpecialSquareMatrix<T> {
36public :
37
38#include "spesqmtx_tsnl.h"
39
40//! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used
41explicit SymmetricMatrix()
42 : SpecialSquareMatrix<T>(C_SymmetricMatrix)
43{
44
45}
46
47//! Instanciate a triangular matrix from the number of rows (rowSize must be > 0)
48explicit SymmetricMatrix(sa_size_t rowSize)
49 : SpecialSquareMatrix<T>(rowSize, C_SymmetricMatrix)
50{
51 if (rowSize < 1)
52 throw ParmError("SymmetricMatrix<T>::SymmetricMatrix(rsz) rsz <= 0");
53 mElems.ReSize((rowSize*(rowSize+1)/2) );
54 mInfo = NULL;
55}
56
57//! Copy constructor (possibility of sharing datas)
58SymmetricMatrix(SymmetricMatrix<T> const & a, bool share=false)
59 : SpecialSquareMatrix<T>(a, share)
60{
61}
62
63//! Copy constructor (possibility of sharing datas)
64SymmetricMatrix(SpecialSquareMatrix<T> const & a, bool share=false)
65 : SpecialSquareMatrix<T>(a, share)
66{
67 if (a.MtxType() != C_SymmetricMatrix)
68 throw TypeMismatchExc("SymmetricMatrix(a) a NOT a SymmetricMatrix");
69}
70
71/*!
72 \brief Create a lower triangular matrix from a square matrix.
73 Elements above the diagonal are ignored.
74*/
75explicit SymmetricMatrix(TMatrix<T> const & mx)
76 : SpecialSquareMatrix<T>(C_SymmetricMatrix)
77{
78 if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1))
79 throw ParmError("SymmetricMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix");
80 SetSize(mx.NRows());
81 for(sa_size_t l=0; l<NRows(); l++)
82 for(sa_size_t m=0; m<=l; m++) (*this)(l,m) = mx(l,m);
83}
84
85//! Sets or change the triangular matrix size, specifying the new number of rows
86virtual void SetSize(sa_size_t rowSize)
87{
88 if (rowSize < 1)
89 throw ParmError("SymmetricMatrix<T>::SetSize(rsz) rsz <= 0");
90 if (rowSize == mNrows) return;
91 mNrows=rowSize;
92 mElems.ReSize(mNrows*(mNrows+1)/2);
93}
94
95//! Return number of rows (for compatibility with the old TriangularMatrix interface)
96inline sa_size_t rowNumber() const {return (int_4)mNrows;}
97
98//! Return the object (triangular matrix) as a standard square matrix
99virtual TMatrix<T> ConvertToStdMatrix() const
100{
101 if (mNrows < 1)
102 throw SzMismatchError("SymmetricMatrix<T>::ConvertToStdMatrix() (this) not allocated !");
103 SOPHYA::TMatrix<T> mx(NRows(), NRows());
104 for(sa_size_t l=0; l<NRows(); l++)
105 for(sa_size_t m=0; m<=l; m++) mx(l,m) = mx(m,l) = (*this)(l,m);
106 return mx;
107}
108
109//--- Operateurs = (T b) , = (SymmetricMatrix<T> b)
110//! operator = a , to set all elements to the value \b a
111inline SymmetricMatrix<T>& operator = (T a)
112 { SetCst(a); return (*this); }
113//! operator = SymmetricMatrix<T> a , element by element copy operator
114inline SymmetricMatrix<T>& operator = (SymmetricMatrix<T> const & a)
115 { Set(a); return (*this); }
116//! operator = Sequence seq
117inline SymmetricMatrix<T>& operator = (Sequence const & seq)
118 { SetSeq(seq); return (*this); }
119
120
121//--- Operateurs d'acces aux elements
122//! Element access operator (R/W): access to elements row \b r and column \b c
123inline T& operator()(sa_size_t r, sa_size_t c)
124{
125 if ((r<0)||(r>=mNrows))
126 throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
127 if (c>r) { sa_size_t rc = r; r=c; c=rc; }
128 // the inferior triangular part of the matrix is stored column by column
129 return(mElems(r+ mNrows*c-c*(c+1)/2));
130}
131//! Element access operator (RO): access to elements row \b l and column \b m
132inline T operator()(sa_size_t r, sa_size_t c) const
133{
134 if ((r<0)||(r>=mNrows))
135 throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
136 if (c>r) { sa_size_t rc = r; r=c; c=rc; }
137 // the inferior triangular part of the matrix is stored column by column
138 return(mElems(r+ mNrows*c-c*(c+1)/2));
139}
140
141//! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
142inline const T* columnData(sa_size_t j) const {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
143
144//! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
145inline T* columnData(sa_size_t j) {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
146
147//! compute the position of the element \b tm(i,j) relative to the first element
148inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const
149{
150 // return(i*(i+1)/2+j);
151 // the (inferior triangular )matrix is stored column by column
152 return(i+ mNrows*j-j*(j+1)/2);
153}
154
155//! Triangular Matrix product (multiplication) : ret_matrix = (*this) * tmx
156TMatrix<T> Multiply(SymmetricMatrix<T> const & tmx) const
157{
158 if (NRows() != tmx.NRows())
159 throw SzMismatchError("Matrix<T>::Multiply(SymmetricMatrix<T> tmx): different sizes");
160// codage peu efficace : on utilise la multiplication de matrices generales ...
161 TMatrix<T> a = ConvertToStdMatrix();
162 TMatrix<T> b = tmx.ConvertToStdMatrix();
163 return (a.Multiply(b));
164}
165
166//! Matrix product (multiplication) : ret_matrix = (*this) * mx
167TMatrix<T> MultiplySG(TMatrix<T> const & mx) const
168{
169 if (NCols() != mx.NRows())
170 throw SzMismatchError("SymmetricMatrix<T>::MultiplySG(TMatrix<T> mx): NCols()!=mx.NRows()");
171 TMatrix<T> a = ConvertToStdMatrix();
172 return a.Multiply(mx);
173}
174
175//! Matrix product (multiplication) : ret_matrix = mx * (*this)
176TMatrix<T> MultiplyGS(TMatrix<T> const & mx) const
177{
178 if (NRows() != mx.NCols())
179 throw SzMismatchError("SymmetricMatrix<T>::MultiplyGS(TMatrix<T> mx): NRows()!=mx.NCols()");
180 TMatrix<T> a = ConvertToStdMatrix();
181 return mx.Multiply(a);
182}
183
184//! ASCII dump/print of the triangular matrix object (set nbLignes=-1 for dumping the complete matrix)
185ostream& Print(ostream& os, sa_size_t nbLignes=0) const
186{
187 os << "SymmetricMatrix< " << typeid(T).name()
188 << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl;
189 if (nbLignes == 0) return os;
190 if (nbLignes < 0 ) nbLignes = mNrows;
191 if (nbLignes > mNrows ) nbLignes = mNrows;
192 for (sa_size_t r=0; r<nbLignes; r++) {
193 os << "Row[" << r << "]: " ;
194 for (sa_size_t c=0; c<NRows(); c++)
195 os << " " << (*this)(r,c);
196 os << endl;
197 }
198 if (nbLignes < mNrows) os << " ... ... ... " << endl;
199 return os;
200}
201
202protected:
203};
204
205//----- Surcharge d'operateurs C = A * B (multiplication matricielle)
206/*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const SymmetricMatrix<T>&)
207 \brief * : SymmetricMatrix multiplication \b a and \b b */
208template <class T>
209inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const SymmetricMatrix<T>& b)
210 { return(a.Multiply(b)); }
211
212/*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const TMatrix<T>&)
213 \brief * : Matrix multiplication SymmetricMatrix (\b a ) * TMatrix<T> ( \b b ) */
214template <class T>
215inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const TMatrix<T>& b)
216 { return(a.MultiplySG(b)); }
217
218/*! \ingroup TArray \fn operator*(const TMatrix<T>&,const SymmetricMatrix<T>&)
219 \brief * : Matrix multiplication TMatrix (\b a ) * SymmetricMatrix<T> ( \b b ) */
220template <class T>
221inline TMatrix<T> operator * (const TMatrix<T>& a, const SymmetricMatrix<T>& b)
222 { return(b.MultiplyGS(a)); }
223
224
225} // namespace SOPHYA
226
227#endif
Note: See TracBrowser for help on using the repository browser.