1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
2 | // This code is part of the SOPHYA library
|
---|
3 | // (C) Univ. Paris-Sud (C) LAL-IN2P3/CNRS (C) IRFU-CEA
|
---|
4 | // (C) R. Ansari, C.Magneville 2009-2010
|
---|
5 |
|
---|
6 | #ifndef SYMMTX_H_SEEN
|
---|
7 | #define SYMMTX_H_SEEN
|
---|
8 |
|
---|
9 | #include "spesqmtx.h"
|
---|
10 |
|
---|
11 | namespace SOPHYA {
|
---|
12 |
|
---|
13 | /*!
|
---|
14 | \class SymmetricMatrix
|
---|
15 | \ingroup TArray
|
---|
16 | \brief Class representing a symmetric matrix.
|
---|
17 |
|
---|
18 | The symmetric matrix is represented in memory as column packed,
|
---|
19 | corresponding to the lower triangular part, as illustrated below for a 5x5 matrix.
|
---|
20 | \verbatim
|
---|
21 | 5x5 symmetric.Matrix, Size= 5*(5+1)/2 = 15 independent elements (0 ... 14)
|
---|
22 | | 0 |
|
---|
23 | | 1 5 |
|
---|
24 | | 2 6 9 |
|
---|
25 | | 3 7 10 12 |
|
---|
26 | | 4 8 11 13 14 |
|
---|
27 | \endverbatim
|
---|
28 |
|
---|
29 | This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like
|
---|
30 | reference sharing and counting, arithmetic operators ... However, this class has no
|
---|
31 | sub matrix extraction method.
|
---|
32 | */
|
---|
33 |
|
---|
34 | template <class T>
|
---|
35 | class SymmetricMatrix : public SpecialSquareMatrix<T> {
|
---|
36 | public :
|
---|
37 |
|
---|
38 | #include "spesqmtx_tsnl.h"
|
---|
39 |
|
---|
40 | //! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used
|
---|
41 | explicit SymmetricMatrix()
|
---|
42 | : SpecialSquareMatrix<T>(C_SymmetricMatrix)
|
---|
43 | {
|
---|
44 |
|
---|
45 | }
|
---|
46 |
|
---|
47 | //! Instanciate a triangular matrix from the number of rows (rowSize must be > 0)
|
---|
48 | explicit SymmetricMatrix(sa_size_t rowSize)
|
---|
49 | : SpecialSquareMatrix<T>(rowSize, C_SymmetricMatrix)
|
---|
50 | {
|
---|
51 | if (rowSize < 1)
|
---|
52 | throw ParmError("SymmetricMatrix<T>::SymmetricMatrix(rsz) rsz <= 0");
|
---|
53 | mElems.ReSize((rowSize*(rowSize+1)/2) );
|
---|
54 | mInfo = NULL;
|
---|
55 | }
|
---|
56 |
|
---|
57 | //! Copy constructor (possibility of sharing datas)
|
---|
58 | SymmetricMatrix(SymmetricMatrix<T> const & a, bool share=false)
|
---|
59 | : SpecialSquareMatrix<T>(a, share)
|
---|
60 | {
|
---|
61 | }
|
---|
62 |
|
---|
63 | //! Copy constructor (possibility of sharing datas)
|
---|
64 | SymmetricMatrix(SpecialSquareMatrix<T> const & a, bool share=false)
|
---|
65 | : SpecialSquareMatrix<T>(a, share)
|
---|
66 | {
|
---|
67 | if (a.MtxType() != C_SymmetricMatrix)
|
---|
68 | throw TypeMismatchExc("SymmetricMatrix(a) a NOT a SymmetricMatrix");
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*!
|
---|
72 | \brief Create a lower triangular matrix from a square matrix.
|
---|
73 | Elements above the diagonal are ignored.
|
---|
74 | */
|
---|
75 | explicit SymmetricMatrix(TMatrix<T> const & mx)
|
---|
76 | : SpecialSquareMatrix<T>(C_SymmetricMatrix)
|
---|
77 | {
|
---|
78 | if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1))
|
---|
79 | throw ParmError("SymmetricMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix");
|
---|
80 | SetSize(mx.NRows());
|
---|
81 | for(sa_size_t l=0; l<NRows(); l++)
|
---|
82 | for(sa_size_t m=0; m<=l; m++) (*this)(l,m) = mx(l,m);
|
---|
83 | }
|
---|
84 |
|
---|
85 | //! Sets or change the triangular matrix size, specifying the new number of rows
|
---|
86 | virtual void SetSize(sa_size_t rowSize)
|
---|
87 | {
|
---|
88 | if (rowSize < 1)
|
---|
89 | throw ParmError("SymmetricMatrix<T>::SetSize(rsz) rsz <= 0");
|
---|
90 | if (rowSize == mNrows) return;
|
---|
91 | mNrows=rowSize;
|
---|
92 | mElems.ReSize(mNrows*(mNrows+1)/2);
|
---|
93 | }
|
---|
94 |
|
---|
95 | //! Return number of rows (for compatibility with the old TriangularMatrix interface)
|
---|
96 | inline sa_size_t rowNumber() const {return (int_4)mNrows;}
|
---|
97 |
|
---|
98 | //! Return the object (triangular matrix) as a standard square matrix
|
---|
99 | virtual TMatrix<T> ConvertToStdMatrix() const
|
---|
100 | {
|
---|
101 | if (mNrows < 1)
|
---|
102 | throw SzMismatchError("SymmetricMatrix<T>::ConvertToStdMatrix() (this) not allocated !");
|
---|
103 | SOPHYA::TMatrix<T> mx(NRows(), NRows());
|
---|
104 | for(sa_size_t l=0; l<NRows(); l++)
|
---|
105 | for(sa_size_t m=0; m<=l; m++) mx(l,m) = mx(m,l) = (*this)(l,m);
|
---|
106 | return mx;
|
---|
107 | }
|
---|
108 |
|
---|
109 | //--- Operateurs = (T b) , = (SymmetricMatrix<T> b)
|
---|
110 | //! operator = a , to set all elements to the value \b a
|
---|
111 | inline SymmetricMatrix<T>& operator = (T a)
|
---|
112 | { SetCst(a); return (*this); }
|
---|
113 | //! operator = SymmetricMatrix<T> a , element by element copy operator
|
---|
114 | inline SymmetricMatrix<T>& operator = (SymmetricMatrix<T> const & a)
|
---|
115 | { Set(a); return (*this); }
|
---|
116 | //! operator = Sequence seq
|
---|
117 | inline SymmetricMatrix<T>& operator = (Sequence const & seq)
|
---|
118 | { SetSeq(seq); return (*this); }
|
---|
119 |
|
---|
120 |
|
---|
121 | //--- Operateurs d'acces aux elements
|
---|
122 | //! Element access operator (R/W): access to elements row \b r and column \b c
|
---|
123 | inline T& operator()(sa_size_t r, sa_size_t c)
|
---|
124 | {
|
---|
125 | if ((r<0)||(r>=mNrows))
|
---|
126 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
|
---|
127 | if (c>r) { sa_size_t rc = r; r=c; c=rc; }
|
---|
128 | // the inferior triangular part of the matrix is stored column by column
|
---|
129 | return(mElems(r+ mNrows*c-c*(c+1)/2));
|
---|
130 | }
|
---|
131 | //! Element access operator (RO): access to elements row \b l and column \b m
|
---|
132 | inline T operator()(sa_size_t r, sa_size_t c) const
|
---|
133 | {
|
---|
134 | if ((r<0)||(r>=mNrows))
|
---|
135 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
|
---|
136 | if (c>r) { sa_size_t rc = r; r=c; c=rc; }
|
---|
137 | // the inferior triangular part of the matrix is stored column by column
|
---|
138 | return(mElems(r+ mNrows*c-c*(c+1)/2));
|
---|
139 | }
|
---|
140 |
|
---|
141 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
142 | inline const T* columnData(sa_size_t j) const {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
|
---|
143 |
|
---|
144 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
145 | inline T* columnData(sa_size_t j) {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
|
---|
146 |
|
---|
147 | //! compute the position of the element \b tm(i,j) relative to the first element
|
---|
148 | inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const
|
---|
149 | {
|
---|
150 | // return(i*(i+1)/2+j);
|
---|
151 | // the (inferior triangular )matrix is stored column by column
|
---|
152 | return(i+ mNrows*j-j*(j+1)/2);
|
---|
153 | }
|
---|
154 |
|
---|
155 | //! Triangular Matrix product (multiplication) : ret_matrix = (*this) * tmx
|
---|
156 | TMatrix<T> Multiply(SymmetricMatrix<T> const & tmx) const
|
---|
157 | {
|
---|
158 | if (NRows() != tmx.NRows())
|
---|
159 | throw SzMismatchError("Matrix<T>::Multiply(SymmetricMatrix<T> tmx): different sizes");
|
---|
160 | // codage peu efficace : on utilise la multiplication de matrices generales ...
|
---|
161 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
162 | TMatrix<T> b = tmx.ConvertToStdMatrix();
|
---|
163 | return (a.Multiply(b));
|
---|
164 | }
|
---|
165 |
|
---|
166 | //! Matrix product (multiplication) : ret_matrix = (*this) * mx
|
---|
167 | TMatrix<T> MultiplySG(TMatrix<T> const & mx) const
|
---|
168 | {
|
---|
169 | if (NCols() != mx.NRows())
|
---|
170 | throw SzMismatchError("SymmetricMatrix<T>::MultiplySG(TMatrix<T> mx): NCols()!=mx.NRows()");
|
---|
171 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
172 | return a.Multiply(mx);
|
---|
173 | }
|
---|
174 |
|
---|
175 | //! Matrix product (multiplication) : ret_matrix = mx * (*this)
|
---|
176 | TMatrix<T> MultiplyGS(TMatrix<T> const & mx) const
|
---|
177 | {
|
---|
178 | if (NRows() != mx.NCols())
|
---|
179 | throw SzMismatchError("SymmetricMatrix<T>::MultiplyGS(TMatrix<T> mx): NRows()!=mx.NCols()");
|
---|
180 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
181 | return mx.Multiply(a);
|
---|
182 | }
|
---|
183 |
|
---|
184 | //! ASCII dump/print of the triangular matrix object (set nbLignes=-1 for dumping the complete matrix)
|
---|
185 | ostream& Print(ostream& os, sa_size_t nbLignes=0) const
|
---|
186 | {
|
---|
187 | os << "SymmetricMatrix< " << typeid(T).name()
|
---|
188 | << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl;
|
---|
189 | if (nbLignes == 0) return os;
|
---|
190 | if (nbLignes < 0 ) nbLignes = mNrows;
|
---|
191 | if (nbLignes > mNrows ) nbLignes = mNrows;
|
---|
192 | for (sa_size_t r=0; r<nbLignes; r++) {
|
---|
193 | os << "Row[" << r << "]: " ;
|
---|
194 | for (sa_size_t c=0; c<NRows(); c++)
|
---|
195 | os << " " << (*this)(r,c);
|
---|
196 | os << endl;
|
---|
197 | }
|
---|
198 | if (nbLignes < mNrows) os << " ... ... ... " << endl;
|
---|
199 | return os;
|
---|
200 | }
|
---|
201 |
|
---|
202 | protected:
|
---|
203 | };
|
---|
204 |
|
---|
205 | //----- Surcharge d'operateurs C = A * B (multiplication matricielle)
|
---|
206 | /*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const SymmetricMatrix<T>&)
|
---|
207 | \brief * : SymmetricMatrix multiplication \b a and \b b */
|
---|
208 | template <class T>
|
---|
209 | inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const SymmetricMatrix<T>& b)
|
---|
210 | { return(a.Multiply(b)); }
|
---|
211 |
|
---|
212 | /*! \ingroup TArray \fn operator*(const SymmetricMatrix<T>&,const TMatrix<T>&)
|
---|
213 | \brief * : Matrix multiplication SymmetricMatrix (\b a ) * TMatrix<T> ( \b b ) */
|
---|
214 | template <class T>
|
---|
215 | inline TMatrix<T> operator * (const SymmetricMatrix<T>& a, const TMatrix<T>& b)
|
---|
216 | { return(a.MultiplySG(b)); }
|
---|
217 |
|
---|
218 | /*! \ingroup TArray \fn operator*(const TMatrix<T>&,const SymmetricMatrix<T>&)
|
---|
219 | \brief * : Matrix multiplication TMatrix (\b a ) * SymmetricMatrix<T> ( \b b ) */
|
---|
220 | template <class T>
|
---|
221 | inline TMatrix<T> operator * (const TMatrix<T>& a, const SymmetricMatrix<T>& b)
|
---|
222 | { return(b.MultiplyGS(a)); }
|
---|
223 |
|
---|
224 |
|
---|
225 | } // namespace SOPHYA
|
---|
226 |
|
---|
227 | #endif
|
---|