[4035] | 1 | // $Id: tmatrix.cc,v 1.41 2011-11-14 16:28:25 ansari Exp $
|
---|
[762] | 2 | // C.Magneville 04/99
|
---|
[2615] | 3 | #include "sopnamsp.h"
|
---|
[762] | 4 | #include "machdefs.h"
|
---|
[2752] | 5 | #include <iostream>
|
---|
| 6 | #include <iomanip>
|
---|
[762] | 7 | #include <stdio.h>
|
---|
| 8 | #include <stdlib.h>
|
---|
| 9 | #include "pexceptions.h"
|
---|
[3831] | 10 |
|
---|
| 11 | #define TMATRIX_CC_BFILE // avoid extern template declarations
|
---|
[762] | 12 | #include "tmatrix.h"
|
---|
| 13 |
|
---|
[3751] | 14 | namespace SOPHYA {
|
---|
| 15 |
|
---|
[926] | 16 | /*!
|
---|
[3751] | 17 | \class TMatrix
|
---|
[926] | 18 | \ingroup TArray
|
---|
[2267] | 19 |
|
---|
| 20 | The TMatrix class specializes the TArray class for representing
|
---|
| 21 | two dimensional arrays as matrices. Matrix and vector operations,
|
---|
| 22 | such as matrix multiplication or transposition is implemented.
|
---|
[2917] | 23 |
|
---|
| 24 | Sub-matrices, in particular matrix rows and columns can easily and
|
---|
| 25 | efficiently be extracted and manipulated.
|
---|
| 26 | It should be noted that a significant memory overhead is associated with
|
---|
| 27 | small matrices (typically less than 10x10=100 elements).However,
|
---|
| 28 | higher dimension arrays (3D for examples) can be used to represent large
|
---|
| 29 | number of small matrices or vectors.
|
---|
| 30 |
|
---|
[3101] | 31 | \warning Matrix row, column indices (r,c) correspond to array indices
|
---|
| 32 | (r=jy, c=ix) for CMemoryMapping and to (r=ix, c=jy) for FortranMemoryMapping.
|
---|
| 33 |
|
---|
[2267] | 34 | \b Matrix is a typedef for double precision floating point matrix ( TMatrix<r_8> ).
|
---|
| 35 |
|
---|
| 36 | \sa SOPHYA::TArray SOPHYA::TVector
|
---|
[2917] | 37 | \sa SOPHYA::Range SOPHYA::Sequence
|
---|
| 38 | \sa SOPHYA::MathArray SOPHYA::SimpleMatrixOperation
|
---|
[2267] | 39 |
|
---|
| 40 | The following sample code illustrates vector-matrix multiplication
|
---|
| 41 | and matrix inversion, using simple gauss inversion.
|
---|
| 42 | \code
|
---|
| 43 | #include "array.h"
|
---|
| 44 | // ....
|
---|
| 45 | int n = 5; // Size of matrix and vectors here
|
---|
| 46 | Matrix a(n,n);
|
---|
| 47 | a = RandomSequence(RandomSequence::Gaussian, 0., 2.5);
|
---|
| 48 | Vector x(n);
|
---|
| 49 | x = RegularSequence(1.,3.);
|
---|
| 50 | Vector b = a*x;
|
---|
| 51 | cout << " ----- Vector x = \n " << x << endl;
|
---|
| 52 | cout << " ----- Vector b = a*x = \n " << b << endl;
|
---|
| 53 | SimpleMatrixOperation<r_8> smo;
|
---|
| 54 | Matrix inva = smo.Inverse(a);
|
---|
| 55 | cout << " ----- Matrix Inverse(a) = \n " << inva << endl;
|
---|
| 56 | cout << " ----- Matrix a*Inverse(a) = \n " << inva*a << endl;
|
---|
| 57 | cout << " ----- Matrix Inverse(a)*b (=Inv(a)*a*x) = \n " << inva*b << endl;
|
---|
| 58 | cout << " ----- Matrix x-Inverse(a)*b = (=0 ?)\n " << x-inva*b << endl;
|
---|
| 59 | \endcode
|
---|
| 60 |
|
---|
[926] | 61 | */
|
---|
[804] | 62 |
|
---|
[762] | 63 | ////////////////////////////////////////////////////////////////
|
---|
| 64 | //**** Createur, Destructeur
|
---|
[894] | 65 | //! Default constructor
|
---|
[762] | 66 | template <class T>
|
---|
| 67 | TMatrix<T>::TMatrix()
|
---|
| 68 | // Constructeur par defaut.
|
---|
[804] | 69 | : TArray<T>()
|
---|
[762] | 70 | {
|
---|
[1099] | 71 | arrtype_ = 1; // Type = Matrix
|
---|
[762] | 72 | }
|
---|
| 73 |
|
---|
[894] | 74 | //! constructor of a matrix with r lines et c columns.
|
---|
| 75 | /*!
|
---|
| 76 | \param r : number of rows
|
---|
| 77 | \param c : number of columns
|
---|
| 78 | \param mm : define the memory mapping type
|
---|
[2575] | 79 | \param fzero : if \b true , set matrix elements to zero
|
---|
[894] | 80 | \sa ReSize
|
---|
| 81 | */
|
---|
[762] | 82 | template <class T>
|
---|
[2575] | 83 | TMatrix<T>::TMatrix(sa_size_t r,sa_size_t c, short mm, bool fzero)
|
---|
[762] | 84 | // Construit une matrice de r lignes et c colonnes.
|
---|
[804] | 85 | : TArray<T>()
|
---|
[762] | 86 | {
|
---|
[804] | 87 | if ( (r == 0) || (c == 0) )
|
---|
[1156] | 88 | throw ParmError("TMatrix<T>::TMatrix(sa_size_t r,sa_size_t c) NRows or NCols = 0");
|
---|
[1099] | 89 | arrtype_ = 1; // Type = Matrix
|
---|
[2575] | 90 | ReSize(r, c, mm, fzero);
|
---|
[762] | 91 | }
|
---|
| 92 |
|
---|
[967] | 93 | //! Constructor by copy
|
---|
[976] | 94 | /*!
|
---|
| 95 | \warning datas are \b SHARED with \b a.
|
---|
| 96 | \sa NDataBlock::NDataBlock(const NDataBlock<T>&)
|
---|
| 97 | */
|
---|
[762] | 98 | template <class T>
|
---|
| 99 | TMatrix<T>::TMatrix(const TMatrix<T>& a)
|
---|
[967] | 100 | // Constructeur par copie
|
---|
[804] | 101 | : TArray<T>(a)
|
---|
[762] | 102 | {
|
---|
[1099] | 103 | arrtype_ = 1; // Type = Matrix
|
---|
[1103] | 104 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
[762] | 105 | }
|
---|
| 106 |
|
---|
[894] | 107 | //! Constructor by copy
|
---|
| 108 | /*!
|
---|
| 109 | \param share : if true, share data. If false copy data
|
---|
| 110 | */
|
---|
[762] | 111 | template <class T>
|
---|
[804] | 112 | TMatrix<T>::TMatrix(const TMatrix<T>& a, bool share)
|
---|
[762] | 113 | // Constructeur par copie avec possibilite de forcer le partage ou non.
|
---|
[804] | 114 | : TArray<T>(a, share)
|
---|
[762] | 115 | {
|
---|
[1099] | 116 | arrtype_ = 1; // Type = Matrix
|
---|
[1103] | 117 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
[762] | 118 | }
|
---|
| 119 |
|
---|
[894] | 120 | //! Constructor of a matrix from a TArray \b a
|
---|
| 121 | /*!
|
---|
| 122 | \param a : TArray to be copied or shared
|
---|
| 123 | \param share : if true, share data. If false copy data
|
---|
| 124 | */
|
---|
[762] | 125 | template <class T>
|
---|
[2752] | 126 | TMatrix<T>::TMatrix(const TArray<T>& a, bool share)
|
---|
[804] | 127 | : TArray<T>(a, share)
|
---|
[762] | 128 | {
|
---|
[4035] | 129 | arrtype_ = 1; // Type = Matrix
|
---|
| 130 | if (a.NbDimensions() == 0) { // Reza-Nov 2011: we allow copy contrsuctor on non allocated arrays
|
---|
| 131 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
| 132 | return;
|
---|
| 133 | }
|
---|
[813] | 134 | if (a.NbDimensions() > 2)
|
---|
| 135 | throw SzMismatchError("TMatrix<T>::TMatrix(const TArray<T>& a, ...) a.NbDimensions()>2");
|
---|
| 136 | if (a.NbDimensions() == 1) {
|
---|
| 137 | size_[1] = 1;
|
---|
| 138 | step_[1] = size_[0]*step_[0];
|
---|
| 139 | ndim_ = 2;
|
---|
| 140 | }
|
---|
[2752] | 141 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
[762] | 142 | }
|
---|
| 143 |
|
---|
[4035] | 144 | //! Constructor of a matrix from a TArray \b a , with different data type
|
---|
| 145 | /*!
|
---|
| 146 | Matrix size and memory layout are copied from the array \b a, or a packed matrix is created if \b pack==true.
|
---|
| 147 | \param a : original array, to copy sizes and data from
|
---|
| 148 | \param pack : if \b true , create a packed matrix, else same memory layout as \b a.
|
---|
| 149 | */
|
---|
[1081] | 150 | template <class T>
|
---|
[4035] | 151 | TMatrix<T>::TMatrix(const BaseArray& a, bool pack)
|
---|
| 152 | : TArray<T>()
|
---|
[1081] | 153 | {
|
---|
[4035] | 154 | // On ne peut pas passer par TArray<T>(const BaseArray&), car il faut initialiser arrtype_ d'abord !
|
---|
[1099] | 155 | arrtype_ = 1; // Type = Matrix
|
---|
[4035] | 156 | if (a.NbDimensions() == 0) { // Reza-Nov 2011: we allow copy contrsuctor on non allocated arrays
|
---|
| 157 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
| 158 | return;
|
---|
| 159 | }
|
---|
| 160 | if (a.NbDimensions() > 2)
|
---|
| 161 | throw SzMismatchError("TMatrix<T>::TMatrix((const BaseArray& a, bool) a.NbDimensions()>2");
|
---|
| 162 | string exmsg = "TMatrix<T>::TMatrix(const BaseArray&,bool)";
|
---|
| 163 | TArray<T>::ReSize(a,pack,false);
|
---|
[1103] | 164 | UpdateMemoryMapping(a, SameMemoryMapping);
|
---|
[4035] | 165 | TArray<T>::ConvertAndCopyElt(a);
|
---|
[1081] | 166 | }
|
---|
| 167 |
|
---|
| 168 |
|
---|
| 169 |
|
---|
[894] | 170 | //! Destructor
|
---|
[762] | 171 | template <class T>
|
---|
[804] | 172 | TMatrix<T>::~TMatrix()
|
---|
[762] | 173 | {
|
---|
| 174 | }
|
---|
| 175 |
|
---|
[976] | 176 | //! Set matrix equal to \b a and return *this
|
---|
| 177 | /*!
|
---|
| 178 | \warning Datas are copied (cloned) from \b a.
|
---|
| 179 | \sa NDataBlock::operator=(const NDataBlock<T>&)
|
---|
| 180 | */
|
---|
[804] | 181 | template <class T>
|
---|
| 182 | TArray<T>& TMatrix<T>::Set(const TArray<T>& a)
|
---|
[762] | 183 | {
|
---|
[813] | 184 | if (a.NbDimensions() > 2)
|
---|
| 185 | throw SzMismatchError("TMatrix<T>::Set(const TArray<T>& a) a.NbDimensions() > 2");
|
---|
[1099] | 186 | if ((arrtype_ == 2) && (a.NbDimensions() > 1) && (a.Size(0) > 1) && (a.Size(1) > 1) )
|
---|
| 187 | throw SzMismatchError("TMatrix<T>::Set(const TArray<T>& a) Size(0,1)>1 for Vector");
|
---|
[813] | 188 | TArray<T>::Set(a);
|
---|
[970] | 189 | if (NbDimensions() == 1) {
|
---|
[813] | 190 | size_[1] = 1;
|
---|
| 191 | step_[1] = size_[0]*step_[0];
|
---|
| 192 | ndim_ = 2;
|
---|
| 193 | }
|
---|
[970] | 194 | UpdateMemoryMapping(*this, SameMemoryMapping);
|
---|
[813] | 195 | return(*this);
|
---|
[762] | 196 | }
|
---|
| 197 |
|
---|
[1081] | 198 | template <class T>
|
---|
| 199 | TArray<T>& TMatrix<T>::SetBA(const BaseArray& a)
|
---|
| 200 | {
|
---|
| 201 | if (a.NbDimensions() > 2)
|
---|
| 202 | throw SzMismatchError("TMatrix<T>::SetBA(const BaseArray& a) a.NbDimensions() > 2");
|
---|
[1099] | 203 | if ((arrtype_ == 2) && (a.NbDimensions() > 1) && (a.Size(0) > 1) && (a.Size(1) > 1) )
|
---|
| 204 | throw SzMismatchError("TMatrix<T>::Set(const TArray<T>& a) Size(0,1)>1 for Vector");
|
---|
[1081] | 205 | TArray<T>::SetBA(a);
|
---|
| 206 | if (NbDimensions() == 1) {
|
---|
| 207 | size_[1] = 1;
|
---|
| 208 | step_[1] = size_[0]*step_[0];
|
---|
| 209 | ndim_ = 2;
|
---|
| 210 | }
|
---|
| 211 | UpdateMemoryMapping(*this, SameMemoryMapping);
|
---|
| 212 | return(*this);
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 |
|
---|
| 216 |
|
---|
[894] | 217 | //! Resize the matrix
|
---|
| 218 | /*!
|
---|
| 219 | \param r : number of rows
|
---|
| 220 | \param c : number of columns
|
---|
| 221 | \param mm : define the memory mapping type
|
---|
| 222 | (SameMemoryMapping,CMemoryMapping
|
---|
| 223 | ,FortranMemoryMapping,DefaultMemoryMapping)
|
---|
[2575] | 224 | \param fzero : if \b true , set matrix elements to zero
|
---|
[894] | 225 | */
|
---|
[804] | 226 | template <class T>
|
---|
[2575] | 227 | void TMatrix<T>::ReSize(sa_size_t r, sa_size_t c, short mm, bool fzero)
|
---|
[762] | 228 | {
|
---|
[804] | 229 | if(r==0||c==0)
|
---|
| 230 | throw(SzMismatchError("TMatrix::ReSize r or c==0 "));
|
---|
[1099] | 231 | if ((arrtype_ == 2) && (r > 1) && (c > 1))
|
---|
| 232 | throw(SzMismatchError("TMatrix::ReSize r>1&&c>1 for Vector "));
|
---|
[1156] | 233 | sa_size_t size[BASEARRAY_MAXNDIMS];
|
---|
| 234 | for(int_4 kk=0; kk<BASEARRAY_MAXNDIMS; kk++) size[kk] = 0;
|
---|
[804] | 235 | if (mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
[813] | 236 | else if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) )
|
---|
| 237 | mm = GetDefaultMemoryMapping();
|
---|
| 238 | if (mm == CMemoryMapping) {
|
---|
| 239 | size[0] = c; size[1] = r;
|
---|
| 240 | }
|
---|
| 241 | else {
|
---|
| 242 | size[0] = r; size[1] = c;
|
---|
| 243 | }
|
---|
[2575] | 244 | TArray<T>::ReSize(2, size, 1, fzero);
|
---|
[813] | 245 | UpdateMemoryMapping(mm);
|
---|
[762] | 246 | }
|
---|
| 247 |
|
---|
[894] | 248 | //! Re-allocate space for the matrix
|
---|
| 249 | /*!
|
---|
| 250 | \param r : number of rows
|
---|
| 251 | \param c : number of columns
|
---|
| 252 | \param mm : define the memory mapping type
|
---|
| 253 | \param force : if true re-allocation is forced, if not it occurs
|
---|
| 254 | only if the required space is greater than the old one.
|
---|
| 255 | \sa ReSize
|
---|
| 256 | */
|
---|
[762] | 257 | template <class T>
|
---|
[1156] | 258 | void TMatrix<T>::Realloc(sa_size_t r,sa_size_t c, short mm, bool force)
|
---|
[762] | 259 | {
|
---|
[804] | 260 | if(r==0||c==0)
|
---|
| 261 | throw(SzMismatchError("TMatrix::Realloc r or c==0 "));
|
---|
[1099] | 262 | if ((arrtype_ == 2) && (r > 1) && (c > 1))
|
---|
| 263 | throw(SzMismatchError("TMatrix::Realloc r>1&&c>1 for Vector "));
|
---|
[1156] | 264 | sa_size_t size[BASEARRAY_MAXNDIMS];
|
---|
| 265 | for(int_4 kk=0; kk<BASEARRAY_MAXNDIMS; kk++) size[kk] = 0;
|
---|
[813] | 266 | if (mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
| 267 | else if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) )
|
---|
| 268 | mm = GetDefaultMemoryMapping();
|
---|
| 269 | if (mm == CMemoryMapping) {
|
---|
| 270 | size[0] = c; size[1] = r;
|
---|
| 271 | }
|
---|
| 272 | else {
|
---|
| 273 | size[0] = r; size[1] = c;
|
---|
| 274 | }
|
---|
[804] | 275 | TArray<T>::Realloc(2, size, 1, force);
|
---|
[813] | 276 | UpdateMemoryMapping(mm);
|
---|
[762] | 277 | }
|
---|
| 278 |
|
---|
[804] | 279 | // $CHECK$ Reza 03/2000 Doit-on declarer cette methode const ?
|
---|
[894] | 280 | //! Return a submatrix define by \b Range \b rline and \b rcol
|
---|
[762] | 281 | template <class T>
|
---|
[813] | 282 | TMatrix<T> TMatrix<T>::SubMatrix(Range rline, Range rcol) const
|
---|
[762] | 283 | {
|
---|
[2915] | 284 | Range rx=Range::first();
|
---|
| 285 | Range ry=Range::first();
|
---|
[813] | 286 | short mm = GetMemoryMapping();
|
---|
| 287 | if (mm == CMemoryMapping) { rx = rcol; ry = rline; }
|
---|
| 288 | else { ry = rcol; rx = rline; }
|
---|
[2917] | 289 | TMatrix sm(SubArray(rx, ry, Range::first(), Range::first(), Range::first(), false), true);
|
---|
[813] | 290 | sm.UpdateMemoryMapping(mm);
|
---|
| 291 | return(sm);
|
---|
[762] | 292 | }
|
---|
| 293 |
|
---|
[804] | 294 | ////////////////////////////////////////////////////////////////
|
---|
| 295 | // Transposition
|
---|
[1412] | 296 | //! Transpose matrix in place, by changing the memory mapping
|
---|
[762] | 297 | template <class T>
|
---|
[1412] | 298 | TMatrix<T>& TMatrix<T>::TransposeSelf()
|
---|
[804] | 299 | {
|
---|
[813] | 300 | short vt = (marowi_ == veceli_) ? ColumnVector : RowVector;
|
---|
[1156] | 301 | int_4 rci = macoli_;
|
---|
[804] | 302 | macoli_ = marowi_;
|
---|
| 303 | marowi_ = rci;
|
---|
[813] | 304 | veceli_ = (vt == ColumnVector ) ? marowi_ : macoli_;
|
---|
[804] | 305 | return(*this);
|
---|
[762] | 306 | }
|
---|
| 307 |
|
---|
| 308 |
|
---|
[1412] | 309 | //! Returns the transpose of the original matrix.
|
---|
[894] | 310 | /*!
|
---|
[1412] | 311 | The data is shared between the two matrices
|
---|
| 312 | \return return a new matrix
|
---|
| 313 | */
|
---|
| 314 | template <class T>
|
---|
[2421] | 315 | TMatrix<T> TMatrix<T>::Transpose() const
|
---|
[1412] | 316 | {
|
---|
| 317 | TMatrix<T> tm(*this);
|
---|
| 318 | tm.TransposeSelf();
|
---|
| 319 | return tm;
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | //! Returns a new matrix, corresponding to the transpose of the original matrix
|
---|
| 323 | /*!
|
---|
[894] | 324 | \param mm : define the memory mapping type
|
---|
| 325 | (SameMemoryMapping,CMemoryMapping,FortranMemoryMapping)
|
---|
| 326 | \return return a new matrix
|
---|
| 327 | */
|
---|
[762] | 328 | template <class T>
|
---|
[2421] | 329 | TMatrix<T> TMatrix<T>::Transpose(short mm) const
|
---|
[762] | 330 | {
|
---|
[804] | 331 | if (mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
| 332 | TMatrix<T> tm(NCols(), NRows(), mm);
|
---|
[1156] | 333 | for(sa_size_t i=0; i<NRows(); i++)
|
---|
| 334 | for(sa_size_t j=0; j<NCols(); j++)
|
---|
[804] | 335 | tm(j,i) = (*this)(i,j);
|
---|
| 336 | return tm;
|
---|
[762] | 337 | }
|
---|
| 338 |
|
---|
[1412] | 339 | //! Rearrange data in memory according to \b mm
|
---|
[894] | 340 | /*!
|
---|
| 341 | \param mm : define the memory mapping type
|
---|
| 342 | (SameMemoryMapping,CMemoryMapping,FortranMemoryMapping)
|
---|
| 343 | \warning If identical, return a matrix that share the datas
|
---|
| 344 | */
|
---|
[762] | 345 | template <class T>
|
---|
[2421] | 346 | TMatrix<T> TMatrix<T>::Rearrange(short mm) const
|
---|
[762] | 347 | {
|
---|
[813] | 348 | if ( mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
| 349 | else if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) )
|
---|
| 350 | mm = GetDefaultMemoryMapping();
|
---|
| 351 |
|
---|
| 352 | if (mm == GetMemoryMapping())
|
---|
| 353 | return (TMatrix<T>(*this, true));
|
---|
| 354 |
|
---|
[804] | 355 | TMatrix<T> tm(NRows(), NCols(), mm);
|
---|
[1156] | 356 | for(sa_size_t i=0; i<NRows(); i++)
|
---|
| 357 | for(sa_size_t j=0; j<NCols(); j++)
|
---|
[804] | 358 | tm(i,j) = (*this)(i,j);
|
---|
| 359 | return tm;
|
---|
[762] | 360 | }
|
---|
| 361 |
|
---|
[894] | 362 | //! Set the matrix to the identity matrix \b imx
|
---|
[762] | 363 | template <class T>
|
---|
[804] | 364 | TMatrix<T>& TMatrix<T>::SetIdentity(IdentityMatrix imx)
|
---|
[762] | 365 | {
|
---|
[804] | 366 | if (ndim_ == 0) {
|
---|
[1156] | 367 | sa_size_t sz = imx.Size();
|
---|
[804] | 368 | if (sz < 1) sz = 1;
|
---|
| 369 | ReSize(sz, sz);
|
---|
| 370 | }
|
---|
| 371 | T diag = (T)imx.Diag();
|
---|
| 372 | if (NRows() != NCols())
|
---|
| 373 | throw SzMismatchError("TMatrix::operator= (IdentityMatrix) NRows() != NCols()") ;
|
---|
[996] | 374 | *this = (T) 0;
|
---|
[1156] | 375 | for(sa_size_t i=0; i<NRows(); i++) (*this)(i,i) = diag;
|
---|
[762] | 376 |
|
---|
[804] | 377 | return (*this);
|
---|
[762] | 378 | }
|
---|
| 379 |
|
---|
[804] | 380 |
|
---|
| 381 |
|
---|
| 382 | ////////////////////////////////////////////////////////////////
|
---|
| 383 | //**** Impression
|
---|
[894] | 384 | //! Return info on number of rows, column and type \b T
|
---|
[762] | 385 | template <class T>
|
---|
[813] | 386 | string TMatrix<T>::InfoString() const
|
---|
| 387 | {
|
---|
| 388 | string rs = "TMatrix<";
|
---|
| 389 | rs += typeid(T).name();
|
---|
| 390 | char buff[64];
|
---|
| 391 | sprintf(buff, ">(NRows=%ld, NCols=%ld)", (long)NRows(), (long)NCols());
|
---|
| 392 | rs += buff;
|
---|
| 393 | return(rs);
|
---|
| 394 | }
|
---|
| 395 |
|
---|
[894] | 396 | //! Print matrix
|
---|
| 397 | /*!
|
---|
[1554] | 398 | \param os : output stream
|
---|
[894] | 399 | \param maxprt : maximum numer of print
|
---|
| 400 | \param si : if true, display attached DvList
|
---|
[1554] | 401 | \param ascd : if true, suppresses the display of line numbers,
|
---|
| 402 | suitable for ascii dump format.
|
---|
[894] | 403 | \sa SetMaxPrint
|
---|
| 404 | */
|
---|
[813] | 405 | template <class T>
|
---|
[1581] | 406 | void TMatrix<T>::Print(ostream& os, sa_size_t maxprt, bool si, bool ascd) const
|
---|
[762] | 407 | {
|
---|
[804] | 408 | if (maxprt < 0) maxprt = max_nprt_;
|
---|
[1156] | 409 | sa_size_t npr = 0;
|
---|
[2752] | 410 |
|
---|
| 411 | // keep stream's io flags
|
---|
[2756] | 412 | // ios_base::fmtflags ioflg = os.flags(); compil pas sur OSF-cxx
|
---|
| 413 | // os << right ; compile pas sur OSF-cxx
|
---|
[2752] | 414 |
|
---|
[804] | 415 | Show(os, si);
|
---|
[850] | 416 | if (ndim_ < 1) return;
|
---|
[2752] | 417 | // Calcul de la largeur d'impression pour chaque element
|
---|
| 418 | int fprtw = os.precision()+7;
|
---|
| 419 | int prtw = 5;
|
---|
| 420 |
|
---|
| 421 | if ( (typeid(T) == typeid( int_4 )) || (typeid(T) == typeid( uint_4 )) ) prtw = 8;
|
---|
| 422 | else if ( (typeid(T) == typeid( int_8 )) || (typeid(T) == typeid( uint_8 )) ) prtw = 11;
|
---|
| 423 | else if ( typeid(T) == typeid( r_4 ) ) prtw = fprtw;
|
---|
| 424 | else if ( typeid(T) == typeid( r_8 ) ) prtw = fprtw;
|
---|
| 425 | else if ( typeid(T) == typeid(complex<r_4>) ) prtw = fprtw;
|
---|
| 426 | else if ( typeid(T) == typeid(complex<r_8>) ) prtw = fprtw;
|
---|
| 427 |
|
---|
[1156] | 428 | sa_size_t kc,kr;
|
---|
[804] | 429 | for(kr=0; kr<size_[marowi_]; kr++) {
|
---|
[2788] | 430 | if ( (size_[marowi_] > 1) && (size_[macoli_] > 10) && !ascd)
|
---|
| 431 | os << "----- Line= " << kr << endl;
|
---|
[804] | 432 | for(kc=0; kc<size_[macoli_]; kc++) {
|
---|
[1554] | 433 | if(kc > 0) os << " ";
|
---|
[2752] | 434 | os << setw(prtw) << (*this)(kr, kc); npr++;
|
---|
[1156] | 435 | if (npr >= (sa_size_t) maxprt) {
|
---|
[804] | 436 | if (npr < totsize_) os << "\n .... " << endl; return;
|
---|
| 437 | }
|
---|
| 438 | }
|
---|
| 439 | os << endl;
|
---|
| 440 | }
|
---|
[813] | 441 | os << endl;
|
---|
[2756] | 442 | //compile pas sur OSF-cxx os.flags(ioflg); // reset stream io flags
|
---|
[762] | 443 | }
|
---|
| 444 |
|
---|
[2585] | 445 | //////////////////////////////////////////////////////////
|
---|
| 446 | /////////////// Multiplication matricielle ///////////////
|
---|
| 447 | //////////////////////////////////////////////////////////
|
---|
[762] | 448 |
|
---|
[894] | 449 | //! Return the matrix product C = (*this)*B
|
---|
| 450 | /*!
|
---|
| 451 | \param mm : define the memory mapping type for the return matrix
|
---|
| 452 | */
|
---|
[2574] | 453 | ////////////// Routine de base sans optimisation //////////////
|
---|
| 454 | /*
|
---|
[804] | 455 | template <class T>
|
---|
| 456 | TMatrix<T> TMatrix<T>::Multiply(const TMatrix<T>& b, short mm) const
|
---|
| 457 | {
|
---|
| 458 | if (NCols() != b.NRows())
|
---|
| 459 | throw(SzMismatchError("TMatrix<T>::Multiply(b) NCols() != b.NRows() ") );
|
---|
| 460 | if (mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
| 461 | TMatrix<T> rm(NRows(), b.NCols(), mm);
|
---|
[762] | 462 |
|
---|
[804] | 463 | const T * pea;
|
---|
| 464 | const T * peb;
|
---|
| 465 | T sum;
|
---|
[1156] | 466 | sa_size_t r,c,k;
|
---|
| 467 | sa_size_t stepa = Step(ColsKA());
|
---|
[1415] | 468 | sa_size_t stepb = b.Step(b.RowsKA());
|
---|
[804] | 469 | // Calcul de C=rm = A*B (A=*this)
|
---|
| 470 | for(r=0; r<rm.NRows(); r++) // Boucle sur les lignes de A
|
---|
| 471 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 472 | sum = 0;
|
---|
| 473 | pea = &((*this)(r,0)); // 1er element de la ligne r de A
|
---|
| 474 | peb = &(b(0,c)); // 1er element de la colonne c de B
|
---|
| 475 | for(k=0; k<NCols(); k++) sum += pea[k*stepa]*peb[k*stepb];
|
---|
| 476 | rm(r,c) = sum;
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | return rm;
|
---|
| 480 | }
|
---|
[2574] | 481 | */
|
---|
[804] | 482 |
|
---|
[2574] | 483 | ////////////// Routine optimisee //////////////
|
---|
| 484 | template <class T>
|
---|
| 485 | TMatrix<T> TMatrix<T>::Multiply(const TMatrix<T>& b, short mm) const
|
---|
[2583] | 486 | // Calcul de C= rm = A*B (A=*this)
|
---|
| 487 | // Remember: C-like matrices are column packed
|
---|
| 488 | // Fortan-like matrices are line packed
|
---|
[2574] | 489 | {
|
---|
| 490 | if (NCols() != b.NRows())
|
---|
| 491 | throw(SzMismatchError("TMatrix<T>::Multiply(b) NCols() != b.NRows() ") );
|
---|
| 492 |
|
---|
[2583] | 493 | // Commentaire: pas de difference de vitesse notable selon le mapping de la matrice produit "rm"
|
---|
[2585] | 494 | if (mm == SameMemoryMapping) mm = GetMemoryMapping();
|
---|
[2574] | 495 | TMatrix<T> rm(NRows(), b.NCols(), mm);
|
---|
| 496 |
|
---|
| 497 | // Les "steps" pour l'adressage des colonnes de A et des lignes de B
|
---|
| 498 | sa_size_t stepa = Step(ColsKA());
|
---|
| 499 | sa_size_t stepb = b.Step(b.RowsKA());
|
---|
| 500 |
|
---|
[2583] | 501 | // Taille totale des matrices A et B
|
---|
| 502 | size_t totsiza = this->DataBlock().Size();
|
---|
| 503 | size_t totsizb = b.DataBlock().Size();
|
---|
[2574] | 504 |
|
---|
[2583] | 505 |
|
---|
| 506 | ///////////////////////////////////////////////////////////////////
|
---|
| 507 | // On decide si on optimise ou non selon les dimensions de A et B //
|
---|
| 508 | // (il semble que optimiser ou non ne degrade pas //
|
---|
| 509 | // beaucoup la vitesse pour les petites matrices) //
|
---|
| 510 | ////////////////////////////////////////////////////////////////////
|
---|
| 511 |
|
---|
| 512 | uint_2 popt = GetMatProdOpt();
|
---|
| 513 | bool no_optim = false; // optimization demandee par default
|
---|
| 514 | if( (popt&(uint_2)1) == 0 ) { // pas d'optimization explicitement demande
|
---|
| 515 | no_optim = true;
|
---|
| 516 | } else if( (popt&(uint_2)2) == 0 ) { // pas d'optimization forcee, la methode decide
|
---|
| 517 | // On part sur une disponibilite dans le cache processeur de 100 ko
|
---|
| 518 | // (A et B peuvent etre stoquees dans le cache)
|
---|
| 519 | if((totsiza+totsizb)*sizeof(T)<100000) no_optim = true;
|
---|
| 520 | }
|
---|
| 521 |
|
---|
[2574] | 522 | sa_size_t r,c,k;
|
---|
| 523 | T sum;
|
---|
| 524 | const T * pe;
|
---|
| 525 |
|
---|
[2583] | 526 |
|
---|
| 527 | /////////////////////////////////
|
---|
| 528 | // Pas d'optimisation demandee //
|
---|
| 529 | /////////////////////////////////
|
---|
| 530 |
|
---|
[2574] | 531 | if( no_optim ) {
|
---|
| 532 | //cout<<"no_optim("<<no_optim<<") "<<stepa<<" "<<stepb<<endl;
|
---|
| 533 | const T * pea;
|
---|
| 534 | const T * peb;
|
---|
| 535 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 536 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 537 | sum = 0;
|
---|
| 538 | pea = &((*this)(r,0));
|
---|
| 539 | peb = &(b(0,c));
|
---|
| 540 | // On gagne un peu en remplacant "pea[k*stepa]" par "pea+=stepa" pour les grosses matrices
|
---|
| 541 | //for(k=0; k<NCols(); k++) sum += pea[k*stepa]*peb[k*stepb];
|
---|
| 542 | for(k=0; k<NCols(); k++) {sum += (*pea)*(*peb); pea+=stepa; peb+=stepb;}
|
---|
| 543 | rm(r,c) = sum;
|
---|
| 544 | }
|
---|
| 545 | }
|
---|
[2583] | 546 | return rm;
|
---|
[2574] | 547 | }
|
---|
[2583] | 548 |
|
---|
| 549 |
|
---|
| 550 | //////////////////////////////////////////////////////////////////////////////////
|
---|
| 551 | // A.col est packed et B.row est packed (on a interet a optimiser quand meme) //
|
---|
| 552 | //////////////////////////////////////////////////////////////////////////////////
|
---|
| 553 |
|
---|
| 554 | if(stepa==1 && stepb==1) {
|
---|
[2585] | 555 | //cout<<"A.col packed && B.row packed "<<stepa<<" "<<stepb<<endl;
|
---|
| 556 | T * pea = new T[NCols()];
|
---|
[2574] | 557 | const T * peb;
|
---|
| 558 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 559 | pe = &((*this)(r,0));
|
---|
| 560 | for(k=0; k<NCols(); k++) {pea[k] = *(pe++);}
|
---|
| 561 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 562 | sum = 0;
|
---|
| 563 | peb = &(b(0,c));
|
---|
| 564 | for(k=0; k<NCols(); k++) sum += *(peb++)*pea[k];
|
---|
| 565 | rm(r,c) = sum;
|
---|
| 566 | }
|
---|
| 567 | }
|
---|
| 568 | delete [] pea;
|
---|
[2583] | 569 | return rm;
|
---|
| 570 | }
|
---|
| 571 |
|
---|
| 572 |
|
---|
| 573 | //////////////////////////////////////////////////
|
---|
| 574 | // A.col est packed et B.row n'est pas packed //
|
---|
| 575 | //////////////////////////////////////////////////
|
---|
| 576 |
|
---|
| 577 | if(stepa==1 && stepb!=1) {
|
---|
[2574] | 578 | //cout<<"A.col packed && B.row not packed "<<stepa<<" "<<stepb<<endl;
|
---|
| 579 | const T * pea;
|
---|
[2585] | 580 | T * peb = new T[NCols()];
|
---|
[2574] | 581 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 582 | pe = &(b(0,c));
|
---|
| 583 | for(k=0; k<NCols(); k++) {peb[k] = *pe; pe+=stepb;}
|
---|
| 584 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 585 | sum = 0;
|
---|
| 586 | pea = &((*this)(r,0));
|
---|
| 587 | for(k=0; k<NCols(); k++) sum += pea[k]*peb[k];
|
---|
| 588 | rm(r,c) = sum;
|
---|
| 589 | }
|
---|
| 590 | }
|
---|
| 591 | delete [] peb;
|
---|
[2583] | 592 | return rm;
|
---|
[2574] | 593 | }
|
---|
[2583] | 594 |
|
---|
| 595 |
|
---|
| 596 | //////////////////////////////////////////////////
|
---|
| 597 | // A.col n'est pas packed et B.row est packed //
|
---|
| 598 | //////////////////////////////////////////////////
|
---|
| 599 |
|
---|
| 600 | if(stepa!=1 && stepb==1) {
|
---|
[2574] | 601 | //cout<<"A.col not packed && B.row packed "<<stepa<<" "<<stepb<<endl;
|
---|
[2585] | 602 | T * pea = new T[NCols()];
|
---|
[2574] | 603 | const T * peb;
|
---|
| 604 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 605 | pe = &((*this)(r,0));
|
---|
| 606 | for(k=0; k<NCols(); k++) {pea[k] = *pe; pe+=stepa;}
|
---|
| 607 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 608 | sum = 0;
|
---|
| 609 | peb = &(b(0,c));
|
---|
| 610 | for(k=0; k<NCols(); k++) sum += pea[k]*peb[k];
|
---|
| 611 | rm(r,c) = sum;
|
---|
| 612 | }
|
---|
| 613 | }
|
---|
| 614 | delete [] pea;
|
---|
[2583] | 615 | return rm;
|
---|
[2574] | 616 | }
|
---|
[2583] | 617 |
|
---|
| 618 |
|
---|
| 619 | ////////////////////////////////////////////////////////
|
---|
| 620 | // A.col n'est pas packed et B.row n'est pas packed //
|
---|
| 621 | ////////////////////////////////////////////////////////
|
---|
| 622 |
|
---|
| 623 | //---- On demande l'optimization par copie d'une des matrices
|
---|
| 624 |
|
---|
| 625 | if( (popt&(uint_2)4) ) {
|
---|
| 626 | // On copie la plus petite
|
---|
| 627 | if(totsiza<totsizb) { // on copie A
|
---|
| 628 | //cout<<"A.col not packed && B.row not packed ==> copy A to optimize "<<stepa<<" "<<stepb<<endl;
|
---|
| 629 | // Acopy doit etre C-like pour etre column-packed
|
---|
| 630 | TMatrix<T> acopy(NRows(),NCols(),BaseArray::CMemoryMapping);
|
---|
| 631 | acopy = *this;
|
---|
| 632 | rm = acopy.Multiply(b,mm);
|
---|
| 633 | } else { // on copie B
|
---|
| 634 | //cout<<"A.col not packed && B.row not packed ==> copy B to optimize "<<stepa<<" "<<stepb<<endl;
|
---|
| 635 | // Bcopy doit etre Fortran-like pour etre column-packed
|
---|
| 636 | TMatrix<T> bcopy(b.NRows(),b.NCols(),BaseArray::FortranMemoryMapping);
|
---|
| 637 | bcopy = b;
|
---|
| 638 | rm = Multiply(bcopy,mm);
|
---|
| 639 | }
|
---|
| 640 | return rm;
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | //---- stepb>stepa
|
---|
| 644 |
|
---|
| 645 | if(stepa!=1 && stepb!=1 && stepb>stepa) {
|
---|
[2574] | 646 | //cout<<"A.col not packed && B.row not packed ==> optimize on B "<<stepa<<" "<<stepb<<endl;
|
---|
| 647 | const T * pea;
|
---|
[2585] | 648 | T * peb = new T[NCols()];
|
---|
[2574] | 649 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 650 | pe = &(b(0,c));
|
---|
| 651 | for(k=0; k<NCols(); k++) {peb[k] = *pe; pe+=stepb;}
|
---|
| 652 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 653 | sum = 0;
|
---|
| 654 | pea = &((*this)(r,0));
|
---|
| 655 | for(k=0; k<NCols(); k++) {sum += (*pea)*peb[k]; pea+=stepa;}
|
---|
| 656 | rm(r,c) = sum;
|
---|
| 657 | }
|
---|
| 658 | }
|
---|
| 659 | delete [] peb;
|
---|
[2583] | 660 | return rm;
|
---|
[2574] | 661 | }
|
---|
[2583] | 662 |
|
---|
| 663 | //---- stepa>=stepb
|
---|
| 664 |
|
---|
| 665 | if(stepa!=1 && stepb!=1) {
|
---|
[2574] | 666 | //cout<<"A.col not packed && B.row not packed ==> optimize on A "<<stepa<<" "<<stepb<<endl;
|
---|
[2585] | 667 | T * pea = new T[NCols()];
|
---|
[2574] | 668 | const T * peb;
|
---|
| 669 | for(r=0; r<rm.NRows(); r++) { // Boucle sur les lignes de A
|
---|
| 670 | pe = &((*this)(r,0));
|
---|
| 671 | for(k=0; k<NCols(); k++) {pea[k] = *pe; pe+=stepa;}
|
---|
| 672 | for(c=0; c<rm.NCols(); c++) { // Boucle sur les colonnes de B
|
---|
| 673 | sum = 0;
|
---|
| 674 | peb = &(b(0,c));
|
---|
| 675 | for(k=0; k<NCols(); k++) {sum += pea[k]*(*peb); peb+=stepb;}
|
---|
| 676 | rm(r,c) = sum;
|
---|
| 677 | }
|
---|
| 678 | }
|
---|
| 679 | delete [] pea;
|
---|
[2583] | 680 | return rm;
|
---|
[2574] | 681 | }
|
---|
| 682 |
|
---|
[2583] | 683 |
|
---|
| 684 | //////////////////////////////////////////////////
|
---|
| 685 | // Cas non prevu, on ne doit JAMAIS arriver ici //
|
---|
| 686 | //////////////////////////////////////////////////
|
---|
| 687 | cout<<"TMatrix<T>::Multiply(b) Optimize case not treated... Please report BUG !!! "<<endl;
|
---|
| 688 | throw(SzMismatchError("TMatrix<T>::Multiply(b) Optimize case not treated... Please report BUG !!! ") );
|
---|
[2574] | 689 | return rm;
|
---|
[2585] | 690 |
|
---|
[2574] | 691 | }
|
---|
| 692 |
|
---|
[2585] | 693 |
|
---|
[762] | 694 | ///////////////////////////////////////////////////////////////
|
---|
| 695 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
[3661] | 696 | #pragma define_template TMatrix<uint_1>
|
---|
[762] | 697 | #pragma define_template TMatrix<uint_2>
|
---|
[2927] | 698 | #pragma define_template TMatrix<uint_4>
|
---|
[1543] | 699 | #pragma define_template TMatrix<uint_8>
|
---|
[3661] | 700 | #pragma define_template TMatrix<int_1>
|
---|
[2927] | 701 | #pragma define_template TMatrix<int_2>
|
---|
[762] | 702 | #pragma define_template TMatrix<int_4>
|
---|
| 703 | #pragma define_template TMatrix<int_8>
|
---|
| 704 | #pragma define_template TMatrix<r_4>
|
---|
[804] | 705 | #pragma define_template TMatrix<r_8>
|
---|
[762] | 706 | #pragma define_template TMatrix< complex<r_4> >
|
---|
| 707 | #pragma define_template TMatrix< complex<r_8> >
|
---|
[3751] | 708 | #ifdef SO_LDBLE128
|
---|
| 709 | #pragma define_template TMatrix<r_16>
|
---|
| 710 | #pragma define_template TMatrix< complex<r_16> >
|
---|
[762] | 711 | #endif
|
---|
[3751] | 712 | #endif
|
---|
[762] | 713 |
|
---|
| 714 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
[3661] | 715 | template class TMatrix<uint_1>;
|
---|
[762] | 716 | template class TMatrix<uint_2>;
|
---|
[2927] | 717 | template class TMatrix<uint_4>;
|
---|
[1543] | 718 | template class TMatrix<uint_8>;
|
---|
[3661] | 719 | template class TMatrix<int_1>;
|
---|
[2927] | 720 | template class TMatrix<int_2>;
|
---|
[762] | 721 | template class TMatrix<int_4>;
|
---|
| 722 | template class TMatrix<int_8>;
|
---|
| 723 | template class TMatrix<r_4>;
|
---|
| 724 | template class TMatrix<r_8>;
|
---|
| 725 | template class TMatrix< complex<r_4> >;
|
---|
| 726 | template class TMatrix< complex<r_8> >;
|
---|
[3751] | 727 | #ifdef SO_LDBLE128
|
---|
| 728 | template class TMatrix<r_16>;
|
---|
| 729 | template class TMatrix< complex<r_16> >;
|
---|
[762] | 730 | #endif
|
---|
[3751] | 731 | #endif
|
---|
| 732 |
|
---|
| 733 | } // FIN namespace SOPHYA
|
---|