1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
2 | // C.Magneville 04/99
|
---|
3 | #ifndef TMatrix_SEEN
|
---|
4 | #define TMatrix_SEEN
|
---|
5 |
|
---|
6 | #include "machdefs.h"
|
---|
7 | #include "tarray.h"
|
---|
8 |
|
---|
9 | namespace SOPHYA {
|
---|
10 |
|
---|
11 | //! Class of matrices
|
---|
12 | template <class T>
|
---|
13 | class TMatrix : public TArray<T> {
|
---|
14 | public:
|
---|
15 | // Creation / destruction
|
---|
16 | TMatrix();
|
---|
17 | TMatrix(uint_4 r,uint_4 c, short mm=AutoMemoryMapping);
|
---|
18 | TMatrix(const TMatrix<T>& a);
|
---|
19 | TMatrix(const TMatrix<T>& a, bool share);
|
---|
20 | TMatrix(const TArray<T>& a);
|
---|
21 | TMatrix(const TArray<T>& a, bool share, short mm=AutoMemoryMapping);
|
---|
22 | virtual ~TMatrix();
|
---|
23 |
|
---|
24 | // Pour verifiez la compatibilite de dimensions lors de l'affectation
|
---|
25 | virtual TArray<T>& Set(const TArray<T>& a);
|
---|
26 | //! Operator = between matrices
|
---|
27 | /*! \sa NDataBlock::operator=(const NDataBlock<T>&) */
|
---|
28 | inline TMatrix<T>& operator = (const TMatrix<T>& a)
|
---|
29 | { Set(a); return(*this); }
|
---|
30 |
|
---|
31 | // Size - Changing the Size
|
---|
32 | //! return number of rows
|
---|
33 | inline uint_4 NRows() const {return Size(marowi_); }
|
---|
34 | //! return number of columns
|
---|
35 | inline uint_4 NCols() const {return Size(macoli_); }
|
---|
36 | //! return number of columns
|
---|
37 | inline uint_4 NCol() const {return Size(macoli_); } // back-compat Peida
|
---|
38 |
|
---|
39 | void ReSize(uint_4 r,uint_4 c, short mm=SameMemoryMapping); // Reallocation de place
|
---|
40 | void Realloc(uint_4 r,uint_4 c, short mm=SameMemoryMapping, bool force=false);
|
---|
41 |
|
---|
42 | // Sub-matrix extraction $CHECK$ Reza 03/2000 Doit-on declarer ces methode const ?
|
---|
43 | TMatrix<T> SubMatrix(Range rline, Range rcol) const ;
|
---|
44 | //! () : Return submatrix define by \b Range \b rline and \b rcol
|
---|
45 | inline TMatrix<T> operator () (Range rline, Range rcol) const
|
---|
46 | { return SubMatrix(rline, rcol); }
|
---|
47 | // Lignes et colonnes de la matrice
|
---|
48 | //! Return submatrix define by line \b ir (line vector)
|
---|
49 | inline TMatrix<T> Row(uint_4 ir) const
|
---|
50 | { return SubMatrix(Range(ir,ir), Range(0,NCols()-1)); }
|
---|
51 | //! Return submatrix define by column \b ic (column vector)
|
---|
52 | inline TMatrix<T> Column(uint_4 ic) const
|
---|
53 | { return SubMatrix(Range(0,NRows()-1), Range(ic,ic)); }
|
---|
54 |
|
---|
55 | // Inline element acces methods
|
---|
56 | inline T const& operator()(uint_4 r,uint_4 c) const;
|
---|
57 | inline T& operator()(uint_4 r,uint_4 c);
|
---|
58 |
|
---|
59 | // Operations matricielles
|
---|
60 | TMatrix<T>& Transpose();
|
---|
61 | //mm = SameMemoryMapping or CMemoryMapping or FortranMemoryMapping
|
---|
62 | TMatrix<T> Transpose(short mm);
|
---|
63 | // Rearranging Matrix Elements
|
---|
64 | TMatrix<T> Rearrange(short mm);
|
---|
65 |
|
---|
66 | // Operateur d'affectation
|
---|
67 | // A = x (matrice diagonale Identite)
|
---|
68 | virtual TMatrix<T>& SetIdentity(IdentityMatrix imx);
|
---|
69 | // = : fill matrix with an identity matrix \b imx
|
---|
70 | inline TMatrix<T>& operator = (IdentityMatrix imx) { return SetIdentity(imx); }
|
---|
71 |
|
---|
72 | // = : fill matrix with a Sequence \b seq
|
---|
73 | inline TMatrix<T>& operator = (Sequence seq) { SetSeq(seq); return(*this); }
|
---|
74 |
|
---|
75 | // Operations diverses avec une constante
|
---|
76 | //! = : fill matrix with constant value \b x
|
---|
77 | inline TMatrix<T>& operator = (T x) { SetT(x); return(*this); }
|
---|
78 | //! += : add constant value \b x to matrix
|
---|
79 | inline TMatrix<T>& operator += (T x) { Add(x); return(*this); }
|
---|
80 | //! -= : substract constant value \b x to matrix
|
---|
81 | inline TMatrix<T>& operator -= (T x) { Sub(x); return(*this); }
|
---|
82 | //! *= : multiply matrix by constant value \b x
|
---|
83 | inline TMatrix<T>& operator *= (T x) { Mul(x); return(*this); }
|
---|
84 | //! /= : divide matrix by constant value \b x
|
---|
85 | inline TMatrix<T>& operator /= (T x) { Div(x); return(*this); }
|
---|
86 |
|
---|
87 | // operations avec matrices
|
---|
88 | //! += : add a matrix
|
---|
89 | inline TMatrix<T>& operator += (const TMatrix<T>& a) { AddElt(a); return(*this); }
|
---|
90 | //! -= : substract a matrix
|
---|
91 | inline TMatrix<T>& operator -= (const TMatrix<T>& a) { SubElt(a); return(*this); }
|
---|
92 | TMatrix<T> Multiply(const TMatrix<T>& b, short mm=SameMemoryMapping) const;
|
---|
93 | //! *= : matrix product : C = (*this)*B
|
---|
94 | inline TMatrix<T>& operator *= (const TMatrix<T>& b)
|
---|
95 | { this->Set(Multiply(b)); return(*this); }
|
---|
96 |
|
---|
97 | // I/O print, ...
|
---|
98 | virtual string InfoString() const;
|
---|
99 | virtual void Print(ostream& os, int_4 maxprt=-1, bool si=false) const ;
|
---|
100 |
|
---|
101 | protected:
|
---|
102 | };
|
---|
103 |
|
---|
104 | // ---- inline acces methods ------
|
---|
105 | //! () : return element for line \b r and column \b c
|
---|
106 | template <class T>
|
---|
107 | inline T const& TMatrix<T>::operator()(uint_4 r, uint_4 c) const
|
---|
108 | {
|
---|
109 | #ifdef SO_BOUNDCHECKING
|
---|
110 | if (marowi_ == 0) CheckBound(r, c, 0, 0, 0, 4);
|
---|
111 | else CheckBound(c, r, 0, 0, 0, 4);
|
---|
112 | #endif
|
---|
113 | return ( *( mNDBlock.Begin()+ offset_+
|
---|
114 | r*step_[marowi_] + c*step_[macoli_] ) );
|
---|
115 | }
|
---|
116 |
|
---|
117 | //! () : return element for line \b r and column \b c
|
---|
118 | template <class T>
|
---|
119 | inline T & TMatrix<T>::operator()(uint_4 r, uint_4 c)
|
---|
120 | {
|
---|
121 | #ifdef SO_BOUNDCHECKING
|
---|
122 | if (marowi_ == 0) CheckBound(r, c, 0, 0, 0, 4);
|
---|
123 | else CheckBound(c, r, 0, 0, 0, 4);
|
---|
124 | #endif
|
---|
125 | return ( *( mNDBlock.Begin()+ offset_+
|
---|
126 | r*step_[marowi_] + c*step_[macoli_] ) );
|
---|
127 | }
|
---|
128 |
|
---|
129 | // Surcharge d'operateurs C = A (+,-) B
|
---|
130 | // $CHECK$ Reza 3/4/2000 Pas necessaire de redefinir les operateurs
|
---|
131 | // Defini au niveau de TArray<T> - Pour ameliorer l'efficacite
|
---|
132 | // Doit-on le faire aussi pour les constantes ? - Fin de $CHECK$ Reza 3/4/2000
|
---|
133 |
|
---|
134 | /*! \ingroup TArray \fn operator+(const TMatrix<T>&,const TMatrix<T>&)
|
---|
135 | \brief + : add matrixes \b a and \b b */
|
---|
136 | template <class T>
|
---|
137 | inline TMatrix<T> operator + (const TMatrix<T>& a,const TMatrix<T>& b)
|
---|
138 | {TMatrix<T> result(a); result.SetTemp(true); result.AddElt(b); return result;}
|
---|
139 |
|
---|
140 | /*! \ingroup TArray \fn operator-(const TMatrix<T>&,const TMatrix<T>&)
|
---|
141 | \brief \- : substract matrixes \b a and \b b */
|
---|
142 | template <class T>
|
---|
143 | inline TMatrix<T> operator - (const TMatrix<T>& a,const TMatrix<T>& b)
|
---|
144 | {TMatrix<T> result(a); result.SetTemp(true); result.SubElt(b); return result;}
|
---|
145 |
|
---|
146 | // Surcharge d'operateurs C = A * B
|
---|
147 | /*! \ingroup TArray \fn operator*(const TMatrix<T>&,const TMatrix<T>&)
|
---|
148 | \brief * : multiply matrixes \b a and \b b */
|
---|
149 | template <class T> inline TMatrix<T> operator * (const TMatrix<T>& a, const TMatrix<T>& b)
|
---|
150 | { TMatrix<T> result(a); result.SetTemp(true); return(result.Multiply(b)); }
|
---|
151 |
|
---|
152 | // Typedef pour simplifier et compatibilite Peida
|
---|
153 | /*! \ingroup TArray
|
---|
154 | \typedef Matrix
|
---|
155 | \brief To simplified TMatrix<r_8> writing
|
---|
156 | */
|
---|
157 | typedef TMatrix<r_8> Matrix;
|
---|
158 |
|
---|
159 | } // Fin du namespace
|
---|
160 |
|
---|
161 | #endif
|
---|