1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
2 |
|
---|
3 | #ifndef TRIANGMTX_H_SEEN
|
---|
4 | #define TRIANGMTX_H_SEEN
|
---|
5 |
|
---|
6 | #include "ndatablock.h"
|
---|
7 | #include "pexceptions.h"
|
---|
8 |
|
---|
9 | // doit etre mis en dehors du namespace
|
---|
10 | /*!
|
---|
11 | \class SOPHYA::TriangularMatrix
|
---|
12 | \ingroup TArray
|
---|
13 | \brief Class for inferior triangular matrix (base class for the class Alm)
|
---|
14 | The inferior triangular matrix is represented in memory as column packed,
|
---|
15 | as illustrated below for a 5x5 triangular matrix.
|
---|
16 | \verbatim
|
---|
17 | 5x5 Inf.Triang.Matrix, Size= 15 elements (0 ... 14)
|
---|
18 | | 0 |
|
---|
19 | | 1 5 |
|
---|
20 | | 2 6 9 |
|
---|
21 | | 3 7 10 12 |
|
---|
22 | | 4 8 11 13 14 |
|
---|
23 | \endverbatim
|
---|
24 | */
|
---|
25 |
|
---|
26 | namespace SOPHYA {
|
---|
27 |
|
---|
28 | //! Class for inferior triangular matrix (base class for the class Alm)
|
---|
29 | template <class T>
|
---|
30 | class TriangularMatrix {
|
---|
31 | public :
|
---|
32 |
|
---|
33 | //! Default constructor
|
---|
34 | TriangularMatrix() {;};
|
---|
35 | //! instanciate a triangular matrix from the number of rows
|
---|
36 | TriangularMatrix(sa_size_t rowSize) : long_diag_(rowSize)
|
---|
37 | {
|
---|
38 | elem_.ReSize((rowSize*(rowSize+1)/2) );
|
---|
39 | }
|
---|
40 | //! Copy constructor (possibility of sharing datas)
|
---|
41 | TriangularMatrix(const TriangularMatrix<T>& a, bool share=false) : elem_(a.elem_, share), long_diag_(a.long_diag_) {;}
|
---|
42 |
|
---|
43 | //! resize the matrix with a new number of rows
|
---|
44 | inline void ReSizeRow(sa_size_t rowSize)
|
---|
45 | {
|
---|
46 | long_diag_=(uint_4)rowSize;
|
---|
47 | elem_.ReSize(long_diag_*(long_diag_+1)/2);
|
---|
48 | }
|
---|
49 |
|
---|
50 | TriangularMatrix<T>& SetT(T a)
|
---|
51 | {
|
---|
52 | if (long_diag_ < 1)
|
---|
53 | throw RangeCheckError("TriangularMatrix<T>::SetT(T ) - TriangularMatrix not dimensionned ! ");
|
---|
54 | elem_ = a;
|
---|
55 | return (*this);
|
---|
56 | }
|
---|
57 |
|
---|
58 | //! () operator : access to elements row \b l and column \b m
|
---|
59 | inline T& operator()(sa_size_t l, sa_size_t m)
|
---|
60 | {
|
---|
61 | return elem_(indexOfElement(l,m));
|
---|
62 | }
|
---|
63 |
|
---|
64 | inline T& operator()(sa_size_t index)
|
---|
65 | {
|
---|
66 | return elem_(index);
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | //! () operator : access to elements row \b l and column \b m
|
---|
71 | inline T const& operator()(sa_size_t l, sa_size_t m) const
|
---|
72 | {
|
---|
73 | return *(elem_.Begin()+ indexOfElement(l,m));
|
---|
74 | }
|
---|
75 |
|
---|
76 | inline T const& operator()(sa_size_t index) const
|
---|
77 | {
|
---|
78 | return *(elem_.Begin()+ index);
|
---|
79 | }
|
---|
80 |
|
---|
81 | TriangularMatrix<T>& Set(const TriangularMatrix<T>& a)
|
---|
82 | {
|
---|
83 | if (this != &a)
|
---|
84 | {
|
---|
85 | if (a.Size() < 1)
|
---|
86 | throw RangeCheckError(" TriangularMatrix<T>::Set()- Array a not allocated ! ");
|
---|
87 | }
|
---|
88 | if (Size() < 1) CloneOrShare(a);
|
---|
89 | else CopyElt(a);
|
---|
90 | return(*this);
|
---|
91 | }
|
---|
92 |
|
---|
93 | inline TriangularMatrix<T>& operator = (const TriangularMatrix<T>& a)
|
---|
94 | {return Set(a);}
|
---|
95 |
|
---|
96 | TriangularMatrix<T>& CopyElt(const TriangularMatrix<T>& a)
|
---|
97 | {
|
---|
98 | if (Size() < 1)
|
---|
99 | throw RangeCheckError("TriangularMatrix<T>::CopyElt(const TriangularMatrix<T>& ) - Not Allocated Array ! ");
|
---|
100 | if (Size() != a.Size() )
|
---|
101 | throw(SzMismatchError("TriangularMatrix<T>::CopyElt(const TriangularMatrix<T>&) SizeMismatch")) ;
|
---|
102 | long_diag_ = a.long_diag_;
|
---|
103 | sa_size_t k;
|
---|
104 | for (k=0; k< Size(); k++) elem_(k) = a.elem_(k);
|
---|
105 | return(*this);
|
---|
106 | }
|
---|
107 |
|
---|
108 | void CloneOrShare(const TriangularMatrix<T>& a)
|
---|
109 | {
|
---|
110 | long_diag_ = a.long_diag_;
|
---|
111 | elem_.CloneOrShare(a.elem_);
|
---|
112 | }
|
---|
113 |
|
---|
114 |
|
---|
115 | //! Return number of rows
|
---|
116 | inline sa_size_t rowNumber() const {return (int_4)long_diag_;}
|
---|
117 |
|
---|
118 | //! Return size of the total array
|
---|
119 | inline sa_size_t Size() const {return elem_.Size();}
|
---|
120 |
|
---|
121 | inline bool CheckRelativeIndices(sa_size_t l, sa_size_t m) const
|
---|
122 | {
|
---|
123 | if ( l < m )
|
---|
124 | {
|
---|
125 | throw RangeCheckError("TriangularMatrix<T>::CheckRelativeIndices: indices out of range " );
|
---|
126 | }
|
---|
127 | return true;
|
---|
128 | }
|
---|
129 | inline bool CheckAbsoluteIndice(sa_size_t l, sa_size_t m) const
|
---|
130 | {
|
---|
131 | if ( indexOfElement(l,m) >= elem_.Size() )
|
---|
132 | {
|
---|
133 | throw RangeCheckError("TriangularMatrix<T>::CheckAbsoluteIndice: indices out of range " );
|
---|
134 | }
|
---|
135 | }
|
---|
136 | inline bool CheckAbsoluteIndice(sa_size_t ind) const
|
---|
137 | {
|
---|
138 | if ( ind >= elem_.Size() )
|
---|
139 | {
|
---|
140 | throw RangeCheckError("TriangularMatrix<T>::CheckAbsoluteIndice: indices out of range " );
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | //! ASCII dump of the matrix (set nbLignes=-1) for dumping the complete matrix
|
---|
145 | void Print(ostream& os, sa_size_t nbLignes=0) const
|
---|
146 | {
|
---|
147 | os << "TriangularMatrix< " << typeid(T).name()
|
---|
148 | << " > NRow=" << long_diag_ << " NbElem<>0 : " << Size() << endl;
|
---|
149 | if (nbLignes == 0) return;
|
---|
150 | if (nbLignes < 0 ) nbLignes = long_diag_;
|
---|
151 | if (nbLignes > long_diag_ ) nbLignes = long_diag_;
|
---|
152 | for (sa_size_t k=0; k < nbLignes; k++) {
|
---|
153 | os << "L[" << k << "]: " ;
|
---|
154 | for (sa_size_t kc = 0; kc <= k ; kc++)
|
---|
155 | os << " " << elem_(indexOfElement(k,kc));
|
---|
156 | os << endl;
|
---|
157 | }
|
---|
158 | if (nbLignes < long_diag_) os << " ... ... ... " << endl;
|
---|
159 | return;
|
---|
160 | }
|
---|
161 |
|
---|
162 | inline void Print(sa_size_t nbLignes=0) const { Print(cout, nbLignes); }
|
---|
163 |
|
---|
164 |
|
---|
165 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
166 | inline const T* columnData(sa_size_t j) const {return elem_.Begin()+(long_diag_*j-j*(j-1)/2) ;}
|
---|
167 |
|
---|
168 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
169 | inline T* columnData(sa_size_t j) {return elem_.Begin()+(long_diag_*j-j*(j-1)/2) ;}
|
---|
170 |
|
---|
171 | //! compute the address of an element in the single array representing the matrix
|
---|
172 | inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const
|
---|
173 | {
|
---|
174 | // return(i*(i+1)/2+j);
|
---|
175 | // the (inferior triangular )matrix is stored column by column
|
---|
176 | return(i+ long_diag_*j-j*(j+1)/2);
|
---|
177 | }
|
---|
178 |
|
---|
179 | private:
|
---|
180 |
|
---|
181 | sa_size_t long_diag_; //!< size of the square matrix
|
---|
182 | NDataBlock<T> elem_; //!< Data block
|
---|
183 |
|
---|
184 | };
|
---|
185 |
|
---|
186 | template <class T>
|
---|
187 | inline ostream& operator << (ostream& os, const TriangularMatrix<T>& a)
|
---|
188 | { a.Print(os, 0); return(os); }
|
---|
189 |
|
---|
190 | } // namespace SOPHYA
|
---|
191 |
|
---|
192 | #endif
|
---|