[3809] | 1 | // This may look like C code, but it is really -*- C++ -*-
|
---|
| 2 |
|
---|
| 3 | #ifndef TRNGMTX_H_SEEN
|
---|
| 4 | #define TRNGMTX_H_SEEN
|
---|
| 5 |
|
---|
| 6 | #include "spesqmtx.h"
|
---|
| 7 |
|
---|
| 8 | // doit etre mis en dehors du namespace
|
---|
| 9 | /*!
|
---|
| 10 | \class SOPHYA::LowerTriangularMatrix
|
---|
| 11 | \ingroup TArray
|
---|
| 12 | \brief Class representing a lower (inferior) triangular matrix. This is the
|
---|
| 13 | base class for the Alm<T> class (in module Samba), representing complex
|
---|
| 14 | coefficients of spherical harmonic decomposition.
|
---|
| 15 |
|
---|
| 16 | The lower triangular matrix is represented in memory as column packed,
|
---|
| 17 | as illustrated below for a 5x5 triangular matrix.
|
---|
| 18 | \verbatim
|
---|
| 19 | 5x5 Inf.Triang.Matrix, Size= 5*(5+1)/2 = 15 elements (0 ... 14)
|
---|
| 20 | | 0 |
|
---|
| 21 | | 1 5 |
|
---|
| 22 | | 2 6 9 |
|
---|
| 23 | | 3 7 10 12 |
|
---|
| 24 | | 4 8 11 13 14 |
|
---|
| 25 | \endverbatim
|
---|
| 26 |
|
---|
| 27 | This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like
|
---|
| 28 | reference sharing and counting, arithmetic operators ... However, this class has no
|
---|
| 29 | sub matrix extraction method.
|
---|
| 30 | */
|
---|
| 31 |
|
---|
| 32 | namespace SOPHYA {
|
---|
| 33 |
|
---|
| 34 | //! Class for inferior triangular matrix (base class for the class Alm)
|
---|
| 35 | template <class T>
|
---|
| 36 | class LowerTriangularMatrix : public SpecialSquareMatrix<T> {
|
---|
| 37 | public :
|
---|
| 38 |
|
---|
| 39 | #include "spesqmtx_tsnl.h"
|
---|
| 40 |
|
---|
| 41 | //! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used
|
---|
| 42 | explicit LowerTriangularMatrix()
|
---|
| 43 | : SpecialSquareMatrix<T>(C_LowerTriangularMatrix)
|
---|
| 44 | {
|
---|
| 45 | mZeros = T(0);
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | //! Instanciate a triangular matrix from the number of rows (rowSize must be > 0)
|
---|
| 49 | explicit LowerTriangularMatrix(sa_size_t rowSize)
|
---|
| 50 | : SpecialSquareMatrix<T>(rowSize, C_LowerTriangularMatrix)
|
---|
| 51 | {
|
---|
| 52 | if (rowSize < 1)
|
---|
| 53 | throw ParmError("LowerTriangularMatrix<T>::LowerTriangularMatrix(rsz) rsz <= 0");
|
---|
| 54 | mElems.ReSize((rowSize*(rowSize+1)/2) );
|
---|
| 55 | mInfo = NULL;
|
---|
| 56 | mZeros = T(0);
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | //! Copy constructor (possibility of sharing datas)
|
---|
| 60 | LowerTriangularMatrix(LowerTriangularMatrix<T> const & a, bool share=false)
|
---|
| 61 | : SpecialSquareMatrix<T>(a, share)
|
---|
| 62 | {
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | //! Copy constructor (possibility of sharing datas)
|
---|
| 66 | LowerTriangularMatrix(SpecialSquareMatrix<T> const & a, bool share=false)
|
---|
| 67 | : SpecialSquareMatrix<T>(a, share)
|
---|
| 68 | {
|
---|
| 69 | if (a.MtxType() != C_LowerTriangularMatrix)
|
---|
| 70 | throw TypeMismatchExc("LowerTriangularMatrix(a) a NOT a LowerTriangularMatrix");
|
---|
| 71 | mZeros = T(0);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | /*!
|
---|
| 75 | \brief Create a lower triangular matrix from a square matrix.
|
---|
| 76 | Elements above the diagonal are ignored.
|
---|
| 77 | */
|
---|
| 78 | explicit LowerTriangularMatrix(TMatrix<T> const & mx)
|
---|
| 79 | : SpecialSquareMatrix<T>(C_LowerTriangularMatrix)
|
---|
| 80 | {
|
---|
| 81 | if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1))
|
---|
| 82 | throw ParmError("LowerTriangularMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix");
|
---|
| 83 | SetSize(mx.NRows());
|
---|
| 84 | for(sa_size_t l=0; l<NRows(); l++)
|
---|
| 85 | for(sa_size_t m=0; m<=l; m++) (*this)(l,m) = mx(l,m);
|
---|
| 86 | mZeros = T(0);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | //! Sets or change the triangular matrix size, specifying the new number of rows
|
---|
| 90 | virtual void SetSize(sa_size_t rowSize)
|
---|
| 91 | {
|
---|
| 92 | if (rowSize < 1)
|
---|
| 93 | throw ParmError("LowerTriangularMatrix<T>::SetSize(rsz) rsz <= 0");
|
---|
| 94 | if (rowSize == mNrows) return;
|
---|
| 95 | mNrows=rowSize;
|
---|
| 96 | mElems.ReSize(mNrows*(mNrows+1)/2);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | //! Return number of rows (for compatibility with the old TriangularMatrix interface)
|
---|
| 100 | inline sa_size_t rowNumber() const {return (int_4)mNrows;}
|
---|
| 101 |
|
---|
| 102 | //! Return the object (triangular matrix) as a standard square matrix
|
---|
| 103 | virtual TMatrix<T> ConvertToStdMatrix() const
|
---|
| 104 | {
|
---|
| 105 | if (mNrows < 1)
|
---|
| 106 | throw SzMismatchError("LowerTriangularMatrix<T>::ConvertToStdMatrix() (this) not allocated !");
|
---|
| 107 | SOPHYA::TMatrix<T> mx(NRows(), NRows());
|
---|
| 108 | for(sa_size_t l=0; l<NRows(); l++)
|
---|
| 109 | for(sa_size_t m=0; m<=l; m++) mx(l,m) = (*this)(l,m);
|
---|
| 110 | return mx;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | //--- Operateurs = (T b) , = (LowerTriangularMatrix<T> b)
|
---|
| 114 | //! operator = a , to set all elements to the value \b a
|
---|
| 115 | inline LowerTriangularMatrix<T>& operator = (T a)
|
---|
| 116 | { SetCst(a); return (*this); }
|
---|
| 117 | //! operator = LowerTriangularMatrix<T> a , element by element copy operator
|
---|
| 118 | inline LowerTriangularMatrix<T>& operator = (LowerTriangularMatrix<T> const & a)
|
---|
| 119 | { Set(a); return (*this); }
|
---|
| 120 | //! operator = Sequence seq
|
---|
| 121 | inline LowerTriangularMatrix<T>& operator = (Sequence const & seq)
|
---|
| 122 | { SetSeq(seq); return (*this); }
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 | //--- Operateurs d'acces aux elements
|
---|
| 126 | //! Element access operator (R/W): access to elements row \b r and column \b c
|
---|
| 127 | inline T& operator()(sa_size_t r, sa_size_t c)
|
---|
| 128 | {
|
---|
| 129 | if ((r<0)||(r>=mNrows))
|
---|
| 130 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
|
---|
| 131 | if (c>r) { mZeros = T(0); return mZeros; }
|
---|
| 132 | // the (inferior triangular )matrix is stored column by column
|
---|
| 133 | return(mElems(r+ mNrows*c-c*(c+1)/2));
|
---|
| 134 | }
|
---|
| 135 | //! Element access operator (RO): access to elements row \b l and column \b m
|
---|
| 136 | inline T operator()(sa_size_t r, sa_size_t c) const
|
---|
| 137 | {
|
---|
| 138 | if ((r<0)||(r>=mNrows))
|
---|
| 139 | throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
|
---|
| 140 | if (c>r) { mZeros = T(0); return mZeros; }
|
---|
| 141 | // the (inferior triangular )matrix is stored column by column
|
---|
| 142 | return(mElems(r+ mNrows*c-c*(c+1)/2));
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
| 146 | inline const T* columnData(sa_size_t j) const {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
|
---|
| 147 |
|
---|
| 148 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j))
|
---|
| 149 | inline T* columnData(sa_size_t j) {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
|
---|
| 150 |
|
---|
| 151 | //! compute the position of the element \b tm(i,j) relative to the first element
|
---|
| 152 | inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const
|
---|
| 153 | {
|
---|
| 154 | // return(i*(i+1)/2+j);
|
---|
| 155 | // the (inferior triangular )matrix is stored column by column
|
---|
| 156 | return(i+ mNrows*j-j*(j+1)/2);
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | //! Triangular Matrix product (multiplication) : ret_matrix = (*this) * tmx
|
---|
| 160 | LowerTriangularMatrix<T> Multiply(LowerTriangularMatrix<T> const & tmx) const
|
---|
| 161 | {
|
---|
| 162 | if (NRows() != tmx.NRows())
|
---|
| 163 | throw SzMismatchError("Matrix<T>::Multiply(LowerTriangularMatrix<T> tmx): different sizes");
|
---|
| 164 | // codage peu efficace : on utilise la multiplication de matrices generales ...
|
---|
| 165 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
| 166 | TMatrix<T> b = tmx.ConvertToStdMatrix();
|
---|
| 167 | LowerTriangularMatrix<T> ret(a.Multiply(b));
|
---|
| 168 | ret.SetTemp(true);
|
---|
| 169 | return ret;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | //! Matrix product (multiplication) : ret_matrix = (*this) * mx
|
---|
| 173 | TMatrix<T> MultiplyTG(TMatrix<T> const & mx) const
|
---|
| 174 | {
|
---|
| 175 | if (NCols() != mx.NRows())
|
---|
| 176 | throw SzMismatchError("LowerTriangularMatrix<T>::MultiplyTG(TMatrix<T> mx): NCols()!=mx.NRows()");
|
---|
| 177 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
| 178 | return a.Multiply(mx);
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | //! Matrix product (multiplication) : ret_matrix = mx * (*this)
|
---|
| 182 | TMatrix<T> MultiplyGT(TMatrix<T> const & mx) const
|
---|
| 183 | {
|
---|
| 184 | if (NRows() != mx.NCols())
|
---|
| 185 | throw SzMismatchError("LowerTriangularMatrix<T>::MultiplyGT(TMatrix<T> mx): NRows()!=mx.NCols()");
|
---|
| 186 | TMatrix<T> a = ConvertToStdMatrix();
|
---|
| 187 | return mx.Multiply(a);
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | //! ASCII dump/print of the triangular matrix object (set nbLignes=-1 for dumping the complete matrix)
|
---|
| 191 | ostream& Print(ostream& os, sa_size_t nbLignes=0) const
|
---|
| 192 | {
|
---|
| 193 | os << "LowerTriangularMatrix< " << typeid(T).name()
|
---|
| 194 | << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl;
|
---|
| 195 | if (nbLignes == 0) return os;
|
---|
| 196 | if (nbLignes < 0 ) nbLignes = mNrows;
|
---|
| 197 | if (nbLignes > mNrows ) nbLignes = mNrows;
|
---|
| 198 | for (sa_size_t k=0; k < nbLignes; k++) {
|
---|
| 199 | os << "L[" << k << "]: " ;
|
---|
| 200 | for (sa_size_t kc = 0; kc <= k ; kc++)
|
---|
| 201 | os << " " << mElems(indexOfElement(k,kc));
|
---|
| 202 | os << endl;
|
---|
| 203 | }
|
---|
| 204 | if (nbLignes < mNrows) os << " ... ... ... " << endl;
|
---|
| 205 | return os;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | protected:
|
---|
| 209 | mutable T mZeros;
|
---|
| 210 | };
|
---|
| 211 |
|
---|
| 212 | //----- Surcharge d'operateurs C = A * B (multiplication matricielle)
|
---|
| 213 | /*! \ingroup TArray \fn operator*(const LowerTriangularMatrix<T>&,const LowerTriangularMatrix<T>&)
|
---|
| 214 | \brief * : LowerTriangularMatrix multiplication \b a and \b b */
|
---|
| 215 | template <class T>
|
---|
| 216 | inline LowerTriangularMatrix<T> operator * (const LowerTriangularMatrix<T>& a, const LowerTriangularMatrix<T>& b)
|
---|
| 217 | { return(a.Multiply(b)); }
|
---|
| 218 |
|
---|
| 219 | /*! \ingroup TArray \fn operator*(const LowerTriangularMatrix<T>&,const TMatrix<T>&)
|
---|
| 220 | \brief * : Matrix multiplication LowerTriangularMatrix (\b a ) * TMatrix<T> ( \b b ) */
|
---|
| 221 | template <class T>
|
---|
| 222 | inline TMatrix<T> operator * (const LowerTriangularMatrix<T>& a, const TMatrix<T>& b)
|
---|
| 223 | { return(a.MultiplyTG(b)); }
|
---|
| 224 |
|
---|
| 225 | /*! \ingroup TArray \fn operator*(const TMatrix<T>&,const LowerTriangularMatrix<T>&)
|
---|
| 226 | \brief * : Matrix multiplication TMatrix (\b a ) * LowerTriangularMatrix<T> ( \b b ) */
|
---|
| 227 | template <class T>
|
---|
| 228 | inline TMatrix<T> operator * (const TMatrix<T>& a, const LowerTriangularMatrix<T>& b)
|
---|
| 229 | { return(b.MultiplyGT(a)); }
|
---|
| 230 |
|
---|
| 231 |
|
---|
| 232 | } // namespace SOPHYA
|
---|
| 233 |
|
---|
| 234 | #endif
|
---|