| 1 | // This may look like C code, but it is really -*- C++ -*-
 | 
|---|
| 2 | // This code is part of the SOPHYA library
 | 
|---|
| 3 | //  (C) Univ. Paris-Sud   (C) LAL-IN2P3/CNRS   (C) IRFU-CEA
 | 
|---|
| 4 | //  (C) R. Ansari, C.Magneville    2009-2010  
 | 
|---|
| 5 | 
 | 
|---|
| 6 | #ifndef TRNGMTX_H_SEEN
 | 
|---|
| 7 | #define TRNGMTX_H_SEEN
 | 
|---|
| 8 | 
 | 
|---|
| 9 | #include "spesqmtx.h"
 | 
|---|
| 10 | 
 | 
|---|
| 11 | 
 | 
|---|
| 12 | namespace SOPHYA {
 | 
|---|
| 13 | 
 | 
|---|
| 14 | /*!
 | 
|---|
| 15 |   \class LowerTriangularMatrix
 | 
|---|
| 16 |   \ingroup TArray
 | 
|---|
| 17 |   \brief Class representing a lower (inferior) triangular matrix. This is the 
 | 
|---|
| 18 |   base class for the Alm<T> class (in module Samba), representing complex 
 | 
|---|
| 19 |   coefficients of spherical harmonic decomposition.
 | 
|---|
| 20 | 
 | 
|---|
| 21 |   The lower triangular matrix is represented in memory as column packed,
 | 
|---|
| 22 |   as illustrated below for a 5x5 triangular matrix.
 | 
|---|
| 23 |   \verbatim
 | 
|---|
| 24 |   5x5 Inf.Triang.Matrix, Size= 5*(5+1)/2 = 15 elements (0 ... 14) 
 | 
|---|
| 25 |   | 0                  |
 | 
|---|
| 26 |   | 1   5              |
 | 
|---|
| 27 |   | 2   6   9          |
 | 
|---|
| 28 |   | 3   7   10  12     |
 | 
|---|
| 29 |   | 4   8   11  13  14 |
 | 
|---|
| 30 |   \endverbatim 
 | 
|---|
| 31 | 
 | 
|---|
| 32 |   This class offers similar functionalities to the TArray<T> / TMatrix<T> classes, like 
 | 
|---|
| 33 |   reference sharing and counting, arithmetic operators ... However, this class has no 
 | 
|---|
| 34 |   sub matrix extraction method.
 | 
|---|
| 35 | */
 | 
|---|
| 36 |   
 | 
|---|
| 37 | template <class T>
 | 
|---|
| 38 | class LowerTriangularMatrix : public SpecialSquareMatrix<T> {
 | 
|---|
| 39 | public :
 | 
|---|
| 40 | 
 | 
|---|
| 41 | #include "spesqmtx_tsnl.h"
 | 
|---|
| 42 | 
 | 
|---|
| 43 | //! Default constructor - TriangMatrix of size 0, SetSize() should be called before the object is used
 | 
|---|
| 44 | explicit LowerTriangularMatrix()
 | 
|---|
| 45 |   : SpecialSquareMatrix<T>(C_LowerTriangularMatrix)
 | 
|---|
| 46 | {
 | 
|---|
| 47 |   mZeros = T(0);
 | 
|---|
| 48 | }
 | 
|---|
| 49 | 
 | 
|---|
| 50 | //! Instanciate a triangular matrix from the number of rows (rowSize must be > 0)
 | 
|---|
| 51 | explicit LowerTriangularMatrix(sa_size_t rowSize)
 | 
|---|
| 52 |   : SpecialSquareMatrix<T>(rowSize, C_LowerTriangularMatrix)
 | 
|---|
| 53 | {
 | 
|---|
| 54 |   if (rowSize < 1) 
 | 
|---|
| 55 |     throw ParmError("LowerTriangularMatrix<T>::LowerTriangularMatrix(rsz) rsz <= 0");
 | 
|---|
| 56 |   mElems.ReSize((rowSize*(rowSize+1)/2) ); 
 | 
|---|
| 57 |   mInfo = NULL;
 | 
|---|
| 58 |   mZeros = T(0);
 | 
|---|
| 59 | }
 | 
|---|
| 60 | 
 | 
|---|
| 61 | //! Copy constructor (possibility of sharing datas)
 | 
|---|
| 62 | LowerTriangularMatrix(LowerTriangularMatrix<T> const & a,  bool share=false)  
 | 
|---|
| 63 |   : SpecialSquareMatrix<T>(a, share) 
 | 
|---|
| 64 | {
 | 
|---|
| 65 | }
 | 
|---|
| 66 | 
 | 
|---|
| 67 | //! Copy constructor (possibility of sharing datas)
 | 
|---|
| 68 | LowerTriangularMatrix(SpecialSquareMatrix<T> const & a,  bool share=false)  
 | 
|---|
| 69 |   : SpecialSquareMatrix<T>(a, share) 
 | 
|---|
| 70 | {
 | 
|---|
| 71 |   if (a.MtxType() != C_LowerTriangularMatrix) 
 | 
|---|
| 72 |     throw TypeMismatchExc("LowerTriangularMatrix(a) a NOT a LowerTriangularMatrix");
 | 
|---|
| 73 |   mZeros = T(0);
 | 
|---|
| 74 | }
 | 
|---|
| 75 | 
 | 
|---|
| 76 | /*!
 | 
|---|
| 77 |  \brief Create a lower triangular matrix from a square matrix. 
 | 
|---|
| 78 |  Elements above the diagonal are ignored.
 | 
|---|
| 79 | */
 | 
|---|
| 80 | explicit LowerTriangularMatrix(TMatrix<T> const & mx)  
 | 
|---|
| 81 |   : SpecialSquareMatrix<T>(C_LowerTriangularMatrix)
 | 
|---|
| 82 | {
 | 
|---|
| 83 |   if ((mx.NRows() != mx.NCols()) || (mx.NRows() < 1)) 
 | 
|---|
| 84 |     throw ParmError("LowerTriangularMatrix<T>::(TMatrix<T> const & mx) mx not allocated OR NOT a square matrix");
 | 
|---|
| 85 |   SetSize(mx.NRows());
 | 
|---|
| 86 |   for(sa_size_t l=0; l<NRows(); l++) 
 | 
|---|
| 87 |     for(sa_size_t m=0; m<=l; m++) (*this)(l,m) = mx(l,m);
 | 
|---|
| 88 |   mZeros = T(0);
 | 
|---|
| 89 | }
 | 
|---|
| 90 | 
 | 
|---|
| 91 | //! Sets or change the triangular matrix size, specifying the new number of rows
 | 
|---|
| 92 | virtual void SetSize(sa_size_t rowSize) 
 | 
|---|
| 93 | {
 | 
|---|
| 94 |   if (rowSize < 1) 
 | 
|---|
| 95 |     throw ParmError("LowerTriangularMatrix<T>::SetSize(rsz) rsz <= 0");
 | 
|---|
| 96 |   if (rowSize == mNrows)  return;
 | 
|---|
| 97 |   mNrows=rowSize;
 | 
|---|
| 98 |   mElems.ReSize(mNrows*(mNrows+1)/2);  
 | 
|---|
| 99 | }
 | 
|---|
| 100 | 
 | 
|---|
| 101 | //! Return number of rows (for compatibility with the old TriangularMatrix interface)
 | 
|---|
| 102 | inline  sa_size_t rowNumber() const {return (int_4)mNrows;}
 | 
|---|
| 103 | 
 | 
|---|
| 104 | //! Return the object (triangular matrix) as a standard square matrix
 | 
|---|
| 105 | virtual TMatrix<T> ConvertToStdMatrix() const
 | 
|---|
| 106 | {
 | 
|---|
| 107 |   if (mNrows < 1)
 | 
|---|
| 108 |     throw SzMismatchError("LowerTriangularMatrix<T>::ConvertToStdMatrix() (this) not allocated !");
 | 
|---|
| 109 |   SOPHYA::TMatrix<T> mx(NRows(), NRows());
 | 
|---|
| 110 |   for(sa_size_t l=0; l<NRows(); l++) 
 | 
|---|
| 111 |     for(sa_size_t m=0; m<=l; m++) mx(l,m) = (*this)(l,m);
 | 
|---|
| 112 |   return mx;
 | 
|---|
| 113 | }
 | 
|---|
| 114 |  
 | 
|---|
| 115 | //--- Operateurs = (T b) , = (LowerTriangularMatrix<T> b)
 | 
|---|
| 116 | //! operator = a , to set all elements to the value \b a
 | 
|---|
| 117 | inline LowerTriangularMatrix<T>& operator = (T a)
 | 
|---|
| 118 |   {  SetCst(a);  return (*this);  }
 | 
|---|
| 119 | //! operator = LowerTriangularMatrix<T> a , element by element copy operator
 | 
|---|
| 120 | inline LowerTriangularMatrix<T>& operator = (LowerTriangularMatrix<T> const & a)
 | 
|---|
| 121 |   {  Set(a); return (*this); }
 | 
|---|
| 122 | //! operator = Sequence seq  
 | 
|---|
| 123 | inline LowerTriangularMatrix<T>& operator = (Sequence const & seq)
 | 
|---|
| 124 |   {  SetSeq(seq); return (*this); }
 | 
|---|
| 125 | 
 | 
|---|
| 126 | 
 | 
|---|
| 127 | //--- Operateurs d'acces aux elements 
 | 
|---|
| 128 | //! Element access operator (R/W): access to elements row \b r and column \b c
 | 
|---|
| 129 | inline T& operator()(sa_size_t r, sa_size_t c) 
 | 
|---|
| 130 | { 
 | 
|---|
| 131 |   if ((r<0)||(r>=mNrows))  
 | 
|---|
| 132 |     throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
 | 
|---|
| 133 |   if (c>r) { mZeros = T(0); return mZeros; }
 | 
|---|
| 134 |   // the (inferior triangular )matrix is stored column by column
 | 
|---|
| 135 |   return(mElems(r+ mNrows*c-c*(c+1)/2));
 | 
|---|
| 136 | }
 | 
|---|
| 137 | //! Element access operator (RO): access to elements row \b l and column \b m
 | 
|---|
| 138 | inline T operator()(sa_size_t r, sa_size_t c) const
 | 
|---|
| 139 | { 
 | 
|---|
| 140 |   if ((r<0)||(r>=mNrows))  
 | 
|---|
| 141 |     throw RangeCheckError("DiagonalMatrix<T>::operator()(r,c) (r<0)||(r>=NRows())");
 | 
|---|
| 142 |   if (c>r) { mZeros = T(0); return mZeros; }
 | 
|---|
| 143 |   // the (inferior triangular )matrix is stored column by column
 | 
|---|
| 144 |   return(mElems(r+ mNrows*c-c*(c+1)/2));
 | 
|---|
| 145 | }
 | 
|---|
| 146 | 
 | 
|---|
| 147 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j)) 
 | 
|---|
| 148 | inline const T* columnData(sa_size_t j)  const {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
 | 
|---|
| 149 | 
 | 
|---|
| 150 | //! Return the pointer to the first non zero element in column \b j = &(tmmtx(j,j)) 
 | 
|---|
| 151 | inline T* columnData(sa_size_t j) {return mElems.Begin()+(mNrows*j-j*(j-1)/2) ;}
 | 
|---|
| 152 | 
 | 
|---|
| 153 | //! compute the position of the element \b tm(i,j) relative to the first element
 | 
|---|
| 154 | inline sa_size_t indexOfElement(sa_size_t i,sa_size_t j) const 
 | 
|---|
| 155 | {
 | 
|---|
| 156 |   //  return(i*(i+1)/2+j);
 | 
|---|
| 157 |   // the (inferior triangular )matrix is stored column by column
 | 
|---|
| 158 |   return(i+ mNrows*j-j*(j+1)/2);
 | 
|---|
| 159 | }
 | 
|---|
| 160 | 
 | 
|---|
| 161 | //! Triangular Matrix product (multiplication) : ret_matrix = (*this) * tmx
 | 
|---|
| 162 | LowerTriangularMatrix<T> Multiply(LowerTriangularMatrix<T> const & tmx) const
 | 
|---|
| 163 | {
 | 
|---|
| 164 |   if (NRows() != tmx.NRows()) 
 | 
|---|
| 165 |     throw SzMismatchError("Matrix<T>::Multiply(LowerTriangularMatrix<T> tmx): different sizes");
 | 
|---|
| 166 | // codage peu efficace : on utilise la multiplication de matrices generales ...
 | 
|---|
| 167 |   TMatrix<T> a = ConvertToStdMatrix();
 | 
|---|
| 168 |   TMatrix<T> b = tmx.ConvertToStdMatrix();
 | 
|---|
| 169 |   LowerTriangularMatrix<T> ret(a.Multiply(b));
 | 
|---|
| 170 |   ret.SetTemp(true);
 | 
|---|
| 171 |   return ret;
 | 
|---|
| 172 | }
 | 
|---|
| 173 | 
 | 
|---|
| 174 | //! Matrix product (multiplication) : ret_matrix = (*this) * mx
 | 
|---|
| 175 | TMatrix<T> MultiplyTG(TMatrix<T> const & mx) const 
 | 
|---|
| 176 | {
 | 
|---|
| 177 |   if (NCols() != mx.NRows())
 | 
|---|
| 178 |     throw SzMismatchError("LowerTriangularMatrix<T>::MultiplyTG(TMatrix<T> mx): NCols()!=mx.NRows()");
 | 
|---|
| 179 |   TMatrix<T> a = ConvertToStdMatrix();
 | 
|---|
| 180 |   return a.Multiply(mx); 
 | 
|---|
| 181 | }
 | 
|---|
| 182 | 
 | 
|---|
| 183 | //! Matrix product (multiplication) : ret_matrix = mx * (*this)
 | 
|---|
| 184 | TMatrix<T> MultiplyGT(TMatrix<T> const & mx) const 
 | 
|---|
| 185 | {
 | 
|---|
| 186 |   if (NRows() != mx.NCols())
 | 
|---|
| 187 |     throw SzMismatchError("LowerTriangularMatrix<T>::MultiplyGT(TMatrix<T> mx): NRows()!=mx.NCols()");
 | 
|---|
| 188 |   TMatrix<T> a = ConvertToStdMatrix();
 | 
|---|
| 189 |   return mx.Multiply(a); 
 | 
|---|
| 190 | }
 | 
|---|
| 191 | 
 | 
|---|
| 192 | //! ASCII dump/print of the triangular matrix object (set nbLignes=-1 for dumping the complete matrix)
 | 
|---|
| 193 | ostream& Print(ostream& os, sa_size_t nbLignes=0) const
 | 
|---|
| 194 | {
 | 
|---|
| 195 |   os << "LowerTriangularMatrix< " << typeid(T).name() 
 | 
|---|
| 196 |      << " > NRow=" << mNrows << " NbElem<>0 : " << Size() << endl;
 | 
|---|
| 197 |   if (nbLignes == 0) return os;
 | 
|---|
| 198 |   if (nbLignes < 0 ) nbLignes = mNrows;
 | 
|---|
| 199 |   if (nbLignes > mNrows ) nbLignes = mNrows;
 | 
|---|
| 200 |   for (sa_size_t k=0; k < nbLignes; k++)  {
 | 
|---|
| 201 |     os << "L[" << k << "]: " ;
 | 
|---|
| 202 |     for (sa_size_t kc = 0; kc <= k ; kc++) 
 | 
|---|
| 203 |       os << " " << mElems(indexOfElement(k,kc));
 | 
|---|
| 204 |     os << endl;
 | 
|---|
| 205 |   }
 | 
|---|
| 206 |   if (nbLignes < mNrows)  os << " ... ... ... " << endl;
 | 
|---|
| 207 |   return os;
 | 
|---|
| 208 | }
 | 
|---|
| 209 | 
 | 
|---|
| 210 | protected: 
 | 
|---|
| 211 | mutable T mZeros; 
 | 
|---|
| 212 | };
 | 
|---|
| 213 | 
 | 
|---|
| 214 | //----- Surcharge d'operateurs C = A * B (multiplication matricielle)
 | 
|---|
| 215 | /*! \ingroup TArray \fn operator*(const LowerTriangularMatrix<T>&,const LowerTriangularMatrix<T>&)
 | 
|---|
| 216 |   \brief * : LowerTriangularMatrix multiplication \b a and \b b */
 | 
|---|
| 217 | template <class T> 
 | 
|---|
| 218 | inline LowerTriangularMatrix<T> operator * (const LowerTriangularMatrix<T>& a, const LowerTriangularMatrix<T>& b)
 | 
|---|
| 219 |    { return(a.Multiply(b)); }
 | 
|---|
| 220 | 
 | 
|---|
| 221 | /*! \ingroup TArray \fn operator*(const LowerTriangularMatrix<T>&,const TMatrix<T>&)
 | 
|---|
| 222 |   \brief * : Matrix multiplication LowerTriangularMatrix (\b a ) *  TMatrix<T> ( \b b ) */
 | 
|---|
| 223 | template <class T> 
 | 
|---|
| 224 | inline TMatrix<T> operator * (const LowerTriangularMatrix<T>& a, const TMatrix<T>& b)
 | 
|---|
| 225 |    { return(a.MultiplyTG(b)); }
 | 
|---|
| 226 | 
 | 
|---|
| 227 | /*! \ingroup TArray \fn operator*(const TMatrix<T>&,const LowerTriangularMatrix<T>&)
 | 
|---|
| 228 |   \brief * : Matrix multiplication TMatrix (\b a ) *  LowerTriangularMatrix<T> ( \b b ) */
 | 
|---|
| 229 | template <class T> 
 | 
|---|
| 230 | inline TMatrix<T> operator * (const TMatrix<T>& a, const LowerTriangularMatrix<T>& b)
 | 
|---|
| 231 |    { return(b.MultiplyGT(a)); }
 | 
|---|
| 232 | 
 | 
|---|
| 233 |   
 | 
|---|
| 234 | }   // namespace SOPHYA
 | 
|---|
| 235 | 
 | 
|---|
| 236 | #endif
 | 
|---|