source: Sophya/trunk/SophyaPI/PIGcont/contour.c@ 1838

Last change on this file since 1838 was 1838, checked in by ansari, 24 years ago

Nettoyage des .h en trop, compil avec g++ sous LinuxPPC (rename alloc.h gp_alloc.h) - Reza 21/12/2001

File size: 48.3 KB
RevLine 
[1829]1#ifndef lint
[1838]2static char *RCSid() { return RCSid("$Id: contour.c,v 1.2 2001-12-21 22:49:27 ansari Exp $"); }
[1829]3#endif
4
5/* GNUPLOT - contour.c */
6
7/*[
8 * Copyright 1986 - 1993, 1998 Thomas Williams, Colin Kelley
9 *
10 * Permission to use, copy, and distribute this software and its
11 * documentation for any purpose with or without fee is hereby granted,
12 * provided that the above copyright notice appear in all copies and
13 * that both that copyright notice and this permission notice appear
14 * in supporting documentation.
15 *
16 * Permission to modify the software is granted, but not the right to
17 * distribute the complete modified source code. Modifications are to
18 * be distributed as patches to the released version. Permission to
19 * distribute binaries produced by compiling modified sources is granted,
20 * provided you
21 * 1. distribute the corresponding source modifications from the
22 * released version in the form of a patch file along with the binaries,
23 * 2. add special version identification to distinguish your version
24 * in addition to the base release version number,
25 * 3. provide your name and address as the primary contact for the
26 * support of your modified version, and
27 * 4. retain our contact information in regard to use of the base
28 * software.
29 * Permission to distribute the released version of the source code along
30 * with corresponding source modifications in the form of a patch file is
31 * granted with same provisions 2 through 4 for binary distributions.
32 *
33 * This software is provided "as is" without express or implied warranty
34 * to the extent permitted by applicable law.
35]*/
36
37
38/*
39 * AUTHORS
40 *
41 * Original Software:
42 * Gershon Elber
43 *
44 * Improvements to the numerical algorithms:
45 * Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de)
46 *
47 */
48
49#include "contour.h"
50
[1838]51#include "gp_alloc.h"
[1829]52#include "myaxis.h"
53/* #include "setshow.h" */
54
55/* exported variables (to be handled by the 'set' and friends): */
56
57char contour_format[32] = "%8.3g"; /* format for contour key entries */
58t_contour_kind contour_kind = CONTOUR_KIND_LINEAR;
59t_contour_levels_kind contour_levels_kind = LEVELS_AUTO;
60int contour_levels = DEFAULT_CONTOUR_LEVELS;
61int contour_order = DEFAULT_CONTOUR_ORDER;
62int contour_pts = DEFAULT_NUM_APPROX_PTS;
63
64dynarray dyn_contour_levels_list;/* storage for z levels to draw contours at */
65double * contour_levels_list=NULL;
66
67/* position of edge in mesh */
68typedef enum en_edge_position {
69 INNER_MESH=1,
70 BOUNDARY,
71 DIAGONAL
72} t_edge_position;
73
74
[1838]75/* Valeur de zero - Reza 21/12/2001 - Pourquoi zero = 0. ??? */
76static double zero = 0.;
77
[1829]78/* FIXME HBB 2000052: yet another local copy of 'epsilon'. Why? */
79#define EPSILON 1e-5 /* Used to decide if two float are equal. */
80
[1838]81
[1829]82#ifndef TRUE
83#define TRUE -1
84#define FALSE 0
85#endif
86
[1838]87
[1829]88#define MAX_POINTS_PER_CNTR 100
89
90#define SQR(x) ((x) * (x))
91
92/*
93 * struct vrtx_struct {
94 * double X, Y, Z;
95 * struct vrtx_struct *next;
96 * };
97 *
98 * replaced by 'struct coordinate ', see plot.h (HMK 1997)
99 */
100
101struct edge_struct {
102 struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */
103 struct coordinate *vertex[2]; /* The two extreme points of this edge. */
104 struct edge_struct *next; /* To chain lists */
105 TBOOLEAN is_active; /* is edge is 'active' at certain Z level? */
106 t_edge_position position; /* position of edge in mesh */
107};
108
109struct poly_struct {
110 struct edge_struct *edge[3]; /* As we do triangolation here... */
111 struct poly_struct *next; /* To chain lists. */
112};
113
114struct cntr_struct { /* Contours are saved using this struct list. */
115 double X, Y; /* The coordinates of this vertex. */
116 struct cntr_struct *next; /* To chain lists. */
117};
118
119static struct gnuplot_contours *contour_list = NULL;
120static double crnt_cntr[MAX_POINTS_PER_CNTR * 2];
121static int crnt_cntr_pt_index = 0;
122static double contour_level = 0.0;
123
124/* Linear, Cubic interp., Bspline: */
125static t_contour_kind interp_kind = CONTOUR_KIND_LINEAR;
126
127static double x_min, y_min, z_min; /* Minimum values of x, y, and z */
128static double x_max, y_max, z_max; /* Maximum values of x, y, and z */
129
130static void add_cntr_point (double x, double y);
131static void end_crnt_cntr (void);
132static void gen_contours(struct edge_struct * p_edges, double z_level,
133 double xx_min, double xx_max, double yy_min, double yy_max);
134static int update_all_edges(struct edge_struct * p_edges,
135 double z_level);
136static struct cntr_struct *gen_one_contour (
137 struct edge_struct * p_edges, double
138 z_level, TBOOLEAN *contr_isclosed,
139 int *num_active);
140static struct cntr_struct *trace_contour (
141 struct edge_struct * pe_start, double
142 z_level, int *num_active,
143 TBOOLEAN contr_isclosed);
144static struct cntr_struct *update_cntr_pt (struct edge_struct * p_edge,
145 double z_level);
146static int fuzzy_equal (struct cntr_struct * p_cntr1,
147 struct cntr_struct * p_cntr2);
148
149
150static void gen_triangle (int num_isolines,
151 struct iso_curve * iso_lines, struct poly_struct ** p_polys,
152 struct edge_struct ** p_edges);
153static void calc_min_max (int num_isolines,
154 struct iso_curve * iso_lines, double *xx_min, double *yy_min,
155 double *zz_min,
156 double *xx_max, double *yy_max, double *zz_max);
157static struct edge_struct *add_edge (struct coordinate * point0,
158 struct coordinate * point1, struct edge_struct
159 ** p_edge,
160 struct edge_struct ** pe_tail);
161static struct poly_struct *add_poly (struct edge_struct * edge0,
162 struct edge_struct * edge1, struct edge_struct * edge2,
163 struct poly_struct ** p_poly, struct poly_struct ** pp_tail);
164
165
166static void put_contour (struct cntr_struct * p_cntr, double z_level,
167 double xx_min, double xx_max, double yy_min, double yy_max,
168 TBOOLEAN contr_isclosed);
169static void put_contour_nothing (struct cntr_struct * p_cntr);
170static int chk_contour_kind (struct cntr_struct * p_cntr,
171 TBOOLEAN contr_isclosed);
172static void put_contour_cubic (struct cntr_struct * p_cntr,
173 double z_level, double xx_min, double xx_max, double
174 yy_min, double yy_max,
175 TBOOLEAN contr_isclosed);
176static void put_contour_bspline (struct cntr_struct * p_cntr,
177 double z_level, double xx_min, double xx_max, double
178 yy_min, double yy_max,
179 TBOOLEAN contr_isclosed);
180static void free_contour (struct cntr_struct * p_cntr);
181static int count_contour (struct cntr_struct * p_cntr);
182static int gen_cubic_spline (int num_pts, struct cntr_struct * p_cntr,
183 double d2x[], double d2y[], double delta_t[], TBOOLEAN contr_isclosed,
184 double unit_x, double unit_y);
185static void intp_cubic_spline (int n, struct cntr_struct * p_cntr,
186 double d2x[], double d2y[], double delta_t[], int n_intpol);
187static int solve_cubic_1 (tri_diag m[], int n);
188static void solve_cubic_2 (tri_diag m[], double x[], int n);
189static void gen_bspline_approx (struct cntr_struct * p_cntr,
190 int num_of_points, int order, TBOOLEAN contr_isclosed);
191static void eval_bspline (double t, struct cntr_struct * p_cntr,
192 int num_of_points, int order, int j, TBOOLEAN contr_isclosed, double *x,
193 double *y);
194static double fetch_knot (TBOOLEAN contr_isclosed, int num_of_points,
195 int order, int i);
196
197
198static int num_of_z_levels;/*_____ OP ___________*/ /* # Z contour levels. */
199
200int Get_Num_Of_Z_Levels(){
201return num_of_z_levels;
202} /* OP __________ */
203
204/*
205 * Entry routine to this whole set of contouring module.
206 */
207struct gnuplot_contours *
208contour(num_isolines, iso_lines)
209int num_isolines;
210struct iso_curve *iso_lines;
211{
212 int i;
213 /*OP int num_of_z_levels;*/ /* # Z contour levels. */
214 struct poly_struct *p_polys, *p_poly;
215 struct edge_struct *p_edges, *p_edge;
216 double z = 0, dz = 0;
217 struct gnuplot_contours *save_contour_list;
218
219 num_of_z_levels = contour_levels;
220 interp_kind = contour_kind;
221
222 contour_list = NULL;
223
224 /*
225 * Calculate min/max values :
226 */
227 calc_min_max(num_isolines, iso_lines,
228 &x_min, &y_min, &z_min, &x_max, &y_max, &z_max);
229
230 dz = fabs(z_max - z_min);
231 /*
232 * printf(" contour z_max %g z_min %g dz=%g kind %d \n",z_max, z_min , dz,contour_levels_kind);
233 * Generate list of edges (p_edges) and list of triangles (p_polys):
234 */
235
236 gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges);
237 crnt_cntr_pt_index = 0;
238 /*AJOUT OP */
239 if (contour_levels_kind == LEVELS_NUM) {
240 dz = fabs(z_max - z_min)/(num_of_z_levels);
241 z = z_min - dz/2.;
242 }
243
244 if (contour_levels_kind == LEVELS_AUTO) {
245 dz = fabs(z_max - z_min);
246 /*printf(" contour z_max %g z_min %g dz=%g\n",z_max, z_min , dz);*/
247 if (dz == 0)
248 return NULL; /* empty z range ? */
249 /* what is the deeper sense of this ? (joze) */
250 dz = set_tic(log10(dz), ((int) contour_levels + 1) * 2);
251 z = floor(z_min / dz) * dz;
252 num_of_z_levels = (int) floor((z_max - z) / dz);
253 /*printf("contour() : num_of_z_levels %d\n",num_of_z_levels);*/
254 }
255 for (i = 0; i < num_of_z_levels; i++) {
256 switch (contour_levels_kind) {
257 case LEVELS_AUTO:
258 case LEVELS_NUM:
259 z += dz;
260 break;
261 case LEVELS_INCREMENTAL:
262 z = contour_levels_list[0] + i * contour_levels_list[1];
263 break;
264 case LEVELS_DISCRETE:
265 /*printf("????? contour z=%f\n",contour_levels_list[i] );*/
266 /*z = AXIS_LOG_VALUE(FIRST_Z_AXIS, contour_levels_list[i]); PAS BESOIN ? OP */
267 z = contour_levels_list[i];
268 break;
269 }
270 contour_level = z;
271 /*printf(" contour z=%f\n",z);*/
272 save_contour_list = contour_list;
273 gen_contours(p_edges, z, x_min, x_max, y_min, y_max);
274 if (contour_list != save_contour_list) {
275 contour_list->isNewLevel = 1;
276 sprintf(contour_list->label, contour_format, AXIS_DE_LOG_VALUE(FIRST_Z_AXIS,z));
277#ifdef PM3D
278 contour_list->z = AXIS_DE_LOG_VALUE(FIRST_Z_AXIS, z);
279#endif
280 }
281 }
282
283 /* Free all contouring related temporary data. */
284 while (p_polys) {
285 p_poly = p_polys->next;
286 free(p_polys);
287 p_polys = p_poly;
288 }
289 while (p_edges) {
290 p_edge = p_edges->next;
291 free(p_edges);
292 p_edges = p_edge;
293 }
294
295 return contour_list;
296}
297
298/*
299 * Adds another point to the currently build contour.
300 */
301static void
302add_cntr_point(x, y)
303double x, y;
304{
305 int index;
306
307 if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) {
308 index = crnt_cntr_pt_index - 1;
309 end_crnt_cntr();
310 crnt_cntr[0] = crnt_cntr[index * 2];
311 crnt_cntr[1] = crnt_cntr[index * 2 + 1];
312 crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */
313 }
314 crnt_cntr[crnt_cntr_pt_index * 2] = x;
315 crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y;
316 crnt_cntr_pt_index++;
317}
318
319/*
320 * Done with current contour - create gnuplot data structure for it.
321 */
322static void
323end_crnt_cntr()
324{
325 int i;
326 struct gnuplot_contours *cntr = (struct gnuplot_contours *)
327 gp_alloc(sizeof(struct gnuplot_contours), "gnuplot_contour");
328 cntr->coords = (struct coordinate *)
329 gp_alloc(sizeof(struct coordinate) * crnt_cntr_pt_index,
330 "contour coords");
331
332 for (i = 0; i < crnt_cntr_pt_index; i++) {
333 cntr->coords[i].x = crnt_cntr[i * 2];
334 cntr->coords[i].y = crnt_cntr[i * 2 + 1];
335 cntr->coords[i].z = contour_level;
336 }
337 cntr->num_pts = crnt_cntr_pt_index;
338
339 cntr->next = contour_list;
340 contour_list = cntr;
341 contour_list->isNewLevel = 0;
342
343 crnt_cntr_pt_index = 0;
344}
345
346/*
347 * Generates all contours by tracing the intersecting triangles.
348 */
349static void
350gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max)
351struct edge_struct *p_edges;
352double z_level, xx_min, xx_max, yy_min, yy_max;
353{
354 int num_active; /* Number of edges marked ACTIVE. */
355 TBOOLEAN contr_isclosed; /* Is this contour a closed line? */
356 struct cntr_struct *p_cntr;
357
358 num_active = update_all_edges(p_edges, z_level); /* Do pass 1. */
359
360 contr_isclosed = FALSE; /* Start to look for contour on boundaries. */
361 /*printf("<gen_contour> z=%g num_active %d \n",z_level,num_active);*/
362 while (num_active > 0) { /* Do Pass 2. */
363 /* Generate One contour (and update MumActive as needed): */
364 p_cntr = gen_one_contour(p_edges, z_level, &contr_isclosed, &num_active);
365 if (p_cntr ==NULL) printf("<gen_contour> gen_one_contour retourne NULL \n");
366 /* Emit it in requested format: */
367 put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed);
368 }
369}
370
371/*
372 * Does pass 1, or marks the edges which are active (crosses this z_level)
373 * Returns number of active edges (marked ACTIVE).
374 */
375static int
376update_all_edges(p_edges, z_level)
377struct edge_struct *p_edges;
378double z_level;
379{
380 int count = 0;
381
382 while (p_edges) {
383 /* use the same test at both vertices to avoid roundoff errors */
384
385 if ((p_edges->vertex[0]->z >= z_level) !=
386 (p_edges->vertex[1]->z >= z_level)) {
387 p_edges->is_active = TRUE;
388 count++;
389 } else
390 p_edges->is_active = FALSE;
391 p_edges = p_edges->next;
392 }
393
394 return count;
395}
396
397/*
398 * Does pass 2, or find one complete contour out of the triangulation
399 * data base:
400 *
401 * Returns a pointer to the contour (as linked list), contr_isclosed
402 * tells if the contour is a closed line or not, and num_active is
403 * updated.
404 */
405static struct cntr_struct *
406gen_one_contour(p_edges, z_level, contr_isclosed, num_active)
407struct edge_struct *p_edges; /* list of edges input */
408double z_level; /* Z level of contour input */
409TBOOLEAN *contr_isclosed; /* open or closed contour, in/out */
410int *num_active; /* number of active edges in/out */
411{
412 struct edge_struct *pe_temp;
413
414 if (! *contr_isclosed) {
415 /*printf("<gen_one_contour> contr_isclosed FALSE \n");*/
416 /* Look for something to start with on boundary: */
417 pe_temp = p_edges;
418 while (pe_temp) {
419 if (pe_temp->is_active && (pe_temp->position == BOUNDARY))
420 break;
421 pe_temp = pe_temp->next;
422 }
423 if (!pe_temp)
424 *contr_isclosed = TRUE; /* No more contours on boundary. */
425 else {
426 /*printf("<gen_one_contour> contr_isclosed FALSE return \n");*/
427 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
428 }
429 }
430 if (*contr_isclosed) {
431 /* Look for something to start with inside: */
432 /*printf("<gen_one_contour> contr_isclosed TRUE \n");*/
433 pe_temp = p_edges;
434 while (pe_temp) {
435 if (pe_temp->is_active && (pe_temp->position != BOUNDARY))
436 break;
437 pe_temp = pe_temp->next;
438 }
439 if (!pe_temp) {
440 *num_active = 0;
441 fprintf(stderr, "gen_one_contour: no contour found\n");
442 return NULL;
443 } else {
444 *contr_isclosed = TRUE;
445 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
446 }
447 }
448 printf("<gen_one_contour> We should never be here, but lint... \n");
449 return NULL; /* We should never be here, but lint... */
450}
451
452/*
453 * Search the data base along a contour starts at the edge pe_start until
454 * a boundary edge is detected or until we close the loop back to pe_start.
455 * Returns a linked list of all the points on the contour
456 * Also decreases num_active by the number of points on contour.
457 */
458static struct cntr_struct *
459trace_contour(pe_start, z_level, num_active, contr_isclosed)
460 struct edge_struct *pe_start; /* edge to start contour input */
461 double z_level; /* Z level of contour input */
462 int *num_active; /* number of active edges in/out */
463 TBOOLEAN contr_isclosed; /* open or closed contour line (input) */
464{
465 struct cntr_struct *p_cntr, *pc_tail;
466 struct edge_struct *p_edge, *p_next_edge;
467 struct poly_struct *p_poly, *PLastpoly = NULL;
468 int i;
469
470 p_edge = pe_start; /* first edge to start contour */
471
472 /* Generate the header of the contour - the point on pe_start. */
473 if (! contr_isclosed) {
474 pe_start->is_active = FALSE;
475 (*num_active)--;
476 }
477 if (p_edge->poly[0] || p_edge->poly[1]) { /* more than one point */
478
479 p_cntr = pc_tail = update_cntr_pt(pe_start, z_level); /* first point */
480
481 do {
482 /* Find polygon to continue (Not where we came from - PLastpoly): */
483 if (p_edge->poly[0] == PLastpoly)
484 p_poly = p_edge->poly[1];
485 else
486 p_poly = p_edge->poly[0];
487 p_next_edge = NULL; /* In case of error, remains NULL. */
488 for (i = 0; i < 3; i++) /* Test the 3 edges of the polygon: */
489 if (p_poly->edge[i] != p_edge)
490 if (p_poly->edge[i]->is_active)
491 p_next_edge = p_poly->edge[i];
492 if (!p_next_edge) { /* Error exit */
493 pc_tail->next = NULL;
494 free_contour(p_cntr);
495 fprintf(stderr, "trace_contour: unexpected end of contour\n");
496 return NULL;
497 }
498 p_edge = p_next_edge;
499 PLastpoly = p_poly;
500 p_edge->is_active = FALSE;
501 (*num_active)--;
502
503 /* Do not allocate contour points on diagonal edges */
504 if (p_edge->position != DIAGONAL) {
505
506 pc_tail->next = update_cntr_pt(p_edge, z_level);
507
508 /* Remove nearby points */
509 if (fuzzy_equal(pc_tail, pc_tail->next)) {
510
511 free((char *) pc_tail->next);
512 } else
513 pc_tail = pc_tail->next;
514 }
515 } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY));
516
517 pc_tail->next = NULL;
518
519 /* For closed contour the first and last point should be equal */
520 if (pe_start == p_edge) {
521 (p_cntr->X) = (pc_tail->X);
522 (p_cntr->Y) = (pc_tail->Y);
523 }
524 } else { /* only one point, forget it */
525 p_cntr = NULL;
526 }
527
528 return p_cntr;
529}
530
531/*
532 * Allocates one contour location and update it to to correct position
533 * according to z_level and edge p_edge.
534 */
535static struct cntr_struct *
536update_cntr_pt(p_edge, z_level)
537struct edge_struct *p_edge;
538double z_level;
539{
540 double t;
541 struct cntr_struct *p_cntr;
542
543 t = (z_level - p_edge->vertex[0]->z) /
544 (p_edge->vertex[1]->z - p_edge->vertex[0]->z);
545
546 /* test if t is out of interval [0:1] (should not happen but who knows ...) */
547 /*if(t>1) printf(" <update_cntr_pt> t >1 !\n");*/
548 /*if(t<0) printf(" <update_cntr_pt> t negatif !\n");*/
549 t = (t < 0.0 ? 0.0 : t);
550 t = (t > 1.0 ? 1.0 : t);
551 /*printf(" <update_cntr_pt> Point 0 %g %g %g \n",p_edge->vertex[0]->x,p_edge->vertex[0]->y,p_edge->vertex[0]->z);*/
552 /*printf(" <update_cntr_pt> Point 1 %g %g %g \n",p_edge->vertex[1]->x,p_edge->vertex[1]->y,p_edge->vertex[1]->z);*/
553 p_cntr = (struct cntr_struct *)
554 gp_alloc(sizeof(struct cntr_struct), "contour cntr_struct");
555
556 p_cntr->X = p_edge->vertex[1]->x * t +
557 p_edge->vertex[0]->x * (1 - t);
558 p_cntr->Y = p_edge->vertex[1]->y * t +
559 p_edge->vertex[0]->y * (1 - t);
560 /*printf(" <update_cntr_pt> p_cntr X %g Y %g \n",p_cntr->X,p_cntr->Y);*/
561 return p_cntr;
562}
563
564/* Simple routine to decide if two contour points are equal by
565 * calculating the relative error (< EPSILON). */
566/* HBB 20010121: don't use absolute value 'zero' to compare to data
567 * values. */
568static int
569fuzzy_equal(p_cntr1, p_cntr2)
570 struct cntr_struct *p_cntr1, *p_cntr2;
571{
572 double unit_x, unit_y;
573 unit_x = fabs(x_max - x_min); /* reference */
574 unit_y = fabs(y_max - y_min);
575 return ((fabs(p_cntr1->X - p_cntr2->X) < unit_x * EPSILON)
576 && (fabs(p_cntr1->Y - p_cntr2->Y) < unit_y * EPSILON));
577}
578
579/*
580 * Generate the triangles.
581 * Returns the lists (edges & polys) via pointers to their heads.
582 */
583static void
584gen_triangle(num_isolines, iso_lines, p_polys, p_edges)
585int num_isolines; /* number of iso-lines input */
586struct iso_curve *iso_lines; /* iso-lines input */
587struct poly_struct **p_polys; /* list of polygons output */
588struct edge_struct **p_edges; /* list of edges output */
589{
590 int i, j, grid_x_max = iso_lines->p_count;
591 struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail,
592 *pe_tail2, *pe_temp;
593 struct poly_struct *pp_tail, *lower_tri, *upper_tri;
594 /* HBB 980308: need to tag *each* of them as ! */
595 struct coordinate *p_vrtx1, * p_vrtx2;
596
597 (*p_polys) = pp_tail = NULL; /* clear lists */
598 (*p_edges) = pe_tail = NULL;
599
600 p_vrtx1 = iso_lines->points; /* first row of vertices */
601 p_edge1 = pe_tail = NULL; /* clear list of edges */
602
603 /* Generate edges of first row */
604 for (j = 0; j < grid_x_max - 1; j++)
605 add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail);
606
607 (*p_edges) = p_edge1; /* update main list */
608
609
610 /*
611 * Combines vertices to edges and edges to triangles:
612 * ==================================================
613 * The edges are stored in the edge list, referenced by p_edges
614 * (pe_tail points on last edge).
615 *
616 * Temporary pointers:
617 * 1. p_edge2: Top horizontal edge list: +-----------------------+ 2
618 * 2. p_tail : end of middle edge list: |\ |\ |\ |\ |\ |\ |
619 * | \| \| \| \| \| \|
620 * 3. p_edge1: Bottom horizontal edge list: +-----------------------+ 1
621 *
622 * pe_tail2 : end of list beginning at p_edge2
623 * pe_temp : position inside list beginning at p_edge1
624 * p_edges : head of the master edge list (part of our output)
625 * p_vrtx1 : start of lower row of input vertices
626 * p_vrtx2 : start of higher row of input vertices
627 *
628 * The routine generates two triangle Lower Upper 1
629 * upper one and lower one: | \ ----
630 * (Nums. are edges order in polys) 0| \1 0\ |2
631 * The polygons are stored in the polygon ---- \ |
632 * list (*p_polys) (pp_tail points on 2
633 * last polygon).
634 * 1
635 * -----------
636 * In addition, the edge lists are updated - | \ 0 |
637 * each edge has two pointers on the two | \ |
638 * (one active if boundary) polygons which 0|1 0\1 0|1
639 * uses it. These two pointer to polygons | \ |
640 * are named: poly[0], poly[1]. The diagram | 1 \ |
641 * on the right show how they are used for the -----------
642 * upper and lower polygons (INNER_MESH polygons only). 0
643 */
644
645 for (i = 1; i < num_isolines; i++) {
646 /* Read next column and gen. polys. */
647 iso_lines = iso_lines->next;
648
649 p_vrtx2 = iso_lines->points; /* next row of vertices */
650 p_edge2 = pe_tail2 = NULL; /* clear top horizontal list */
651 pe_temp = p_edge1; /* pointer in bottom list */
652
653 /*
654 * Generate edges and triagles for next row:
655 */
656
657 /* generate first vertical edge */
658 edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail);
659
660 for (j = 0; j < grid_x_max - 1; j++) {
661
662 /* copy vertical edge for lower triangle */
663 edge0 = edge2;
664
665 if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) {
666 /* test lower edge */
667 edge2 = pe_temp;
668 pe_temp = pe_temp->next;
669 } else {
670 edge2 = NULL; /* edge is undefined */
671 }
672
673 /* generate diagonal edge */
674 edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail);
675 if (edge1)
676 edge1->position = DIAGONAL;
677
678 /* generate lower triangle */
679 lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
680
681 /* copy diagonal edge for upper triangle */
682 edge0 = edge1;
683
684 /* generate upper edge */
685 edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2);
686
687 /* generate vertical edge */
688 edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail);
689
690 /* generate upper triangle */
691 upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
692 }
693
694 if (p_edge2) {
695 /* HBB 19991130 bugfix: if p_edge2 list is empty,
696 * don't change p_edges list! Crashes by access
697 * to NULL pointer pe_tail, the second time through,
698 * otherwise */
699 if ((*p_edges)) { /* Chain new edges to main list. */
700 pe_tail->next = p_edge2;
701 pe_tail = pe_tail2;
702 } else {
703 (*p_edges) = p_edge2;
704 pe_tail = pe_tail2;
705 }
706 }
707
708 /* this row finished, move list heads up one row: */
709 p_edge1 = p_edge2;
710 p_vrtx1 = p_vrtx2;
711 }
712
713 /* Update the boundary flag, saved in each edge, and update indexes: */
714
715 pe_temp = (*p_edges);
716
717 while (pe_temp) {
718 if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1])))
719 (pe_temp->position) = BOUNDARY;
720 pe_temp = pe_temp->next;
721 }
722}
723
724/*
725 * Calculate minimum and maximum values
726 */
727static void
728calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max)
729 int num_isolines; /* number of iso-lines input */
730 struct iso_curve *iso_lines; /* iso-lines input */
731 double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */
732{
733 int i, j, grid_x_max;
734 struct coordinate *vertex;
735 /*printf("<calc_min_max> : iso_lines->p_count %ld \n",iso_lines->p_count);*/
736 grid_x_max = iso_lines->p_count; /* number of vertices per iso_line */
737
738 (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE; /* clear min/max values */
739 (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE;
740 /*printf(" <calc_min_max> %d \n",num_isolines);*/
741 for (j = 0; j < num_isolines; j++) {
742 /*printf(" <calc_min_max> iso_lines %lx %lx %d min %g max %g\n", */
743 /* iso_lines,iso_lines->points,grid_x_max,(*zz_min),(*zz_max)); */
744 vertex = iso_lines->points;
745
746 for (i = 0; i < grid_x_max; i++) {
747 if (vertex[i].type != UNDEFINED) {
748 if (vertex[i].x > (*xx_max))
749 (*xx_max) = vertex[i].x;
750 if (vertex[i].y > (*yy_max))
751 (*yy_max) = vertex[i].y;
752 if (vertex[i].z > (*zz_max))
753 (*zz_max) = vertex[i].z;
754 if (vertex[i].x < (*xx_min))
755 (*xx_min) = vertex[i].x;
756 if (vertex[i].y < (*yy_min))
757 (*yy_min) = vertex[i].y;
758 if (vertex[i].z < (*zz_min))
759 (*zz_min) = vertex[i].z;
760
761 }
762 }
763 iso_lines = iso_lines->next;
764 /*printf(" End of loop calc_min_max %d \n", j);*/
765 }
766 /* HBB 20000426: this code didn't take into account that axes might
767 * be logscaled... */
768#if 0
769 /* HBB 20001220: DON'T. The values are actually already stored
770 * logarithmized, as should be! */
771 axis_unlog_interval(FIRST_X_AXIS, xx_min, xx_max, 0);
772 axis_unlog_interval(FIRST_Y_AXIS, yy_min, yy_max, 0);
773 axis_unlog_interval(FIRST_Z_AXIS, zz_min, zz_max, 0);
774#endif
775
776 /*
777 * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max));
778 * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max));
779 * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max));
780 */
781}
782
783/*
784 * Generate new edge and append it to list, but only if both vertices are
785 * defined. The list is referenced by p_edge and pe_tail (p_edge points on
786 * first edge and pe_tail on last one).
787 * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit.
788 */
789static struct edge_struct *
790add_edge(point0, point1, p_edge, pe_tail)
791struct coordinate *point0; /* 2 vertices input */
792struct coordinate *point1;
793struct edge_struct **p_edge, **pe_tail; /* pointers to edge list in/out */
794{
795 struct edge_struct *pe_temp = NULL;
796
797#if 1
798 if (point0->type == INRANGE && point1->type == INRANGE) {
799#else
800 if (point0->type != UNDEFINED && point1->type != UNDEFINED) {
801#endif
802
803 pe_temp = (struct edge_struct *)
804 gp_alloc(sizeof(struct edge_struct), "contour edge");
805
806 pe_temp->poly[0] = NULL; /* clear links */
807 pe_temp->poly[1] = NULL;
808 pe_temp->vertex[0] = point0; /* First vertex of edge. */
809 pe_temp->vertex[1] = point1; /* Second vertex of edge. */
810 pe_temp->next = NULL;
811 pe_temp->position = INNER_MESH; /* default position in mesh */
812
813 if ((*pe_tail)) {
814 (*pe_tail)->next = pe_temp; /* Stick new record as last one. */
815 } else {
816 (*p_edge) = pe_temp; /* start new list if empty */
817 }
818 (*pe_tail) = pe_temp; /* continue to last record. */
819
820 }
821 return pe_temp; /* returns NULL, if no edge allocated */
822}
823
824/*
825 * Generate new triangle and append it to list, but only if all edges are defined.
826 * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon
827 * and pp_tail on last one).
828 * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit.
829 */
830static struct poly_struct *
831add_poly(edge0, edge1, edge2, p_poly, pp_tail)
832 struct edge_struct *edge0, *edge1, *edge2; /* 3 edges input */
833 struct poly_struct **p_poly, **pp_tail; /* pointers to polygon list in/out */
834{
835 struct poly_struct *pp_temp = NULL;
836
837 if (edge0 && edge1 && edge2) {
838
839 pp_temp = (struct poly_struct *)
840 gp_alloc(sizeof(struct poly_struct), "contour polygon");
841
842 pp_temp->edge[0] = edge0; /* First edge of triangle */
843 pp_temp->edge[1] = edge1; /* Second one */
844 pp_temp->edge[2] = edge2; /* Third one */
845 pp_temp->next = NULL;
846
847 if (edge0->poly[0]) /* update edge0 */
848 edge0->poly[1] = pp_temp;
849 else
850 edge0->poly[0] = pp_temp;
851
852 if (edge1->poly[0]) /* update edge1 */
853 edge1->poly[1] = pp_temp;
854 else
855 edge1->poly[0] = pp_temp;
856
857 if (edge2->poly[0]) /* update edge2 */
858 edge2->poly[1] = pp_temp;
859 else
860 edge2->poly[0] = pp_temp;
861
862 if ((*pp_tail)) /* Stick new record as last one. */
863 (*pp_tail)->next = pp_temp;
864 else
865 (*p_poly) = pp_temp; /* start new list if empty */
866
867 (*pp_tail) = pp_temp; /* continue to last record. */
868
869 }
870 return pp_temp; /* returns NULL, if no edge allocated */
871}
872
873
874
875/*
876 * Calls the (hopefully) desired interpolation/approximation routine.
877 */
878static void
879put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
880 struct cntr_struct *p_cntr; /* contour structure input */
881 double z_level; /* Z level of contour input */
882 double xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */
883 TBOOLEAN contr_isclosed; /* contour line closed? (input) */
884{
885
886 if (!p_cntr)
887 return; /* Nothing to do if it is empty contour. */
888
889 switch (interp_kind) {
890 case CONTOUR_KIND_LINEAR: /* No interpolation/approximation. */
891 put_contour_nothing(p_cntr);
892 break;
893 case CONTOUR_KIND_CUBIC_SPL: /* Cubic spline interpolation. */
894 put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
895 chk_contour_kind(p_cntr, contr_isclosed));
896
897 break;
898 case CONTOUR_KIND_BSPLINE: /* Bspline approximation. */
899 put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
900 chk_contour_kind(p_cntr, contr_isclosed));
901 break;
902 }
903 free_contour(p_cntr);
904}
905
906/*
907 * Simply puts contour coordinates in order with no interpolation or
908 * approximation.
909 */
910static void
911put_contour_nothing(p_cntr)
912struct cntr_struct *p_cntr;
913{
914 while (p_cntr) {
915 add_cntr_point(p_cntr->X, p_cntr->Y);
916 p_cntr = p_cntr->next;
917 }
918 end_crnt_cntr();
919}
920
921/*
922 * for some reason contours are never flagged as 'isclosed'
923 * if first point == last point, set flag accordingly
924 *
925 */
926
927static int
928chk_contour_kind(p_cntr, contr_isclosed)
929 struct cntr_struct *p_cntr;
930 TBOOLEAN contr_isclosed;
931{
932 struct cntr_struct *pc_tail = NULL;
933 TBOOLEAN current_contr_isclosed;
934
935 /*fprintf(stderr, "check_contour_kind: current contour_kind value is %d\n", contour_kind);*/
936
937 current_contr_isclosed = contr_isclosed;
938
939 if (! contr_isclosed) {
940 pc_tail = p_cntr;
941 while (pc_tail->next)
942 pc_tail = pc_tail->next; /* Find last point. */
943
944 /* test if first and last point are equal */
945 if (fuzzy_equal(pc_tail, p_cntr)) {
946 current_contr_isclosed = TRUE;
947 fprintf(stderr, "check_contour_kind: contr_isclosed changed to %d\n", current_contr_isclosed);
948 }
949 }
950 return (current_contr_isclosed);
951}
952
953/*
954 * Generate a cubic spline curve through the points (x_i,y_i) which are
955 * stored in the linked list p_cntr.
956 * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
957 * parameter t is the length of the linear stroke.
958 */
959static void
960put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
961 struct cntr_struct *p_cntr;
962 double z_level, xx_min, xx_max, yy_min, yy_max;
963 TBOOLEAN contr_isclosed;
964{
965 int num_pts, num_intpol;
966 double unit_x, unit_y; /* To define norm (x,y)-plane */
967 double *delta_t; /* Interval length t_{i+1}-t_i */
968 double *d2x, *d2y; /* Second derivatives x''(t_i), y''(t_i) */
969 struct cntr_struct *pc_tail;
970
971 num_pts = count_contour(p_cntr); /* Number of points in contour. */
972
973 pc_tail = p_cntr; /* Find last point. */
974 while (pc_tail->next)
975 pc_tail = pc_tail->next;
976
977 if (contr_isclosed) {
978 /* Test if first and last point are equal (should be) */
979 if (!fuzzy_equal(pc_tail, p_cntr)) {
980 pc_tail->next = p_cntr; /* Close contour list - make it circular. */
981 num_pts++;
982 }
983 }
984 delta_t = (double *) gp_alloc(num_pts * sizeof(double), "contour delta_t");
985 d2x = (double *) gp_alloc(num_pts * sizeof(double), "contour d2x");
986 d2y = (double *) gp_alloc(num_pts * sizeof(double), "contour d2y");
987
988 /* Width and height of the grid is used as a unit length (2d-norm) */
989 unit_x = xx_max - x_min;
990 unit_y = yy_max - y_min;
991 /* FIXME HBB 20010121: 'zero' should not be used as an absolute
992 * figure to compare to data */
993 unit_x = (unit_x > zero ? unit_x : zero); /* should not be zero */
994 unit_y = (unit_y > zero ? unit_y : zero);
995
996 if (num_pts > 2) {
997 /*
998 * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]:
999 */
1000 if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t,
1001 contr_isclosed, unit_x, unit_y)) {
1002 free((char *) delta_t);
1003 free((char *) d2x);
1004 free((char *) d2y);
1005 if (contr_isclosed)
1006 pc_tail->next = NULL; /* Un-circular list */
1007 return;
1008 }
1009 }
1010 /* If following (num_pts > 1) is TRUE then exactly 2 points in contour. */
1011 else if (num_pts > 1) {
1012 /* set all second derivatives to zero, interval length to 1 */
1013 d2x[0] = 0.;
1014 d2y[0] = 0.;
1015 d2x[1] = 0.;
1016 d2y[1] = 0.;
1017 delta_t[0] = 1.;
1018 } else { /* Only one point ( ?? ) - ignore it. */
1019 free((char *) delta_t);
1020 free((char *) d2x);
1021 free((char *) d2y);
1022 if (contr_isclosed)
1023 pc_tail->next = NULL; /* Un-circular list */
1024 return;
1025 }
1026
1027 /* Calculate "num_intpol" interpolated values */
1028 num_intpol = 1 + (num_pts - 1) * contour_pts; /* global: contour_pts */
1029 intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol);
1030
1031 free((char *) delta_t);
1032 free((char *) d2x);
1033 free((char *) d2y);
1034
1035 if (contr_isclosed)
1036 pc_tail->next = NULL; /* Un-circular list */
1037
1038 end_crnt_cntr();
1039}
1040
1041
1042/*
1043 * Find Bspline approximation for this data set.
1044 * Uses global variable contour_pts to determine number of samples per
1045 * interval, where the knot vector intervals are assumed to be uniform, and
1046 * global variable contour_order for the order of Bspline to use.
1047 */
1048static void
1049put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
1050struct cntr_struct *p_cntr;
1051double z_level, xx_min, xx_max, yy_min, yy_max;
1052TBOOLEAN contr_isclosed;
1053{
1054 int num_pts;
1055 int order = contour_order - 1;
1056
1057 num_pts = count_contour(p_cntr); /* Number of points in contour. */
1058 if (num_pts < 2)
1059 return; /* Can't do nothing if empty or one points! */
1060 /* Order must be less than number of points in curve - fix it if needed. */
1061 if (order > num_pts - 1)
1062 order = num_pts - 1;
1063
1064 gen_bspline_approx(p_cntr, num_pts, order, contr_isclosed);
1065 end_crnt_cntr();
1066}
1067
1068/*
1069 * Free all elements in the contour list.
1070 */
1071static void
1072free_contour(p_cntr)
1073struct cntr_struct *p_cntr;
1074{
1075 struct cntr_struct *pc_temp;
1076
1077 while (p_cntr) {
1078 pc_temp = p_cntr;
1079 p_cntr = p_cntr->next;
1080 free((char *) pc_temp);
1081 }
1082}
1083
1084/*
1085 * Counts number of points in contour.
1086 */
1087static int
1088count_contour(p_cntr)
1089struct cntr_struct *p_cntr;
1090{
1091 int count = 0;
1092
1093 while (p_cntr) {
1094 count++;
1095 p_cntr = p_cntr->next;
1096 }
1097 return count;
1098}
1099
1100/*
1101 * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
1102 * through list of points (x_i,y_i). The parameter t is calculated as the
1103 * length of the linear stroke. The number of points must be at least 3.
1104 * Note: For closed contours the first and last point must be equal.
1105 */
1106static int
1107gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_isclosed, unit_x, unit_y)
1108int num_pts; /* Number of points (num_pts>=3), input */
1109struct cntr_struct *p_cntr; /* List of points (x(t_i),y(t_i)), input */
1110double d2x[], d2y[], /* Second derivatives (x''(t_i),y''(t_i)), output */
1111 delta_t[]; /* List of interval lengths t_{i+1}-t_{i}, output */
1112TBOOLEAN contr_isclosed; /* Closed or open contour?, input */
1113double unit_x, unit_y; /* Unit length in x and y (norm=1), input */
1114{
1115 int n, i;
1116 double norm;
1117 tri_diag *m; /* The tri-diagonal matrix is saved here. */
1118 struct cntr_struct *pc_temp;
1119
1120 m = (tri_diag *) gp_alloc(num_pts * sizeof(tri_diag), "contour tridiag m");
1121
1122 /*
1123 * Calculate first differences in (d2x[i], d2y[i]) and interval lengths
1124 * in delta_t[i]:
1125 */
1126 pc_temp = p_cntr;
1127 for (i = 0; i < num_pts - 1; i++) {
1128 d2x[i] = pc_temp->next->X - pc_temp->X;
1129 d2y[i] = pc_temp->next->Y - pc_temp->Y;
1130 /*
1131 * The norm of a linear stroke is calculated in "normal coordinates"
1132 * and used as interval length:
1133 */
1134 delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y));
1135
1136 d2x[i] /= delta_t[i]; /* first difference, with unit norm: */
1137 d2y[i] /= delta_t[i]; /* || (d2x[i], d2y[i]) || = 1 */
1138
1139 pc_temp = pc_temp->next;
1140 }
1141
1142 /*
1143 * Setup linear system: m * x = b
1144 */
1145 n = num_pts - 2; /* Without first and last point */
1146 if (contr_isclosed) {
1147 /* First and last points must be equal for closed contours */
1148 delta_t[num_pts - 1] = delta_t[0];
1149 d2x[num_pts - 1] = d2x[0];
1150 d2y[num_pts - 1] = d2y[0];
1151 n++; /* Add last point (= first point) */
1152 }
1153 for (i = 0; i < n; i++) {
1154 /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */
1155 m[i][0] = delta_t[i]; /* Off-diagonal element M_{i,i-1} */
1156 m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]); /* M_{i,i} */
1157 m[i][2] = delta_t[i + 1]; /* Off-diagonal element M_{i,i+1} */
1158
1159 /* Right side b_x and b_y */
1160 d2x[i] = (d2x[i + 1] - d2x[i]) * 6.;
1161 d2y[i] = (d2y[i + 1] - d2y[i]) * 6.;
1162
1163 /*
1164 * If the linear stroke shows a cusps of more than 90 degree, the right
1165 * side is reduced to avoid oscillations in the spline:
1166 */
1167 norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5;
1168
1169 if (norm > 1.) {
1170 d2x[i] /= norm;
1171 d2y[i] /= norm;
1172 /* The first derivative will not be continuous */
1173 }
1174 }
1175
1176 if (!contr_isclosed) {
1177 /* Third derivative is set to zero at both ends */
1178 m[0][1] += m[0][0]; /* M_{0,0} */
1179 m[0][0] = 0.; /* M_{0,n-1} */
1180 m[n - 1][1] += m[n - 1][2]; /* M_{n-1,n-1} */
1181 m[n - 1][2] = 0.; /* M_{n-1,0} */
1182 }
1183 /* Solve linear systems for d2x[] and d2y[] */
1184
1185
1186 if (solve_cubic_1(m, n)) { /* Calculate Cholesky decomposition */
1187 solve_cubic_2(m, d2x, n); /* solve M * d2x = b_x */
1188 solve_cubic_2(m, d2y, n); /* solve M * d2y = b_y */
1189
1190 } else { /* Should not happen, but who knows ... */
1191 free((char *) m);
1192 return FALSE;
1193 }
1194
1195 /* Shift all second derivatives one place right and abdate end points */
1196 for (i = n; i > 0; i--) {
1197 d2x[i] = d2x[i - 1];
1198 d2y[i] = d2y[i - 1];
1199 }
1200 if (contr_isclosed) {
1201 d2x[0] = d2x[n];
1202 d2y[0] = d2y[n];
1203 } else {
1204 d2x[0] = d2x[1]; /* Third derivative is zero in */
1205 d2y[0] = d2y[1]; /* first and last interval */
1206 d2x[n + 1] = d2x[n];
1207 d2y[n + 1] = d2y[n];
1208 }
1209
1210 free((char *) m);
1211 return TRUE;
1212}
1213
1214/*
1215 * Calculate interpolated values of the spline function (defined via p_cntr
1216 * and the second derivatives d2x[] and d2y[]). The number of tabulated
1217 * values is n. On an equidistant grid n_intpol values are calculated.
1218 */
1219static void
1220intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol)
1221int n;
1222struct cntr_struct *p_cntr;
1223double d2x[], d2y[], delta_t[];
1224int n_intpol;
1225{
1226 double t, t_skip, t_max;
1227 double x0, x1, x, y0, y1, y;
1228 double d, hx, dx0, dx01, hy, dy0, dy01;
1229 int i;
1230
1231 /* The length of the total interval */
1232 t_max = 0.;
1233 for (i = 0; i < n - 1; i++)
1234 t_max += delta_t[i];
1235
1236 /* The distance between interpolated points */
1237 t_skip = (1. - 1e-7) * t_max / (n_intpol - 1);
1238
1239 t = 0.; /* Parameter value */
1240 x1 = p_cntr->X;
1241 y1 = p_cntr->Y;
1242 add_cntr_point(x1, y1); /* First point. */
1243 t += t_skip;
1244
1245 for (i = 0; i < n - 1; i++) {
1246 p_cntr = p_cntr->next;
1247
1248 d = delta_t[i]; /* Interval length */
1249 x0 = x1;
1250 y0 = y1;
1251 x1 = p_cntr->X;
1252 y1 = p_cntr->Y;
1253 hx = (x1 - x0) / d;
1254 hy = (y1 - y0) / d;
1255 dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.;
1256 dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.;
1257 dx01 = (d2x[i + 1] - d2x[i]) / (6. * d);
1258 dy01 = (d2y[i + 1] - d2y[i]) / (6. * d);
1259 while (t <= delta_t[i]) { /* t in current interval ? */
1260 x = x0 + t * (hx + (t - d) * (dx0 + t * dx01));
1261 y = y0 + t * (hy + (t - d) * (dy0 + t * dy01));
1262 add_cntr_point(x, y); /* next point. */
1263 t += t_skip;
1264 }
1265 t -= delta_t[i]; /* Parameter t relative to start of next interval */
1266 }
1267}
1268
1269/*
1270 * The following two procedures solve the special linear system which arise
1271 * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
1272 * equations can be written as (i=0,1,...,n-1):
1273 * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
1274 * In matrix notation one gets M * x = b, where the matrix M is tridiagonal
1275 * with additional elements in the upper right and lower left position:
1276 * m[i][0] = M_{i,i-1} for i=1,2,...,n-1 and m[0][0] = M_{0,n-1} ,
1277 * m[i][1] = M_{i, i } for i=0,1,...,n-1
1278 * m[i][2] = M_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = M_{n-1,0}.
1279 * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite.
1280 * The size of the system is given in n (n>=1).
1281 *
1282 * In the first procedure the Cholesky decomposition M = C^T * D * C
1283 * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
1284 * Return TRUE if decomposition exist.
1285 */
1286static int
1287solve_cubic_1(m, n)
1288tri_diag m[];
1289int n;
1290{
1291 int i;
1292 double m_ij, m_n, m_nn, d;
1293
1294 if (n < 1)
1295 return FALSE; /* Dimension should be at least 1 */
1296
1297 d = m[0][1]; /* D_{0,0} = M_{0,0} */
1298 if (d <= 0.)
1299 return FALSE; /* M (or D) should be positiv definite */
1300 m_n = m[0][0]; /* M_{0,n-1} */
1301 m_nn = m[n - 1][1]; /* M_{n-1,n-1} */
1302 for (i = 0; i < n - 2; i++) {
1303 m_ij = m[i][2]; /* M_{i,1} */
1304 m[i][2] = m_ij / d; /* C_{i,i+1} */
1305 m[i][0] = m_n / d; /* C_{i,n-1} */
1306 m_nn -= m[i][0] * m_n; /* to get C_{n-1,n-1} */
1307 m_n = -m[i][2] * m_n; /* to get C_{i+1,n-1} */
1308 d = m[i + 1][1] - m[i][2] * m_ij; /* D_{i+1,i+1} */
1309 if (d <= 0.)
1310 return FALSE; /* Elements of D should be positiv */
1311 m[i + 1][1] = d;
1312 }
1313 if (n >= 2) { /* Complete last column */
1314 m_n += m[n - 2][2]; /* add M_{n-2,n-1} */
1315 m[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
1316 m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n; /* D_{n-1,n-1} */
1317 if (d <= 0.)
1318 return FALSE;
1319 }
1320 return TRUE;
1321}
1322
1323/*
1324 * The second procedure solves the linear system, with the Choleky
1325 * decomposition calculated above (in m[][]) and the right side b given
1326 * in x[]. The solution x overwrites the right side in x[].
1327 */
1328static void
1329solve_cubic_2(m, x, n)
1330tri_diag m[];
1331double x[];
1332int n;
1333{
1334 int i;
1335 double x_n;
1336
1337 /* Division by transpose of C : b = C^{-T} * b */
1338 x_n = x[n - 1];
1339 for (i = 0; i < n - 2; i++) {
1340 x[i + 1] -= m[i][2] * x[i]; /* C_{i,i+1} * x_{i} */
1341 x_n -= m[i][0] * x[i]; /* C_{i,n-1} * x_{i} */
1342 }
1343 if (n >= 2)
1344 x[n - 1] = x_n - m[n - 2][0] * x[n - 2]; /* C_{n-2,n-1} * x_{n-1} */
1345
1346 /* Division by D: b = D^{-1} * b */
1347 for (i = 0; i < n; i++)
1348 x[i] /= m[i][1];
1349
1350 /* Division by C: b = C^{-1} * b */
1351 x_n = x[n - 1];
1352 if (n >= 2)
1353 x[n - 2] -= m[n - 2][0] * x_n; /* C_{n-2,n-1} * x_{n-1} */
1354 for (i = n - 3; i >= 0; i--) {
1355 /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
1356 x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n;
1357 }
1358 return;
1359}
1360
1361/*
1362 * Solve tri diagonal linear system equation. The tri diagonal matrix is
1363 * defined via matrix M, right side is r, and solution X i.e. M * X = R.
1364 * Size of system given in n. Return TRUE if solution exist.
1365 */
1366/* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */
1367
1368int
1369solve_tri_diag(m, r, x, n)
1370tri_diag m[];
1371double r[], x[];
1372int n;
1373{
1374 int i;
1375 double t;
1376
1377 for (i = 1; i < n; i++) { /* Eliminate element m[i][i-1] (lower diagonal). */
1378 if (m[i - 1][1] == 0)
1379 return FALSE;
1380 t = m[i][0] / m[i - 1][1]; /* Find ratio between the two lines. */
1381/* m[i][0] = m[i][0] - m[i-1][1] * t; */
1382/* m[i][0] is not used any more (and set to 0 in the above line) */
1383 m[i][1] = m[i][1] - m[i - 1][2] * t;
1384 r[i] = r[i] - r[i - 1] * t;
1385 }
1386 /* Now do back subtitution - update the solution vector X: */
1387 if (m[n - 1][1] == 0)
1388 return FALSE;
1389 x[n - 1] = r[n - 1] / m[n - 1][1]; /* Find last element. */
1390 for (i = n - 2; i >= 0; i--) {
1391 if (m[i][1] == 0)
1392 return FALSE;
1393 x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1];
1394 }
1395 return TRUE;
1396}
1397
1398/*
1399 * Generate a Bspline curve defined by all the points given in linked list p:
1400 * Algorithm: using deBoor algorithm
1401 * Note: if Curvekind is open contour than Open end knot vector is assumed,
1402 * else (closed contour) Float end knot vector is assumed.
1403 * It is assumed that num_of_points is at least 2, and order of Bspline is less
1404 * than num_of_points!
1405 */
1406static void
1407gen_bspline_approx(p_cntr, num_of_points, order, contr_isclosed)
1408struct cntr_struct *p_cntr;
1409int num_of_points, order;
1410TBOOLEAN contr_isclosed;
1411{
1412 int knot_index = 0, pts_count = 1;
1413 double dt, t, next_t, t_min, t_max, x, y;
1414 struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL;
1415
1416 /* If the contour is Closed one we must update few things:
1417 * 1. Make the list temporary circular, so we can close the contour.
1418 * 2. Update num_of_points - increase it by "order-1" so contour will be
1419 * closed. This will evaluate order more sections to close it!
1420 */
1421 if (contr_isclosed) {
1422 pc_tail = p_cntr;
1423 while (pc_tail->next)
1424 pc_tail = pc_tail->next; /* Find last point. */
1425
1426 /* test if first and last point are equal */
1427 if (fuzzy_equal(pc_tail, p_cntr)) {
1428 /* Close contour list - make it circular. */
1429 pc_tail->next = p_cntr->next;
1430 num_of_points += order - 1;
1431 } else {
1432 pc_tail->next = p_cntr;
1433 num_of_points += order;
1434 }
1435 }
1436 /* Find first (t_min) and last (t_max) t value to eval: */
1437 t = t_min = fetch_knot(contr_isclosed, num_of_points, order, order);
1438 t_max = fetch_knot(contr_isclosed, num_of_points, order, num_of_points);
1439 next_t = t_min + 1.0;
1440 knot_index = order;
1441 dt = 1.0 / contour_pts; /* Number of points per one section. */
1442
1443
1444 while (t < t_max) {
1445 if (t > next_t) {
1446 pc_temp = pc_temp->next; /* Next order ctrl. pt. to blend. */
1447 knot_index++;
1448 next_t += 1.0;
1449 }
1450 eval_bspline(t, pc_temp, num_of_points, order, knot_index,
1451 contr_isclosed, &x, &y); /* Next pt. */
1452 add_cntr_point(x, y);
1453 pts_count++;
1454 /* As we might have some real number round off problems we do */
1455 /* the last point outside the loop */
1456 if (pts_count == contour_pts * (num_of_points - order) + 1)
1457 break;
1458 t += dt;
1459 }
1460
1461 /* Now do the last point */
1462 eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index,
1463 contr_isclosed, &x, &y);
1464 add_cntr_point(x, y); /* Complete the contour. */
1465
1466 if (contr_isclosed) /* Update list - un-circular it. */
1467 pc_tail->next = NULL;
1468}
1469
1470/*
1471 * The routine to evaluate the B-spline value at point t using knot vector
1472 * from function fetch_knot(), and the control points p_cntr.
1473 * Returns (x, y) of approximated B-spline. Note that p_cntr points on the
1474 * first control point to blend with. The B-spline is of order order.
1475 */
1476static void
1477eval_bspline(t, p_cntr, num_of_points, order, j, contr_isclosed, x, y)
1478double t;
1479struct cntr_struct *p_cntr;
1480int num_of_points, order, j;
1481TBOOLEAN contr_isclosed;
1482double *x, *y;
1483{
1484 int i, p;
1485 double ti, tikp, *dx, *dy; /* Copy p_cntr into it to make it faster. */
1486
1487 dx = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1488 dy = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1489
1490 /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */
1491 for (i = j - order; i <= j; i++) {
1492 dx[i] = p_cntr->X;
1493 dy[i] = p_cntr->Y;
1494 p_cntr = p_cntr->next;
1495 }
1496
1497 for (p = 1; p <= order; p++) { /* Iteration (b-spline level) counter. */
1498 for (i = j; i >= j - order + p; i--) { /* Control points indexing. */
1499 ti = fetch_knot(contr_isclosed, num_of_points, order, i);
1500 tikp = fetch_knot(contr_isclosed, num_of_points, order, i + order + 1 - p);
1501 if (ti == tikp) { /* Should not be a problems but how knows... */
1502 } else {
1503 dx[i] = dx[i] * (t - ti) / (tikp - ti) + /* Calculate x. */
1504 dx[i - 1] * (tikp - t) / (tikp - ti);
1505 dy[i] = dy[i] * (t - ti) / (tikp - ti) + /* Calculate y. */
1506 dy[i - 1] * (tikp - t) / (tikp - ti);
1507 }
1508 }
1509 }
1510 *x = dx[j];
1511 *y = dy[j];
1512 free((char *) dx);
1513 free((char *) dy);
1514}
1515
1516/*
1517 * Routine to get the i knot from uniform knot vector. The knot vector
1518 * might be float (Knot(i) = i) or open (where the first and last "order"
1519 * knots are equal). contr_isclosed determines knot kind - open contour means
1520 * open knot vector, and closed contour selects float knot vector.
1521 * Note the knot vector is not exist and this routine simulates it existance
1522 * Also note the indexes for the knot vector starts from 0.
1523 */
1524static double
1525fetch_knot(contr_isclosed, num_of_points, order, i)
1526 TBOOLEAN contr_isclosed;
1527 int num_of_points, order, i;
1528{
1529 if(! contr_isclosed) {
1530 if (i <= order)
1531 return 0.0;
1532 else if (i <= num_of_points)
1533 return (double) (i - order);
1534 else
1535 return (double) (num_of_points - order);
1536 } else {
1537 return (double) i;
1538 }
1539}
Note: See TracBrowser for help on using the repository browser.