1 | #ifndef lint
|
---|
2 | static char *RCSid() { return RCSid("$Id: contour.c,v 1.1.1.1 2001-12-19 18:01:18 perderos Exp $"); }
|
---|
3 | #endif
|
---|
4 |
|
---|
5 | /* GNUPLOT - contour.c */
|
---|
6 |
|
---|
7 | /*[
|
---|
8 | * Copyright 1986 - 1993, 1998 Thomas Williams, Colin Kelley
|
---|
9 | *
|
---|
10 | * Permission to use, copy, and distribute this software and its
|
---|
11 | * documentation for any purpose with or without fee is hereby granted,
|
---|
12 | * provided that the above copyright notice appear in all copies and
|
---|
13 | * that both that copyright notice and this permission notice appear
|
---|
14 | * in supporting documentation.
|
---|
15 | *
|
---|
16 | * Permission to modify the software is granted, but not the right to
|
---|
17 | * distribute the complete modified source code. Modifications are to
|
---|
18 | * be distributed as patches to the released version. Permission to
|
---|
19 | * distribute binaries produced by compiling modified sources is granted,
|
---|
20 | * provided you
|
---|
21 | * 1. distribute the corresponding source modifications from the
|
---|
22 | * released version in the form of a patch file along with the binaries,
|
---|
23 | * 2. add special version identification to distinguish your version
|
---|
24 | * in addition to the base release version number,
|
---|
25 | * 3. provide your name and address as the primary contact for the
|
---|
26 | * support of your modified version, and
|
---|
27 | * 4. retain our contact information in regard to use of the base
|
---|
28 | * software.
|
---|
29 | * Permission to distribute the released version of the source code along
|
---|
30 | * with corresponding source modifications in the form of a patch file is
|
---|
31 | * granted with same provisions 2 through 4 for binary distributions.
|
---|
32 | *
|
---|
33 | * This software is provided "as is" without express or implied warranty
|
---|
34 | * to the extent permitted by applicable law.
|
---|
35 | ]*/
|
---|
36 |
|
---|
37 |
|
---|
38 | /*
|
---|
39 | * AUTHORS
|
---|
40 | *
|
---|
41 | * Original Software:
|
---|
42 | * Gershon Elber
|
---|
43 | *
|
---|
44 | * Improvements to the numerical algorithms:
|
---|
45 | * Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de)
|
---|
46 | *
|
---|
47 | */
|
---|
48 |
|
---|
49 | #include "contour.h"
|
---|
50 |
|
---|
51 | #include "alloc.h"
|
---|
52 | #include "myaxis.h"
|
---|
53 | /* #include "setshow.h" */
|
---|
54 |
|
---|
55 | /* exported variables (to be handled by the 'set' and friends): */
|
---|
56 |
|
---|
57 | char contour_format[32] = "%8.3g"; /* format for contour key entries */
|
---|
58 | t_contour_kind contour_kind = CONTOUR_KIND_LINEAR;
|
---|
59 | t_contour_levels_kind contour_levels_kind = LEVELS_AUTO;
|
---|
60 | int contour_levels = DEFAULT_CONTOUR_LEVELS;
|
---|
61 | int contour_order = DEFAULT_CONTOUR_ORDER;
|
---|
62 | int contour_pts = DEFAULT_NUM_APPROX_PTS;
|
---|
63 |
|
---|
64 | dynarray dyn_contour_levels_list;/* storage for z levels to draw contours at */
|
---|
65 | double * contour_levels_list=NULL;
|
---|
66 |
|
---|
67 | /* position of edge in mesh */
|
---|
68 | typedef enum en_edge_position {
|
---|
69 | INNER_MESH=1,
|
---|
70 | BOUNDARY,
|
---|
71 | DIAGONAL
|
---|
72 | } t_edge_position;
|
---|
73 |
|
---|
74 |
|
---|
75 | /* FIXME HBB 2000052: yet another local copy of 'epsilon'. Why? */
|
---|
76 | #define EPSILON 1e-5 /* Used to decide if two float are equal. */
|
---|
77 |
|
---|
78 | #ifndef TRUE
|
---|
79 | #define TRUE -1
|
---|
80 | #define FALSE 0
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | #define MAX_POINTS_PER_CNTR 100
|
---|
84 |
|
---|
85 | #define SQR(x) ((x) * (x))
|
---|
86 |
|
---|
87 | /*
|
---|
88 | * struct vrtx_struct {
|
---|
89 | * double X, Y, Z;
|
---|
90 | * struct vrtx_struct *next;
|
---|
91 | * };
|
---|
92 | *
|
---|
93 | * replaced by 'struct coordinate ', see plot.h (HMK 1997)
|
---|
94 | */
|
---|
95 |
|
---|
96 | struct edge_struct {
|
---|
97 | struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */
|
---|
98 | struct coordinate *vertex[2]; /* The two extreme points of this edge. */
|
---|
99 | struct edge_struct *next; /* To chain lists */
|
---|
100 | TBOOLEAN is_active; /* is edge is 'active' at certain Z level? */
|
---|
101 | t_edge_position position; /* position of edge in mesh */
|
---|
102 | };
|
---|
103 |
|
---|
104 | struct poly_struct {
|
---|
105 | struct edge_struct *edge[3]; /* As we do triangolation here... */
|
---|
106 | struct poly_struct *next; /* To chain lists. */
|
---|
107 | };
|
---|
108 |
|
---|
109 | struct cntr_struct { /* Contours are saved using this struct list. */
|
---|
110 | double X, Y; /* The coordinates of this vertex. */
|
---|
111 | struct cntr_struct *next; /* To chain lists. */
|
---|
112 | };
|
---|
113 |
|
---|
114 | static struct gnuplot_contours *contour_list = NULL;
|
---|
115 | static double crnt_cntr[MAX_POINTS_PER_CNTR * 2];
|
---|
116 | static int crnt_cntr_pt_index = 0;
|
---|
117 | static double contour_level = 0.0;
|
---|
118 |
|
---|
119 | /* Linear, Cubic interp., Bspline: */
|
---|
120 | static t_contour_kind interp_kind = CONTOUR_KIND_LINEAR;
|
---|
121 |
|
---|
122 | static double x_min, y_min, z_min; /* Minimum values of x, y, and z */
|
---|
123 | static double x_max, y_max, z_max; /* Maximum values of x, y, and z */
|
---|
124 |
|
---|
125 | static void add_cntr_point (double x, double y);
|
---|
126 | static void end_crnt_cntr (void);
|
---|
127 | static void gen_contours(struct edge_struct * p_edges, double z_level,
|
---|
128 | double xx_min, double xx_max, double yy_min, double yy_max);
|
---|
129 | static int update_all_edges(struct edge_struct * p_edges,
|
---|
130 | double z_level);
|
---|
131 | static struct cntr_struct *gen_one_contour (
|
---|
132 | struct edge_struct * p_edges, double
|
---|
133 | z_level, TBOOLEAN *contr_isclosed,
|
---|
134 | int *num_active);
|
---|
135 | static struct cntr_struct *trace_contour (
|
---|
136 | struct edge_struct * pe_start, double
|
---|
137 | z_level, int *num_active,
|
---|
138 | TBOOLEAN contr_isclosed);
|
---|
139 | static struct cntr_struct *update_cntr_pt (struct edge_struct * p_edge,
|
---|
140 | double z_level);
|
---|
141 | static int fuzzy_equal (struct cntr_struct * p_cntr1,
|
---|
142 | struct cntr_struct * p_cntr2);
|
---|
143 |
|
---|
144 |
|
---|
145 | static void gen_triangle (int num_isolines,
|
---|
146 | struct iso_curve * iso_lines, struct poly_struct ** p_polys,
|
---|
147 | struct edge_struct ** p_edges);
|
---|
148 | static void calc_min_max (int num_isolines,
|
---|
149 | struct iso_curve * iso_lines, double *xx_min, double *yy_min,
|
---|
150 | double *zz_min,
|
---|
151 | double *xx_max, double *yy_max, double *zz_max);
|
---|
152 | static struct edge_struct *add_edge (struct coordinate * point0,
|
---|
153 | struct coordinate * point1, struct edge_struct
|
---|
154 | ** p_edge,
|
---|
155 | struct edge_struct ** pe_tail);
|
---|
156 | static struct poly_struct *add_poly (struct edge_struct * edge0,
|
---|
157 | struct edge_struct * edge1, struct edge_struct * edge2,
|
---|
158 | struct poly_struct ** p_poly, struct poly_struct ** pp_tail);
|
---|
159 |
|
---|
160 |
|
---|
161 | static void put_contour (struct cntr_struct * p_cntr, double z_level,
|
---|
162 | double xx_min, double xx_max, double yy_min, double yy_max,
|
---|
163 | TBOOLEAN contr_isclosed);
|
---|
164 | static void put_contour_nothing (struct cntr_struct * p_cntr);
|
---|
165 | static int chk_contour_kind (struct cntr_struct * p_cntr,
|
---|
166 | TBOOLEAN contr_isclosed);
|
---|
167 | static void put_contour_cubic (struct cntr_struct * p_cntr,
|
---|
168 | double z_level, double xx_min, double xx_max, double
|
---|
169 | yy_min, double yy_max,
|
---|
170 | TBOOLEAN contr_isclosed);
|
---|
171 | static void put_contour_bspline (struct cntr_struct * p_cntr,
|
---|
172 | double z_level, double xx_min, double xx_max, double
|
---|
173 | yy_min, double yy_max,
|
---|
174 | TBOOLEAN contr_isclosed);
|
---|
175 | static void free_contour (struct cntr_struct * p_cntr);
|
---|
176 | static int count_contour (struct cntr_struct * p_cntr);
|
---|
177 | static int gen_cubic_spline (int num_pts, struct cntr_struct * p_cntr,
|
---|
178 | double d2x[], double d2y[], double delta_t[], TBOOLEAN contr_isclosed,
|
---|
179 | double unit_x, double unit_y);
|
---|
180 | static void intp_cubic_spline (int n, struct cntr_struct * p_cntr,
|
---|
181 | double d2x[], double d2y[], double delta_t[], int n_intpol);
|
---|
182 | static int solve_cubic_1 (tri_diag m[], int n);
|
---|
183 | static void solve_cubic_2 (tri_diag m[], double x[], int n);
|
---|
184 | static void gen_bspline_approx (struct cntr_struct * p_cntr,
|
---|
185 | int num_of_points, int order, TBOOLEAN contr_isclosed);
|
---|
186 | static void eval_bspline (double t, struct cntr_struct * p_cntr,
|
---|
187 | int num_of_points, int order, int j, TBOOLEAN contr_isclosed, double *x,
|
---|
188 | double *y);
|
---|
189 | static double fetch_knot (TBOOLEAN contr_isclosed, int num_of_points,
|
---|
190 | int order, int i);
|
---|
191 |
|
---|
192 |
|
---|
193 | static int num_of_z_levels;/*_____ OP ___________*/ /* # Z contour levels. */
|
---|
194 |
|
---|
195 | int Get_Num_Of_Z_Levels(){
|
---|
196 | return num_of_z_levels;
|
---|
197 | } /* OP __________ */
|
---|
198 |
|
---|
199 | /*
|
---|
200 | * Entry routine to this whole set of contouring module.
|
---|
201 | */
|
---|
202 | struct gnuplot_contours *
|
---|
203 | contour(num_isolines, iso_lines)
|
---|
204 | int num_isolines;
|
---|
205 | struct iso_curve *iso_lines;
|
---|
206 | {
|
---|
207 | int i;
|
---|
208 | /*OP int num_of_z_levels;*/ /* # Z contour levels. */
|
---|
209 | struct poly_struct *p_polys, *p_poly;
|
---|
210 | struct edge_struct *p_edges, *p_edge;
|
---|
211 | double z = 0, dz = 0;
|
---|
212 | struct gnuplot_contours *save_contour_list;
|
---|
213 |
|
---|
214 | num_of_z_levels = contour_levels;
|
---|
215 | interp_kind = contour_kind;
|
---|
216 |
|
---|
217 | contour_list = NULL;
|
---|
218 |
|
---|
219 | /*
|
---|
220 | * Calculate min/max values :
|
---|
221 | */
|
---|
222 | calc_min_max(num_isolines, iso_lines,
|
---|
223 | &x_min, &y_min, &z_min, &x_max, &y_max, &z_max);
|
---|
224 |
|
---|
225 | dz = fabs(z_max - z_min);
|
---|
226 | /*
|
---|
227 | * printf(" contour z_max %g z_min %g dz=%g kind %d \n",z_max, z_min , dz,contour_levels_kind);
|
---|
228 | * Generate list of edges (p_edges) and list of triangles (p_polys):
|
---|
229 | */
|
---|
230 |
|
---|
231 | gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges);
|
---|
232 | crnt_cntr_pt_index = 0;
|
---|
233 | /*AJOUT OP */
|
---|
234 | if (contour_levels_kind == LEVELS_NUM) {
|
---|
235 | dz = fabs(z_max - z_min)/(num_of_z_levels);
|
---|
236 | z = z_min - dz/2.;
|
---|
237 | }
|
---|
238 |
|
---|
239 | if (contour_levels_kind == LEVELS_AUTO) {
|
---|
240 | dz = fabs(z_max - z_min);
|
---|
241 | /*printf(" contour z_max %g z_min %g dz=%g\n",z_max, z_min , dz);*/
|
---|
242 | if (dz == 0)
|
---|
243 | return NULL; /* empty z range ? */
|
---|
244 | /* what is the deeper sense of this ? (joze) */
|
---|
245 | dz = set_tic(log10(dz), ((int) contour_levels + 1) * 2);
|
---|
246 | z = floor(z_min / dz) * dz;
|
---|
247 | num_of_z_levels = (int) floor((z_max - z) / dz);
|
---|
248 | /*printf("contour() : num_of_z_levels %d\n",num_of_z_levels);*/
|
---|
249 | }
|
---|
250 | for (i = 0; i < num_of_z_levels; i++) {
|
---|
251 | switch (contour_levels_kind) {
|
---|
252 | case LEVELS_AUTO:
|
---|
253 | case LEVELS_NUM:
|
---|
254 | z += dz;
|
---|
255 | break;
|
---|
256 | case LEVELS_INCREMENTAL:
|
---|
257 | z = contour_levels_list[0] + i * contour_levels_list[1];
|
---|
258 | break;
|
---|
259 | case LEVELS_DISCRETE:
|
---|
260 | /*printf("????? contour z=%f\n",contour_levels_list[i] );*/
|
---|
261 | /*z = AXIS_LOG_VALUE(FIRST_Z_AXIS, contour_levels_list[i]); PAS BESOIN ? OP */
|
---|
262 | z = contour_levels_list[i];
|
---|
263 | break;
|
---|
264 | }
|
---|
265 | contour_level = z;
|
---|
266 | /*printf(" contour z=%f\n",z);*/
|
---|
267 | save_contour_list = contour_list;
|
---|
268 | gen_contours(p_edges, z, x_min, x_max, y_min, y_max);
|
---|
269 | if (contour_list != save_contour_list) {
|
---|
270 | contour_list->isNewLevel = 1;
|
---|
271 | sprintf(contour_list->label, contour_format, AXIS_DE_LOG_VALUE(FIRST_Z_AXIS,z));
|
---|
272 | #ifdef PM3D
|
---|
273 | contour_list->z = AXIS_DE_LOG_VALUE(FIRST_Z_AXIS, z);
|
---|
274 | #endif
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 | /* Free all contouring related temporary data. */
|
---|
279 | while (p_polys) {
|
---|
280 | p_poly = p_polys->next;
|
---|
281 | free(p_polys);
|
---|
282 | p_polys = p_poly;
|
---|
283 | }
|
---|
284 | while (p_edges) {
|
---|
285 | p_edge = p_edges->next;
|
---|
286 | free(p_edges);
|
---|
287 | p_edges = p_edge;
|
---|
288 | }
|
---|
289 |
|
---|
290 | return contour_list;
|
---|
291 | }
|
---|
292 |
|
---|
293 | /*
|
---|
294 | * Adds another point to the currently build contour.
|
---|
295 | */
|
---|
296 | static void
|
---|
297 | add_cntr_point(x, y)
|
---|
298 | double x, y;
|
---|
299 | {
|
---|
300 | int index;
|
---|
301 |
|
---|
302 | if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) {
|
---|
303 | index = crnt_cntr_pt_index - 1;
|
---|
304 | end_crnt_cntr();
|
---|
305 | crnt_cntr[0] = crnt_cntr[index * 2];
|
---|
306 | crnt_cntr[1] = crnt_cntr[index * 2 + 1];
|
---|
307 | crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */
|
---|
308 | }
|
---|
309 | crnt_cntr[crnt_cntr_pt_index * 2] = x;
|
---|
310 | crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y;
|
---|
311 | crnt_cntr_pt_index++;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * Done with current contour - create gnuplot data structure for it.
|
---|
316 | */
|
---|
317 | static void
|
---|
318 | end_crnt_cntr()
|
---|
319 | {
|
---|
320 | int i;
|
---|
321 | struct gnuplot_contours *cntr = (struct gnuplot_contours *)
|
---|
322 | gp_alloc(sizeof(struct gnuplot_contours), "gnuplot_contour");
|
---|
323 | cntr->coords = (struct coordinate *)
|
---|
324 | gp_alloc(sizeof(struct coordinate) * crnt_cntr_pt_index,
|
---|
325 | "contour coords");
|
---|
326 |
|
---|
327 | for (i = 0; i < crnt_cntr_pt_index; i++) {
|
---|
328 | cntr->coords[i].x = crnt_cntr[i * 2];
|
---|
329 | cntr->coords[i].y = crnt_cntr[i * 2 + 1];
|
---|
330 | cntr->coords[i].z = contour_level;
|
---|
331 | }
|
---|
332 | cntr->num_pts = crnt_cntr_pt_index;
|
---|
333 |
|
---|
334 | cntr->next = contour_list;
|
---|
335 | contour_list = cntr;
|
---|
336 | contour_list->isNewLevel = 0;
|
---|
337 |
|
---|
338 | crnt_cntr_pt_index = 0;
|
---|
339 | }
|
---|
340 |
|
---|
341 | /*
|
---|
342 | * Generates all contours by tracing the intersecting triangles.
|
---|
343 | */
|
---|
344 | static void
|
---|
345 | gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max)
|
---|
346 | struct edge_struct *p_edges;
|
---|
347 | double z_level, xx_min, xx_max, yy_min, yy_max;
|
---|
348 | {
|
---|
349 | int num_active; /* Number of edges marked ACTIVE. */
|
---|
350 | TBOOLEAN contr_isclosed; /* Is this contour a closed line? */
|
---|
351 | struct cntr_struct *p_cntr;
|
---|
352 |
|
---|
353 | num_active = update_all_edges(p_edges, z_level); /* Do pass 1. */
|
---|
354 |
|
---|
355 | contr_isclosed = FALSE; /* Start to look for contour on boundaries. */
|
---|
356 | /*printf("<gen_contour> z=%g num_active %d \n",z_level,num_active);*/
|
---|
357 | while (num_active > 0) { /* Do Pass 2. */
|
---|
358 | /* Generate One contour (and update MumActive as needed): */
|
---|
359 | p_cntr = gen_one_contour(p_edges, z_level, &contr_isclosed, &num_active);
|
---|
360 | if (p_cntr ==NULL) printf("<gen_contour> gen_one_contour retourne NULL \n");
|
---|
361 | /* Emit it in requested format: */
|
---|
362 | put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed);
|
---|
363 | }
|
---|
364 | }
|
---|
365 |
|
---|
366 | /*
|
---|
367 | * Does pass 1, or marks the edges which are active (crosses this z_level)
|
---|
368 | * Returns number of active edges (marked ACTIVE).
|
---|
369 | */
|
---|
370 | static int
|
---|
371 | update_all_edges(p_edges, z_level)
|
---|
372 | struct edge_struct *p_edges;
|
---|
373 | double z_level;
|
---|
374 | {
|
---|
375 | int count = 0;
|
---|
376 |
|
---|
377 | while (p_edges) {
|
---|
378 | /* use the same test at both vertices to avoid roundoff errors */
|
---|
379 |
|
---|
380 | if ((p_edges->vertex[0]->z >= z_level) !=
|
---|
381 | (p_edges->vertex[1]->z >= z_level)) {
|
---|
382 | p_edges->is_active = TRUE;
|
---|
383 | count++;
|
---|
384 | } else
|
---|
385 | p_edges->is_active = FALSE;
|
---|
386 | p_edges = p_edges->next;
|
---|
387 | }
|
---|
388 |
|
---|
389 | return count;
|
---|
390 | }
|
---|
391 |
|
---|
392 | /*
|
---|
393 | * Does pass 2, or find one complete contour out of the triangulation
|
---|
394 | * data base:
|
---|
395 | *
|
---|
396 | * Returns a pointer to the contour (as linked list), contr_isclosed
|
---|
397 | * tells if the contour is a closed line or not, and num_active is
|
---|
398 | * updated.
|
---|
399 | */
|
---|
400 | static struct cntr_struct *
|
---|
401 | gen_one_contour(p_edges, z_level, contr_isclosed, num_active)
|
---|
402 | struct edge_struct *p_edges; /* list of edges input */
|
---|
403 | double z_level; /* Z level of contour input */
|
---|
404 | TBOOLEAN *contr_isclosed; /* open or closed contour, in/out */
|
---|
405 | int *num_active; /* number of active edges in/out */
|
---|
406 | {
|
---|
407 | struct edge_struct *pe_temp;
|
---|
408 |
|
---|
409 | if (! *contr_isclosed) {
|
---|
410 | /*printf("<gen_one_contour> contr_isclosed FALSE \n");*/
|
---|
411 | /* Look for something to start with on boundary: */
|
---|
412 | pe_temp = p_edges;
|
---|
413 | while (pe_temp) {
|
---|
414 | if (pe_temp->is_active && (pe_temp->position == BOUNDARY))
|
---|
415 | break;
|
---|
416 | pe_temp = pe_temp->next;
|
---|
417 | }
|
---|
418 | if (!pe_temp)
|
---|
419 | *contr_isclosed = TRUE; /* No more contours on boundary. */
|
---|
420 | else {
|
---|
421 | /*printf("<gen_one_contour> contr_isclosed FALSE return \n");*/
|
---|
422 | return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
|
---|
423 | }
|
---|
424 | }
|
---|
425 | if (*contr_isclosed) {
|
---|
426 | /* Look for something to start with inside: */
|
---|
427 | /*printf("<gen_one_contour> contr_isclosed TRUE \n");*/
|
---|
428 | pe_temp = p_edges;
|
---|
429 | while (pe_temp) {
|
---|
430 | if (pe_temp->is_active && (pe_temp->position != BOUNDARY))
|
---|
431 | break;
|
---|
432 | pe_temp = pe_temp->next;
|
---|
433 | }
|
---|
434 | if (!pe_temp) {
|
---|
435 | *num_active = 0;
|
---|
436 | fprintf(stderr, "gen_one_contour: no contour found\n");
|
---|
437 | return NULL;
|
---|
438 | } else {
|
---|
439 | *contr_isclosed = TRUE;
|
---|
440 | return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
|
---|
441 | }
|
---|
442 | }
|
---|
443 | printf("<gen_one_contour> We should never be here, but lint... \n");
|
---|
444 | return NULL; /* We should never be here, but lint... */
|
---|
445 | }
|
---|
446 |
|
---|
447 | /*
|
---|
448 | * Search the data base along a contour starts at the edge pe_start until
|
---|
449 | * a boundary edge is detected or until we close the loop back to pe_start.
|
---|
450 | * Returns a linked list of all the points on the contour
|
---|
451 | * Also decreases num_active by the number of points on contour.
|
---|
452 | */
|
---|
453 | static struct cntr_struct *
|
---|
454 | trace_contour(pe_start, z_level, num_active, contr_isclosed)
|
---|
455 | struct edge_struct *pe_start; /* edge to start contour input */
|
---|
456 | double z_level; /* Z level of contour input */
|
---|
457 | int *num_active; /* number of active edges in/out */
|
---|
458 | TBOOLEAN contr_isclosed; /* open or closed contour line (input) */
|
---|
459 | {
|
---|
460 | struct cntr_struct *p_cntr, *pc_tail;
|
---|
461 | struct edge_struct *p_edge, *p_next_edge;
|
---|
462 | struct poly_struct *p_poly, *PLastpoly = NULL;
|
---|
463 | int i;
|
---|
464 |
|
---|
465 | p_edge = pe_start; /* first edge to start contour */
|
---|
466 |
|
---|
467 | /* Generate the header of the contour - the point on pe_start. */
|
---|
468 | if (! contr_isclosed) {
|
---|
469 | pe_start->is_active = FALSE;
|
---|
470 | (*num_active)--;
|
---|
471 | }
|
---|
472 | if (p_edge->poly[0] || p_edge->poly[1]) { /* more than one point */
|
---|
473 |
|
---|
474 | p_cntr = pc_tail = update_cntr_pt(pe_start, z_level); /* first point */
|
---|
475 |
|
---|
476 | do {
|
---|
477 | /* Find polygon to continue (Not where we came from - PLastpoly): */
|
---|
478 | if (p_edge->poly[0] == PLastpoly)
|
---|
479 | p_poly = p_edge->poly[1];
|
---|
480 | else
|
---|
481 | p_poly = p_edge->poly[0];
|
---|
482 | p_next_edge = NULL; /* In case of error, remains NULL. */
|
---|
483 | for (i = 0; i < 3; i++) /* Test the 3 edges of the polygon: */
|
---|
484 | if (p_poly->edge[i] != p_edge)
|
---|
485 | if (p_poly->edge[i]->is_active)
|
---|
486 | p_next_edge = p_poly->edge[i];
|
---|
487 | if (!p_next_edge) { /* Error exit */
|
---|
488 | pc_tail->next = NULL;
|
---|
489 | free_contour(p_cntr);
|
---|
490 | fprintf(stderr, "trace_contour: unexpected end of contour\n");
|
---|
491 | return NULL;
|
---|
492 | }
|
---|
493 | p_edge = p_next_edge;
|
---|
494 | PLastpoly = p_poly;
|
---|
495 | p_edge->is_active = FALSE;
|
---|
496 | (*num_active)--;
|
---|
497 |
|
---|
498 | /* Do not allocate contour points on diagonal edges */
|
---|
499 | if (p_edge->position != DIAGONAL) {
|
---|
500 |
|
---|
501 | pc_tail->next = update_cntr_pt(p_edge, z_level);
|
---|
502 |
|
---|
503 | /* Remove nearby points */
|
---|
504 | if (fuzzy_equal(pc_tail, pc_tail->next)) {
|
---|
505 |
|
---|
506 | free((char *) pc_tail->next);
|
---|
507 | } else
|
---|
508 | pc_tail = pc_tail->next;
|
---|
509 | }
|
---|
510 | } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY));
|
---|
511 |
|
---|
512 | pc_tail->next = NULL;
|
---|
513 |
|
---|
514 | /* For closed contour the first and last point should be equal */
|
---|
515 | if (pe_start == p_edge) {
|
---|
516 | (p_cntr->X) = (pc_tail->X);
|
---|
517 | (p_cntr->Y) = (pc_tail->Y);
|
---|
518 | }
|
---|
519 | } else { /* only one point, forget it */
|
---|
520 | p_cntr = NULL;
|
---|
521 | }
|
---|
522 |
|
---|
523 | return p_cntr;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * Allocates one contour location and update it to to correct position
|
---|
528 | * according to z_level and edge p_edge.
|
---|
529 | */
|
---|
530 | static struct cntr_struct *
|
---|
531 | update_cntr_pt(p_edge, z_level)
|
---|
532 | struct edge_struct *p_edge;
|
---|
533 | double z_level;
|
---|
534 | {
|
---|
535 | double t;
|
---|
536 | struct cntr_struct *p_cntr;
|
---|
537 |
|
---|
538 | t = (z_level - p_edge->vertex[0]->z) /
|
---|
539 | (p_edge->vertex[1]->z - p_edge->vertex[0]->z);
|
---|
540 |
|
---|
541 | /* test if t is out of interval [0:1] (should not happen but who knows ...) */
|
---|
542 | /*if(t>1) printf(" <update_cntr_pt> t >1 !\n");*/
|
---|
543 | /*if(t<0) printf(" <update_cntr_pt> t negatif !\n");*/
|
---|
544 | t = (t < 0.0 ? 0.0 : t);
|
---|
545 | t = (t > 1.0 ? 1.0 : t);
|
---|
546 | /*printf(" <update_cntr_pt> Point 0 %g %g %g \n",p_edge->vertex[0]->x,p_edge->vertex[0]->y,p_edge->vertex[0]->z);*/
|
---|
547 | /*printf(" <update_cntr_pt> Point 1 %g %g %g \n",p_edge->vertex[1]->x,p_edge->vertex[1]->y,p_edge->vertex[1]->z);*/
|
---|
548 | p_cntr = (struct cntr_struct *)
|
---|
549 | gp_alloc(sizeof(struct cntr_struct), "contour cntr_struct");
|
---|
550 |
|
---|
551 | p_cntr->X = p_edge->vertex[1]->x * t +
|
---|
552 | p_edge->vertex[0]->x * (1 - t);
|
---|
553 | p_cntr->Y = p_edge->vertex[1]->y * t +
|
---|
554 | p_edge->vertex[0]->y * (1 - t);
|
---|
555 | /*printf(" <update_cntr_pt> p_cntr X %g Y %g \n",p_cntr->X,p_cntr->Y);*/
|
---|
556 | return p_cntr;
|
---|
557 | }
|
---|
558 |
|
---|
559 | /* Simple routine to decide if two contour points are equal by
|
---|
560 | * calculating the relative error (< EPSILON). */
|
---|
561 | /* HBB 20010121: don't use absolute value 'zero' to compare to data
|
---|
562 | * values. */
|
---|
563 | static int
|
---|
564 | fuzzy_equal(p_cntr1, p_cntr2)
|
---|
565 | struct cntr_struct *p_cntr1, *p_cntr2;
|
---|
566 | {
|
---|
567 | double unit_x, unit_y;
|
---|
568 | unit_x = fabs(x_max - x_min); /* reference */
|
---|
569 | unit_y = fabs(y_max - y_min);
|
---|
570 | return ((fabs(p_cntr1->X - p_cntr2->X) < unit_x * EPSILON)
|
---|
571 | && (fabs(p_cntr1->Y - p_cntr2->Y) < unit_y * EPSILON));
|
---|
572 | }
|
---|
573 |
|
---|
574 | /*
|
---|
575 | * Generate the triangles.
|
---|
576 | * Returns the lists (edges & polys) via pointers to their heads.
|
---|
577 | */
|
---|
578 | static void
|
---|
579 | gen_triangle(num_isolines, iso_lines, p_polys, p_edges)
|
---|
580 | int num_isolines; /* number of iso-lines input */
|
---|
581 | struct iso_curve *iso_lines; /* iso-lines input */
|
---|
582 | struct poly_struct **p_polys; /* list of polygons output */
|
---|
583 | struct edge_struct **p_edges; /* list of edges output */
|
---|
584 | {
|
---|
585 | int i, j, grid_x_max = iso_lines->p_count;
|
---|
586 | struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail,
|
---|
587 | *pe_tail2, *pe_temp;
|
---|
588 | struct poly_struct *pp_tail, *lower_tri, *upper_tri;
|
---|
589 | /* HBB 980308: need to tag *each* of them as ! */
|
---|
590 | struct coordinate *p_vrtx1, * p_vrtx2;
|
---|
591 |
|
---|
592 | (*p_polys) = pp_tail = NULL; /* clear lists */
|
---|
593 | (*p_edges) = pe_tail = NULL;
|
---|
594 |
|
---|
595 | p_vrtx1 = iso_lines->points; /* first row of vertices */
|
---|
596 | p_edge1 = pe_tail = NULL; /* clear list of edges */
|
---|
597 |
|
---|
598 | /* Generate edges of first row */
|
---|
599 | for (j = 0; j < grid_x_max - 1; j++)
|
---|
600 | add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail);
|
---|
601 |
|
---|
602 | (*p_edges) = p_edge1; /* update main list */
|
---|
603 |
|
---|
604 |
|
---|
605 | /*
|
---|
606 | * Combines vertices to edges and edges to triangles:
|
---|
607 | * ==================================================
|
---|
608 | * The edges are stored in the edge list, referenced by p_edges
|
---|
609 | * (pe_tail points on last edge).
|
---|
610 | *
|
---|
611 | * Temporary pointers:
|
---|
612 | * 1. p_edge2: Top horizontal edge list: +-----------------------+ 2
|
---|
613 | * 2. p_tail : end of middle edge list: |\ |\ |\ |\ |\ |\ |
|
---|
614 | * | \| \| \| \| \| \|
|
---|
615 | * 3. p_edge1: Bottom horizontal edge list: +-----------------------+ 1
|
---|
616 | *
|
---|
617 | * pe_tail2 : end of list beginning at p_edge2
|
---|
618 | * pe_temp : position inside list beginning at p_edge1
|
---|
619 | * p_edges : head of the master edge list (part of our output)
|
---|
620 | * p_vrtx1 : start of lower row of input vertices
|
---|
621 | * p_vrtx2 : start of higher row of input vertices
|
---|
622 | *
|
---|
623 | * The routine generates two triangle Lower Upper 1
|
---|
624 | * upper one and lower one: | \ ----
|
---|
625 | * (Nums. are edges order in polys) 0| \1 0\ |2
|
---|
626 | * The polygons are stored in the polygon ---- \ |
|
---|
627 | * list (*p_polys) (pp_tail points on 2
|
---|
628 | * last polygon).
|
---|
629 | * 1
|
---|
630 | * -----------
|
---|
631 | * In addition, the edge lists are updated - | \ 0 |
|
---|
632 | * each edge has two pointers on the two | \ |
|
---|
633 | * (one active if boundary) polygons which 0|1 0\1 0|1
|
---|
634 | * uses it. These two pointer to polygons | \ |
|
---|
635 | * are named: poly[0], poly[1]. The diagram | 1 \ |
|
---|
636 | * on the right show how they are used for the -----------
|
---|
637 | * upper and lower polygons (INNER_MESH polygons only). 0
|
---|
638 | */
|
---|
639 |
|
---|
640 | for (i = 1; i < num_isolines; i++) {
|
---|
641 | /* Read next column and gen. polys. */
|
---|
642 | iso_lines = iso_lines->next;
|
---|
643 |
|
---|
644 | p_vrtx2 = iso_lines->points; /* next row of vertices */
|
---|
645 | p_edge2 = pe_tail2 = NULL; /* clear top horizontal list */
|
---|
646 | pe_temp = p_edge1; /* pointer in bottom list */
|
---|
647 |
|
---|
648 | /*
|
---|
649 | * Generate edges and triagles for next row:
|
---|
650 | */
|
---|
651 |
|
---|
652 | /* generate first vertical edge */
|
---|
653 | edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail);
|
---|
654 |
|
---|
655 | for (j = 0; j < grid_x_max - 1; j++) {
|
---|
656 |
|
---|
657 | /* copy vertical edge for lower triangle */
|
---|
658 | edge0 = edge2;
|
---|
659 |
|
---|
660 | if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) {
|
---|
661 | /* test lower edge */
|
---|
662 | edge2 = pe_temp;
|
---|
663 | pe_temp = pe_temp->next;
|
---|
664 | } else {
|
---|
665 | edge2 = NULL; /* edge is undefined */
|
---|
666 | }
|
---|
667 |
|
---|
668 | /* generate diagonal edge */
|
---|
669 | edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail);
|
---|
670 | if (edge1)
|
---|
671 | edge1->position = DIAGONAL;
|
---|
672 |
|
---|
673 | /* generate lower triangle */
|
---|
674 | lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
|
---|
675 |
|
---|
676 | /* copy diagonal edge for upper triangle */
|
---|
677 | edge0 = edge1;
|
---|
678 |
|
---|
679 | /* generate upper edge */
|
---|
680 | edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2);
|
---|
681 |
|
---|
682 | /* generate vertical edge */
|
---|
683 | edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail);
|
---|
684 |
|
---|
685 | /* generate upper triangle */
|
---|
686 | upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
|
---|
687 | }
|
---|
688 |
|
---|
689 | if (p_edge2) {
|
---|
690 | /* HBB 19991130 bugfix: if p_edge2 list is empty,
|
---|
691 | * don't change p_edges list! Crashes by access
|
---|
692 | * to NULL pointer pe_tail, the second time through,
|
---|
693 | * otherwise */
|
---|
694 | if ((*p_edges)) { /* Chain new edges to main list. */
|
---|
695 | pe_tail->next = p_edge2;
|
---|
696 | pe_tail = pe_tail2;
|
---|
697 | } else {
|
---|
698 | (*p_edges) = p_edge2;
|
---|
699 | pe_tail = pe_tail2;
|
---|
700 | }
|
---|
701 | }
|
---|
702 |
|
---|
703 | /* this row finished, move list heads up one row: */
|
---|
704 | p_edge1 = p_edge2;
|
---|
705 | p_vrtx1 = p_vrtx2;
|
---|
706 | }
|
---|
707 |
|
---|
708 | /* Update the boundary flag, saved in each edge, and update indexes: */
|
---|
709 |
|
---|
710 | pe_temp = (*p_edges);
|
---|
711 |
|
---|
712 | while (pe_temp) {
|
---|
713 | if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1])))
|
---|
714 | (pe_temp->position) = BOUNDARY;
|
---|
715 | pe_temp = pe_temp->next;
|
---|
716 | }
|
---|
717 | }
|
---|
718 |
|
---|
719 | /*
|
---|
720 | * Calculate minimum and maximum values
|
---|
721 | */
|
---|
722 | static void
|
---|
723 | calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max)
|
---|
724 | int num_isolines; /* number of iso-lines input */
|
---|
725 | struct iso_curve *iso_lines; /* iso-lines input */
|
---|
726 | double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */
|
---|
727 | {
|
---|
728 | int i, j, grid_x_max;
|
---|
729 | struct coordinate *vertex;
|
---|
730 | /*printf("<calc_min_max> : iso_lines->p_count %ld \n",iso_lines->p_count);*/
|
---|
731 | grid_x_max = iso_lines->p_count; /* number of vertices per iso_line */
|
---|
732 |
|
---|
733 | (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE; /* clear min/max values */
|
---|
734 | (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE;
|
---|
735 | /*printf(" <calc_min_max> %d \n",num_isolines);*/
|
---|
736 | for (j = 0; j < num_isolines; j++) {
|
---|
737 | /*printf(" <calc_min_max> iso_lines %lx %lx %d min %g max %g\n", */
|
---|
738 | /* iso_lines,iso_lines->points,grid_x_max,(*zz_min),(*zz_max)); */
|
---|
739 | vertex = iso_lines->points;
|
---|
740 |
|
---|
741 | for (i = 0; i < grid_x_max; i++) {
|
---|
742 | if (vertex[i].type != UNDEFINED) {
|
---|
743 | if (vertex[i].x > (*xx_max))
|
---|
744 | (*xx_max) = vertex[i].x;
|
---|
745 | if (vertex[i].y > (*yy_max))
|
---|
746 | (*yy_max) = vertex[i].y;
|
---|
747 | if (vertex[i].z > (*zz_max))
|
---|
748 | (*zz_max) = vertex[i].z;
|
---|
749 | if (vertex[i].x < (*xx_min))
|
---|
750 | (*xx_min) = vertex[i].x;
|
---|
751 | if (vertex[i].y < (*yy_min))
|
---|
752 | (*yy_min) = vertex[i].y;
|
---|
753 | if (vertex[i].z < (*zz_min))
|
---|
754 | (*zz_min) = vertex[i].z;
|
---|
755 |
|
---|
756 | }
|
---|
757 | }
|
---|
758 | iso_lines = iso_lines->next;
|
---|
759 | /*printf(" End of loop calc_min_max %d \n", j);*/
|
---|
760 | }
|
---|
761 | /* HBB 20000426: this code didn't take into account that axes might
|
---|
762 | * be logscaled... */
|
---|
763 | #if 0
|
---|
764 | /* HBB 20001220: DON'T. The values are actually already stored
|
---|
765 | * logarithmized, as should be! */
|
---|
766 | axis_unlog_interval(FIRST_X_AXIS, xx_min, xx_max, 0);
|
---|
767 | axis_unlog_interval(FIRST_Y_AXIS, yy_min, yy_max, 0);
|
---|
768 | axis_unlog_interval(FIRST_Z_AXIS, zz_min, zz_max, 0);
|
---|
769 | #endif
|
---|
770 |
|
---|
771 | /*
|
---|
772 | * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max));
|
---|
773 | * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max));
|
---|
774 | * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max));
|
---|
775 | */
|
---|
776 | }
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * Generate new edge and append it to list, but only if both vertices are
|
---|
780 | * defined. The list is referenced by p_edge and pe_tail (p_edge points on
|
---|
781 | * first edge and pe_tail on last one).
|
---|
782 | * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit.
|
---|
783 | */
|
---|
784 | static struct edge_struct *
|
---|
785 | add_edge(point0, point1, p_edge, pe_tail)
|
---|
786 | struct coordinate *point0; /* 2 vertices input */
|
---|
787 | struct coordinate *point1;
|
---|
788 | struct edge_struct **p_edge, **pe_tail; /* pointers to edge list in/out */
|
---|
789 | {
|
---|
790 | struct edge_struct *pe_temp = NULL;
|
---|
791 |
|
---|
792 | #if 1
|
---|
793 | if (point0->type == INRANGE && point1->type == INRANGE) {
|
---|
794 | #else
|
---|
795 | if (point0->type != UNDEFINED && point1->type != UNDEFINED) {
|
---|
796 | #endif
|
---|
797 |
|
---|
798 | pe_temp = (struct edge_struct *)
|
---|
799 | gp_alloc(sizeof(struct edge_struct), "contour edge");
|
---|
800 |
|
---|
801 | pe_temp->poly[0] = NULL; /* clear links */
|
---|
802 | pe_temp->poly[1] = NULL;
|
---|
803 | pe_temp->vertex[0] = point0; /* First vertex of edge. */
|
---|
804 | pe_temp->vertex[1] = point1; /* Second vertex of edge. */
|
---|
805 | pe_temp->next = NULL;
|
---|
806 | pe_temp->position = INNER_MESH; /* default position in mesh */
|
---|
807 |
|
---|
808 | if ((*pe_tail)) {
|
---|
809 | (*pe_tail)->next = pe_temp; /* Stick new record as last one. */
|
---|
810 | } else {
|
---|
811 | (*p_edge) = pe_temp; /* start new list if empty */
|
---|
812 | }
|
---|
813 | (*pe_tail) = pe_temp; /* continue to last record. */
|
---|
814 |
|
---|
815 | }
|
---|
816 | return pe_temp; /* returns NULL, if no edge allocated */
|
---|
817 | }
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * Generate new triangle and append it to list, but only if all edges are defined.
|
---|
821 | * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon
|
---|
822 | * and pp_tail on last one).
|
---|
823 | * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit.
|
---|
824 | */
|
---|
825 | static struct poly_struct *
|
---|
826 | add_poly(edge0, edge1, edge2, p_poly, pp_tail)
|
---|
827 | struct edge_struct *edge0, *edge1, *edge2; /* 3 edges input */
|
---|
828 | struct poly_struct **p_poly, **pp_tail; /* pointers to polygon list in/out */
|
---|
829 | {
|
---|
830 | struct poly_struct *pp_temp = NULL;
|
---|
831 |
|
---|
832 | if (edge0 && edge1 && edge2) {
|
---|
833 |
|
---|
834 | pp_temp = (struct poly_struct *)
|
---|
835 | gp_alloc(sizeof(struct poly_struct), "contour polygon");
|
---|
836 |
|
---|
837 | pp_temp->edge[0] = edge0; /* First edge of triangle */
|
---|
838 | pp_temp->edge[1] = edge1; /* Second one */
|
---|
839 | pp_temp->edge[2] = edge2; /* Third one */
|
---|
840 | pp_temp->next = NULL;
|
---|
841 |
|
---|
842 | if (edge0->poly[0]) /* update edge0 */
|
---|
843 | edge0->poly[1] = pp_temp;
|
---|
844 | else
|
---|
845 | edge0->poly[0] = pp_temp;
|
---|
846 |
|
---|
847 | if (edge1->poly[0]) /* update edge1 */
|
---|
848 | edge1->poly[1] = pp_temp;
|
---|
849 | else
|
---|
850 | edge1->poly[0] = pp_temp;
|
---|
851 |
|
---|
852 | if (edge2->poly[0]) /* update edge2 */
|
---|
853 | edge2->poly[1] = pp_temp;
|
---|
854 | else
|
---|
855 | edge2->poly[0] = pp_temp;
|
---|
856 |
|
---|
857 | if ((*pp_tail)) /* Stick new record as last one. */
|
---|
858 | (*pp_tail)->next = pp_temp;
|
---|
859 | else
|
---|
860 | (*p_poly) = pp_temp; /* start new list if empty */
|
---|
861 |
|
---|
862 | (*pp_tail) = pp_temp; /* continue to last record. */
|
---|
863 |
|
---|
864 | }
|
---|
865 | return pp_temp; /* returns NULL, if no edge allocated */
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 |
|
---|
870 | /*
|
---|
871 | * Calls the (hopefully) desired interpolation/approximation routine.
|
---|
872 | */
|
---|
873 | static void
|
---|
874 | put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
|
---|
875 | struct cntr_struct *p_cntr; /* contour structure input */
|
---|
876 | double z_level; /* Z level of contour input */
|
---|
877 | double xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */
|
---|
878 | TBOOLEAN contr_isclosed; /* contour line closed? (input) */
|
---|
879 | {
|
---|
880 |
|
---|
881 | if (!p_cntr)
|
---|
882 | return; /* Nothing to do if it is empty contour. */
|
---|
883 |
|
---|
884 | switch (interp_kind) {
|
---|
885 | case CONTOUR_KIND_LINEAR: /* No interpolation/approximation. */
|
---|
886 | put_contour_nothing(p_cntr);
|
---|
887 | break;
|
---|
888 | case CONTOUR_KIND_CUBIC_SPL: /* Cubic spline interpolation. */
|
---|
889 | put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
|
---|
890 | chk_contour_kind(p_cntr, contr_isclosed));
|
---|
891 |
|
---|
892 | break;
|
---|
893 | case CONTOUR_KIND_BSPLINE: /* Bspline approximation. */
|
---|
894 | put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
|
---|
895 | chk_contour_kind(p_cntr, contr_isclosed));
|
---|
896 | break;
|
---|
897 | }
|
---|
898 | free_contour(p_cntr);
|
---|
899 | }
|
---|
900 |
|
---|
901 | /*
|
---|
902 | * Simply puts contour coordinates in order with no interpolation or
|
---|
903 | * approximation.
|
---|
904 | */
|
---|
905 | static void
|
---|
906 | put_contour_nothing(p_cntr)
|
---|
907 | struct cntr_struct *p_cntr;
|
---|
908 | {
|
---|
909 | while (p_cntr) {
|
---|
910 | add_cntr_point(p_cntr->X, p_cntr->Y);
|
---|
911 | p_cntr = p_cntr->next;
|
---|
912 | }
|
---|
913 | end_crnt_cntr();
|
---|
914 | }
|
---|
915 |
|
---|
916 | /*
|
---|
917 | * for some reason contours are never flagged as 'isclosed'
|
---|
918 | * if first point == last point, set flag accordingly
|
---|
919 | *
|
---|
920 | */
|
---|
921 |
|
---|
922 | static int
|
---|
923 | chk_contour_kind(p_cntr, contr_isclosed)
|
---|
924 | struct cntr_struct *p_cntr;
|
---|
925 | TBOOLEAN contr_isclosed;
|
---|
926 | {
|
---|
927 | struct cntr_struct *pc_tail = NULL;
|
---|
928 | TBOOLEAN current_contr_isclosed;
|
---|
929 |
|
---|
930 | /*fprintf(stderr, "check_contour_kind: current contour_kind value is %d\n", contour_kind);*/
|
---|
931 |
|
---|
932 | current_contr_isclosed = contr_isclosed;
|
---|
933 |
|
---|
934 | if (! contr_isclosed) {
|
---|
935 | pc_tail = p_cntr;
|
---|
936 | while (pc_tail->next)
|
---|
937 | pc_tail = pc_tail->next; /* Find last point. */
|
---|
938 |
|
---|
939 | /* test if first and last point are equal */
|
---|
940 | if (fuzzy_equal(pc_tail, p_cntr)) {
|
---|
941 | current_contr_isclosed = TRUE;
|
---|
942 | fprintf(stderr, "check_contour_kind: contr_isclosed changed to %d\n", current_contr_isclosed);
|
---|
943 | }
|
---|
944 | }
|
---|
945 | return (current_contr_isclosed);
|
---|
946 | }
|
---|
947 |
|
---|
948 | /*
|
---|
949 | * Generate a cubic spline curve through the points (x_i,y_i) which are
|
---|
950 | * stored in the linked list p_cntr.
|
---|
951 | * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
|
---|
952 | * parameter t is the length of the linear stroke.
|
---|
953 | */
|
---|
954 | static void
|
---|
955 | put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
|
---|
956 | struct cntr_struct *p_cntr;
|
---|
957 | double z_level, xx_min, xx_max, yy_min, yy_max;
|
---|
958 | TBOOLEAN contr_isclosed;
|
---|
959 | {
|
---|
960 | int num_pts, num_intpol;
|
---|
961 | double unit_x, unit_y; /* To define norm (x,y)-plane */
|
---|
962 | double *delta_t; /* Interval length t_{i+1}-t_i */
|
---|
963 | double *d2x, *d2y; /* Second derivatives x''(t_i), y''(t_i) */
|
---|
964 | struct cntr_struct *pc_tail;
|
---|
965 |
|
---|
966 | num_pts = count_contour(p_cntr); /* Number of points in contour. */
|
---|
967 |
|
---|
968 | pc_tail = p_cntr; /* Find last point. */
|
---|
969 | while (pc_tail->next)
|
---|
970 | pc_tail = pc_tail->next;
|
---|
971 |
|
---|
972 | if (contr_isclosed) {
|
---|
973 | /* Test if first and last point are equal (should be) */
|
---|
974 | if (!fuzzy_equal(pc_tail, p_cntr)) {
|
---|
975 | pc_tail->next = p_cntr; /* Close contour list - make it circular. */
|
---|
976 | num_pts++;
|
---|
977 | }
|
---|
978 | }
|
---|
979 | delta_t = (double *) gp_alloc(num_pts * sizeof(double), "contour delta_t");
|
---|
980 | d2x = (double *) gp_alloc(num_pts * sizeof(double), "contour d2x");
|
---|
981 | d2y = (double *) gp_alloc(num_pts * sizeof(double), "contour d2y");
|
---|
982 |
|
---|
983 | /* Width and height of the grid is used as a unit length (2d-norm) */
|
---|
984 | unit_x = xx_max - x_min;
|
---|
985 | unit_y = yy_max - y_min;
|
---|
986 | /* FIXME HBB 20010121: 'zero' should not be used as an absolute
|
---|
987 | * figure to compare to data */
|
---|
988 | unit_x = (unit_x > zero ? unit_x : zero); /* should not be zero */
|
---|
989 | unit_y = (unit_y > zero ? unit_y : zero);
|
---|
990 |
|
---|
991 | if (num_pts > 2) {
|
---|
992 | /*
|
---|
993 | * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]:
|
---|
994 | */
|
---|
995 | if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t,
|
---|
996 | contr_isclosed, unit_x, unit_y)) {
|
---|
997 | free((char *) delta_t);
|
---|
998 | free((char *) d2x);
|
---|
999 | free((char *) d2y);
|
---|
1000 | if (contr_isclosed)
|
---|
1001 | pc_tail->next = NULL; /* Un-circular list */
|
---|
1002 | return;
|
---|
1003 | }
|
---|
1004 | }
|
---|
1005 | /* If following (num_pts > 1) is TRUE then exactly 2 points in contour. */
|
---|
1006 | else if (num_pts > 1) {
|
---|
1007 | /* set all second derivatives to zero, interval length to 1 */
|
---|
1008 | d2x[0] = 0.;
|
---|
1009 | d2y[0] = 0.;
|
---|
1010 | d2x[1] = 0.;
|
---|
1011 | d2y[1] = 0.;
|
---|
1012 | delta_t[0] = 1.;
|
---|
1013 | } else { /* Only one point ( ?? ) - ignore it. */
|
---|
1014 | free((char *) delta_t);
|
---|
1015 | free((char *) d2x);
|
---|
1016 | free((char *) d2y);
|
---|
1017 | if (contr_isclosed)
|
---|
1018 | pc_tail->next = NULL; /* Un-circular list */
|
---|
1019 | return;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | /* Calculate "num_intpol" interpolated values */
|
---|
1023 | num_intpol = 1 + (num_pts - 1) * contour_pts; /* global: contour_pts */
|
---|
1024 | intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol);
|
---|
1025 |
|
---|
1026 | free((char *) delta_t);
|
---|
1027 | free((char *) d2x);
|
---|
1028 | free((char *) d2y);
|
---|
1029 |
|
---|
1030 | if (contr_isclosed)
|
---|
1031 | pc_tail->next = NULL; /* Un-circular list */
|
---|
1032 |
|
---|
1033 | end_crnt_cntr();
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 |
|
---|
1037 | /*
|
---|
1038 | * Find Bspline approximation for this data set.
|
---|
1039 | * Uses global variable contour_pts to determine number of samples per
|
---|
1040 | * interval, where the knot vector intervals are assumed to be uniform, and
|
---|
1041 | * global variable contour_order for the order of Bspline to use.
|
---|
1042 | */
|
---|
1043 | static void
|
---|
1044 | put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
|
---|
1045 | struct cntr_struct *p_cntr;
|
---|
1046 | double z_level, xx_min, xx_max, yy_min, yy_max;
|
---|
1047 | TBOOLEAN contr_isclosed;
|
---|
1048 | {
|
---|
1049 | int num_pts;
|
---|
1050 | int order = contour_order - 1;
|
---|
1051 |
|
---|
1052 | num_pts = count_contour(p_cntr); /* Number of points in contour. */
|
---|
1053 | if (num_pts < 2)
|
---|
1054 | return; /* Can't do nothing if empty or one points! */
|
---|
1055 | /* Order must be less than number of points in curve - fix it if needed. */
|
---|
1056 | if (order > num_pts - 1)
|
---|
1057 | order = num_pts - 1;
|
---|
1058 |
|
---|
1059 | gen_bspline_approx(p_cntr, num_pts, order, contr_isclosed);
|
---|
1060 | end_crnt_cntr();
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 | /*
|
---|
1064 | * Free all elements in the contour list.
|
---|
1065 | */
|
---|
1066 | static void
|
---|
1067 | free_contour(p_cntr)
|
---|
1068 | struct cntr_struct *p_cntr;
|
---|
1069 | {
|
---|
1070 | struct cntr_struct *pc_temp;
|
---|
1071 |
|
---|
1072 | while (p_cntr) {
|
---|
1073 | pc_temp = p_cntr;
|
---|
1074 | p_cntr = p_cntr->next;
|
---|
1075 | free((char *) pc_temp);
|
---|
1076 | }
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | /*
|
---|
1080 | * Counts number of points in contour.
|
---|
1081 | */
|
---|
1082 | static int
|
---|
1083 | count_contour(p_cntr)
|
---|
1084 | struct cntr_struct *p_cntr;
|
---|
1085 | {
|
---|
1086 | int count = 0;
|
---|
1087 |
|
---|
1088 | while (p_cntr) {
|
---|
1089 | count++;
|
---|
1090 | p_cntr = p_cntr->next;
|
---|
1091 | }
|
---|
1092 | return count;
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | /*
|
---|
1096 | * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
|
---|
1097 | * through list of points (x_i,y_i). The parameter t is calculated as the
|
---|
1098 | * length of the linear stroke. The number of points must be at least 3.
|
---|
1099 | * Note: For closed contours the first and last point must be equal.
|
---|
1100 | */
|
---|
1101 | static int
|
---|
1102 | gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_isclosed, unit_x, unit_y)
|
---|
1103 | int num_pts; /* Number of points (num_pts>=3), input */
|
---|
1104 | struct cntr_struct *p_cntr; /* List of points (x(t_i),y(t_i)), input */
|
---|
1105 | double d2x[], d2y[], /* Second derivatives (x''(t_i),y''(t_i)), output */
|
---|
1106 | delta_t[]; /* List of interval lengths t_{i+1}-t_{i}, output */
|
---|
1107 | TBOOLEAN contr_isclosed; /* Closed or open contour?, input */
|
---|
1108 | double unit_x, unit_y; /* Unit length in x and y (norm=1), input */
|
---|
1109 | {
|
---|
1110 | int n, i;
|
---|
1111 | double norm;
|
---|
1112 | tri_diag *m; /* The tri-diagonal matrix is saved here. */
|
---|
1113 | struct cntr_struct *pc_temp;
|
---|
1114 |
|
---|
1115 | m = (tri_diag *) gp_alloc(num_pts * sizeof(tri_diag), "contour tridiag m");
|
---|
1116 |
|
---|
1117 | /*
|
---|
1118 | * Calculate first differences in (d2x[i], d2y[i]) and interval lengths
|
---|
1119 | * in delta_t[i]:
|
---|
1120 | */
|
---|
1121 | pc_temp = p_cntr;
|
---|
1122 | for (i = 0; i < num_pts - 1; i++) {
|
---|
1123 | d2x[i] = pc_temp->next->X - pc_temp->X;
|
---|
1124 | d2y[i] = pc_temp->next->Y - pc_temp->Y;
|
---|
1125 | /*
|
---|
1126 | * The norm of a linear stroke is calculated in "normal coordinates"
|
---|
1127 | * and used as interval length:
|
---|
1128 | */
|
---|
1129 | delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y));
|
---|
1130 |
|
---|
1131 | d2x[i] /= delta_t[i]; /* first difference, with unit norm: */
|
---|
1132 | d2y[i] /= delta_t[i]; /* || (d2x[i], d2y[i]) || = 1 */
|
---|
1133 |
|
---|
1134 | pc_temp = pc_temp->next;
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Setup linear system: m * x = b
|
---|
1139 | */
|
---|
1140 | n = num_pts - 2; /* Without first and last point */
|
---|
1141 | if (contr_isclosed) {
|
---|
1142 | /* First and last points must be equal for closed contours */
|
---|
1143 | delta_t[num_pts - 1] = delta_t[0];
|
---|
1144 | d2x[num_pts - 1] = d2x[0];
|
---|
1145 | d2y[num_pts - 1] = d2y[0];
|
---|
1146 | n++; /* Add last point (= first point) */
|
---|
1147 | }
|
---|
1148 | for (i = 0; i < n; i++) {
|
---|
1149 | /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */
|
---|
1150 | m[i][0] = delta_t[i]; /* Off-diagonal element M_{i,i-1} */
|
---|
1151 | m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]); /* M_{i,i} */
|
---|
1152 | m[i][2] = delta_t[i + 1]; /* Off-diagonal element M_{i,i+1} */
|
---|
1153 |
|
---|
1154 | /* Right side b_x and b_y */
|
---|
1155 | d2x[i] = (d2x[i + 1] - d2x[i]) * 6.;
|
---|
1156 | d2y[i] = (d2y[i + 1] - d2y[i]) * 6.;
|
---|
1157 |
|
---|
1158 | /*
|
---|
1159 | * If the linear stroke shows a cusps of more than 90 degree, the right
|
---|
1160 | * side is reduced to avoid oscillations in the spline:
|
---|
1161 | */
|
---|
1162 | norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5;
|
---|
1163 |
|
---|
1164 | if (norm > 1.) {
|
---|
1165 | d2x[i] /= norm;
|
---|
1166 | d2y[i] /= norm;
|
---|
1167 | /* The first derivative will not be continuous */
|
---|
1168 | }
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | if (!contr_isclosed) {
|
---|
1172 | /* Third derivative is set to zero at both ends */
|
---|
1173 | m[0][1] += m[0][0]; /* M_{0,0} */
|
---|
1174 | m[0][0] = 0.; /* M_{0,n-1} */
|
---|
1175 | m[n - 1][1] += m[n - 1][2]; /* M_{n-1,n-1} */
|
---|
1176 | m[n - 1][2] = 0.; /* M_{n-1,0} */
|
---|
1177 | }
|
---|
1178 | /* Solve linear systems for d2x[] and d2y[] */
|
---|
1179 |
|
---|
1180 |
|
---|
1181 | if (solve_cubic_1(m, n)) { /* Calculate Cholesky decomposition */
|
---|
1182 | solve_cubic_2(m, d2x, n); /* solve M * d2x = b_x */
|
---|
1183 | solve_cubic_2(m, d2y, n); /* solve M * d2y = b_y */
|
---|
1184 |
|
---|
1185 | } else { /* Should not happen, but who knows ... */
|
---|
1186 | free((char *) m);
|
---|
1187 | return FALSE;
|
---|
1188 | }
|
---|
1189 |
|
---|
1190 | /* Shift all second derivatives one place right and abdate end points */
|
---|
1191 | for (i = n; i > 0; i--) {
|
---|
1192 | d2x[i] = d2x[i - 1];
|
---|
1193 | d2y[i] = d2y[i - 1];
|
---|
1194 | }
|
---|
1195 | if (contr_isclosed) {
|
---|
1196 | d2x[0] = d2x[n];
|
---|
1197 | d2y[0] = d2y[n];
|
---|
1198 | } else {
|
---|
1199 | d2x[0] = d2x[1]; /* Third derivative is zero in */
|
---|
1200 | d2y[0] = d2y[1]; /* first and last interval */
|
---|
1201 | d2x[n + 1] = d2x[n];
|
---|
1202 | d2y[n + 1] = d2y[n];
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | free((char *) m);
|
---|
1206 | return TRUE;
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | /*
|
---|
1210 | * Calculate interpolated values of the spline function (defined via p_cntr
|
---|
1211 | * and the second derivatives d2x[] and d2y[]). The number of tabulated
|
---|
1212 | * values is n. On an equidistant grid n_intpol values are calculated.
|
---|
1213 | */
|
---|
1214 | static void
|
---|
1215 | intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol)
|
---|
1216 | int n;
|
---|
1217 | struct cntr_struct *p_cntr;
|
---|
1218 | double d2x[], d2y[], delta_t[];
|
---|
1219 | int n_intpol;
|
---|
1220 | {
|
---|
1221 | double t, t_skip, t_max;
|
---|
1222 | double x0, x1, x, y0, y1, y;
|
---|
1223 | double d, hx, dx0, dx01, hy, dy0, dy01;
|
---|
1224 | int i;
|
---|
1225 |
|
---|
1226 | /* The length of the total interval */
|
---|
1227 | t_max = 0.;
|
---|
1228 | for (i = 0; i < n - 1; i++)
|
---|
1229 | t_max += delta_t[i];
|
---|
1230 |
|
---|
1231 | /* The distance between interpolated points */
|
---|
1232 | t_skip = (1. - 1e-7) * t_max / (n_intpol - 1);
|
---|
1233 |
|
---|
1234 | t = 0.; /* Parameter value */
|
---|
1235 | x1 = p_cntr->X;
|
---|
1236 | y1 = p_cntr->Y;
|
---|
1237 | add_cntr_point(x1, y1); /* First point. */
|
---|
1238 | t += t_skip;
|
---|
1239 |
|
---|
1240 | for (i = 0; i < n - 1; i++) {
|
---|
1241 | p_cntr = p_cntr->next;
|
---|
1242 |
|
---|
1243 | d = delta_t[i]; /* Interval length */
|
---|
1244 | x0 = x1;
|
---|
1245 | y0 = y1;
|
---|
1246 | x1 = p_cntr->X;
|
---|
1247 | y1 = p_cntr->Y;
|
---|
1248 | hx = (x1 - x0) / d;
|
---|
1249 | hy = (y1 - y0) / d;
|
---|
1250 | dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.;
|
---|
1251 | dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.;
|
---|
1252 | dx01 = (d2x[i + 1] - d2x[i]) / (6. * d);
|
---|
1253 | dy01 = (d2y[i + 1] - d2y[i]) / (6. * d);
|
---|
1254 | while (t <= delta_t[i]) { /* t in current interval ? */
|
---|
1255 | x = x0 + t * (hx + (t - d) * (dx0 + t * dx01));
|
---|
1256 | y = y0 + t * (hy + (t - d) * (dy0 + t * dy01));
|
---|
1257 | add_cntr_point(x, y); /* next point. */
|
---|
1258 | t += t_skip;
|
---|
1259 | }
|
---|
1260 | t -= delta_t[i]; /* Parameter t relative to start of next interval */
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | /*
|
---|
1265 | * The following two procedures solve the special linear system which arise
|
---|
1266 | * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
|
---|
1267 | * equations can be written as (i=0,1,...,n-1):
|
---|
1268 | * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
|
---|
1269 | * In matrix notation one gets M * x = b, where the matrix M is tridiagonal
|
---|
1270 | * with additional elements in the upper right and lower left position:
|
---|
1271 | * m[i][0] = M_{i,i-1} for i=1,2,...,n-1 and m[0][0] = M_{0,n-1} ,
|
---|
1272 | * m[i][1] = M_{i, i } for i=0,1,...,n-1
|
---|
1273 | * m[i][2] = M_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = M_{n-1,0}.
|
---|
1274 | * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite.
|
---|
1275 | * The size of the system is given in n (n>=1).
|
---|
1276 | *
|
---|
1277 | * In the first procedure the Cholesky decomposition M = C^T * D * C
|
---|
1278 | * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
|
---|
1279 | * Return TRUE if decomposition exist.
|
---|
1280 | */
|
---|
1281 | static int
|
---|
1282 | solve_cubic_1(m, n)
|
---|
1283 | tri_diag m[];
|
---|
1284 | int n;
|
---|
1285 | {
|
---|
1286 | int i;
|
---|
1287 | double m_ij, m_n, m_nn, d;
|
---|
1288 |
|
---|
1289 | if (n < 1)
|
---|
1290 | return FALSE; /* Dimension should be at least 1 */
|
---|
1291 |
|
---|
1292 | d = m[0][1]; /* D_{0,0} = M_{0,0} */
|
---|
1293 | if (d <= 0.)
|
---|
1294 | return FALSE; /* M (or D) should be positiv definite */
|
---|
1295 | m_n = m[0][0]; /* M_{0,n-1} */
|
---|
1296 | m_nn = m[n - 1][1]; /* M_{n-1,n-1} */
|
---|
1297 | for (i = 0; i < n - 2; i++) {
|
---|
1298 | m_ij = m[i][2]; /* M_{i,1} */
|
---|
1299 | m[i][2] = m_ij / d; /* C_{i,i+1} */
|
---|
1300 | m[i][0] = m_n / d; /* C_{i,n-1} */
|
---|
1301 | m_nn -= m[i][0] * m_n; /* to get C_{n-1,n-1} */
|
---|
1302 | m_n = -m[i][2] * m_n; /* to get C_{i+1,n-1} */
|
---|
1303 | d = m[i + 1][1] - m[i][2] * m_ij; /* D_{i+1,i+1} */
|
---|
1304 | if (d <= 0.)
|
---|
1305 | return FALSE; /* Elements of D should be positiv */
|
---|
1306 | m[i + 1][1] = d;
|
---|
1307 | }
|
---|
1308 | if (n >= 2) { /* Complete last column */
|
---|
1309 | m_n += m[n - 2][2]; /* add M_{n-2,n-1} */
|
---|
1310 | m[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
|
---|
1311 | m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n; /* D_{n-1,n-1} */
|
---|
1312 | if (d <= 0.)
|
---|
1313 | return FALSE;
|
---|
1314 | }
|
---|
1315 | return TRUE;
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 | /*
|
---|
1319 | * The second procedure solves the linear system, with the Choleky
|
---|
1320 | * decomposition calculated above (in m[][]) and the right side b given
|
---|
1321 | * in x[]. The solution x overwrites the right side in x[].
|
---|
1322 | */
|
---|
1323 | static void
|
---|
1324 | solve_cubic_2(m, x, n)
|
---|
1325 | tri_diag m[];
|
---|
1326 | double x[];
|
---|
1327 | int n;
|
---|
1328 | {
|
---|
1329 | int i;
|
---|
1330 | double x_n;
|
---|
1331 |
|
---|
1332 | /* Division by transpose of C : b = C^{-T} * b */
|
---|
1333 | x_n = x[n - 1];
|
---|
1334 | for (i = 0; i < n - 2; i++) {
|
---|
1335 | x[i + 1] -= m[i][2] * x[i]; /* C_{i,i+1} * x_{i} */
|
---|
1336 | x_n -= m[i][0] * x[i]; /* C_{i,n-1} * x_{i} */
|
---|
1337 | }
|
---|
1338 | if (n >= 2)
|
---|
1339 | x[n - 1] = x_n - m[n - 2][0] * x[n - 2]; /* C_{n-2,n-1} * x_{n-1} */
|
---|
1340 |
|
---|
1341 | /* Division by D: b = D^{-1} * b */
|
---|
1342 | for (i = 0; i < n; i++)
|
---|
1343 | x[i] /= m[i][1];
|
---|
1344 |
|
---|
1345 | /* Division by C: b = C^{-1} * b */
|
---|
1346 | x_n = x[n - 1];
|
---|
1347 | if (n >= 2)
|
---|
1348 | x[n - 2] -= m[n - 2][0] * x_n; /* C_{n-2,n-1} * x_{n-1} */
|
---|
1349 | for (i = n - 3; i >= 0; i--) {
|
---|
1350 | /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
|
---|
1351 | x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n;
|
---|
1352 | }
|
---|
1353 | return;
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /*
|
---|
1357 | * Solve tri diagonal linear system equation. The tri diagonal matrix is
|
---|
1358 | * defined via matrix M, right side is r, and solution X i.e. M * X = R.
|
---|
1359 | * Size of system given in n. Return TRUE if solution exist.
|
---|
1360 | */
|
---|
1361 | /* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */
|
---|
1362 |
|
---|
1363 | int
|
---|
1364 | solve_tri_diag(m, r, x, n)
|
---|
1365 | tri_diag m[];
|
---|
1366 | double r[], x[];
|
---|
1367 | int n;
|
---|
1368 | {
|
---|
1369 | int i;
|
---|
1370 | double t;
|
---|
1371 |
|
---|
1372 | for (i = 1; i < n; i++) { /* Eliminate element m[i][i-1] (lower diagonal). */
|
---|
1373 | if (m[i - 1][1] == 0)
|
---|
1374 | return FALSE;
|
---|
1375 | t = m[i][0] / m[i - 1][1]; /* Find ratio between the two lines. */
|
---|
1376 | /* m[i][0] = m[i][0] - m[i-1][1] * t; */
|
---|
1377 | /* m[i][0] is not used any more (and set to 0 in the above line) */
|
---|
1378 | m[i][1] = m[i][1] - m[i - 1][2] * t;
|
---|
1379 | r[i] = r[i] - r[i - 1] * t;
|
---|
1380 | }
|
---|
1381 | /* Now do back subtitution - update the solution vector X: */
|
---|
1382 | if (m[n - 1][1] == 0)
|
---|
1383 | return FALSE;
|
---|
1384 | x[n - 1] = r[n - 1] / m[n - 1][1]; /* Find last element. */
|
---|
1385 | for (i = n - 2; i >= 0; i--) {
|
---|
1386 | if (m[i][1] == 0)
|
---|
1387 | return FALSE;
|
---|
1388 | x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1];
|
---|
1389 | }
|
---|
1390 | return TRUE;
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | /*
|
---|
1394 | * Generate a Bspline curve defined by all the points given in linked list p:
|
---|
1395 | * Algorithm: using deBoor algorithm
|
---|
1396 | * Note: if Curvekind is open contour than Open end knot vector is assumed,
|
---|
1397 | * else (closed contour) Float end knot vector is assumed.
|
---|
1398 | * It is assumed that num_of_points is at least 2, and order of Bspline is less
|
---|
1399 | * than num_of_points!
|
---|
1400 | */
|
---|
1401 | static void
|
---|
1402 | gen_bspline_approx(p_cntr, num_of_points, order, contr_isclosed)
|
---|
1403 | struct cntr_struct *p_cntr;
|
---|
1404 | int num_of_points, order;
|
---|
1405 | TBOOLEAN contr_isclosed;
|
---|
1406 | {
|
---|
1407 | int knot_index = 0, pts_count = 1;
|
---|
1408 | double dt, t, next_t, t_min, t_max, x, y;
|
---|
1409 | struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL;
|
---|
1410 |
|
---|
1411 | /* If the contour is Closed one we must update few things:
|
---|
1412 | * 1. Make the list temporary circular, so we can close the contour.
|
---|
1413 | * 2. Update num_of_points - increase it by "order-1" so contour will be
|
---|
1414 | * closed. This will evaluate order more sections to close it!
|
---|
1415 | */
|
---|
1416 | if (contr_isclosed) {
|
---|
1417 | pc_tail = p_cntr;
|
---|
1418 | while (pc_tail->next)
|
---|
1419 | pc_tail = pc_tail->next; /* Find last point. */
|
---|
1420 |
|
---|
1421 | /* test if first and last point are equal */
|
---|
1422 | if (fuzzy_equal(pc_tail, p_cntr)) {
|
---|
1423 | /* Close contour list - make it circular. */
|
---|
1424 | pc_tail->next = p_cntr->next;
|
---|
1425 | num_of_points += order - 1;
|
---|
1426 | } else {
|
---|
1427 | pc_tail->next = p_cntr;
|
---|
1428 | num_of_points += order;
|
---|
1429 | }
|
---|
1430 | }
|
---|
1431 | /* Find first (t_min) and last (t_max) t value to eval: */
|
---|
1432 | t = t_min = fetch_knot(contr_isclosed, num_of_points, order, order);
|
---|
1433 | t_max = fetch_knot(contr_isclosed, num_of_points, order, num_of_points);
|
---|
1434 | next_t = t_min + 1.0;
|
---|
1435 | knot_index = order;
|
---|
1436 | dt = 1.0 / contour_pts; /* Number of points per one section. */
|
---|
1437 |
|
---|
1438 |
|
---|
1439 | while (t < t_max) {
|
---|
1440 | if (t > next_t) {
|
---|
1441 | pc_temp = pc_temp->next; /* Next order ctrl. pt. to blend. */
|
---|
1442 | knot_index++;
|
---|
1443 | next_t += 1.0;
|
---|
1444 | }
|
---|
1445 | eval_bspline(t, pc_temp, num_of_points, order, knot_index,
|
---|
1446 | contr_isclosed, &x, &y); /* Next pt. */
|
---|
1447 | add_cntr_point(x, y);
|
---|
1448 | pts_count++;
|
---|
1449 | /* As we might have some real number round off problems we do */
|
---|
1450 | /* the last point outside the loop */
|
---|
1451 | if (pts_count == contour_pts * (num_of_points - order) + 1)
|
---|
1452 | break;
|
---|
1453 | t += dt;
|
---|
1454 | }
|
---|
1455 |
|
---|
1456 | /* Now do the last point */
|
---|
1457 | eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index,
|
---|
1458 | contr_isclosed, &x, &y);
|
---|
1459 | add_cntr_point(x, y); /* Complete the contour. */
|
---|
1460 |
|
---|
1461 | if (contr_isclosed) /* Update list - un-circular it. */
|
---|
1462 | pc_tail->next = NULL;
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | /*
|
---|
1466 | * The routine to evaluate the B-spline value at point t using knot vector
|
---|
1467 | * from function fetch_knot(), and the control points p_cntr.
|
---|
1468 | * Returns (x, y) of approximated B-spline. Note that p_cntr points on the
|
---|
1469 | * first control point to blend with. The B-spline is of order order.
|
---|
1470 | */
|
---|
1471 | static void
|
---|
1472 | eval_bspline(t, p_cntr, num_of_points, order, j, contr_isclosed, x, y)
|
---|
1473 | double t;
|
---|
1474 | struct cntr_struct *p_cntr;
|
---|
1475 | int num_of_points, order, j;
|
---|
1476 | TBOOLEAN contr_isclosed;
|
---|
1477 | double *x, *y;
|
---|
1478 | {
|
---|
1479 | int i, p;
|
---|
1480 | double ti, tikp, *dx, *dy; /* Copy p_cntr into it to make it faster. */
|
---|
1481 |
|
---|
1482 | dx = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
|
---|
1483 | dy = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
|
---|
1484 |
|
---|
1485 | /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */
|
---|
1486 | for (i = j - order; i <= j; i++) {
|
---|
1487 | dx[i] = p_cntr->X;
|
---|
1488 | dy[i] = p_cntr->Y;
|
---|
1489 | p_cntr = p_cntr->next;
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | for (p = 1; p <= order; p++) { /* Iteration (b-spline level) counter. */
|
---|
1493 | for (i = j; i >= j - order + p; i--) { /* Control points indexing. */
|
---|
1494 | ti = fetch_knot(contr_isclosed, num_of_points, order, i);
|
---|
1495 | tikp = fetch_knot(contr_isclosed, num_of_points, order, i + order + 1 - p);
|
---|
1496 | if (ti == tikp) { /* Should not be a problems but how knows... */
|
---|
1497 | } else {
|
---|
1498 | dx[i] = dx[i] * (t - ti) / (tikp - ti) + /* Calculate x. */
|
---|
1499 | dx[i - 1] * (tikp - t) / (tikp - ti);
|
---|
1500 | dy[i] = dy[i] * (t - ti) / (tikp - ti) + /* Calculate y. */
|
---|
1501 | dy[i - 1] * (tikp - t) / (tikp - ti);
|
---|
1502 | }
|
---|
1503 | }
|
---|
1504 | }
|
---|
1505 | *x = dx[j];
|
---|
1506 | *y = dy[j];
|
---|
1507 | free((char *) dx);
|
---|
1508 | free((char *) dy);
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 | /*
|
---|
1512 | * Routine to get the i knot from uniform knot vector. The knot vector
|
---|
1513 | * might be float (Knot(i) = i) or open (where the first and last "order"
|
---|
1514 | * knots are equal). contr_isclosed determines knot kind - open contour means
|
---|
1515 | * open knot vector, and closed contour selects float knot vector.
|
---|
1516 | * Note the knot vector is not exist and this routine simulates it existance
|
---|
1517 | * Also note the indexes for the knot vector starts from 0.
|
---|
1518 | */
|
---|
1519 | static double
|
---|
1520 | fetch_knot(contr_isclosed, num_of_points, order, i)
|
---|
1521 | TBOOLEAN contr_isclosed;
|
---|
1522 | int num_of_points, order, i;
|
---|
1523 | {
|
---|
1524 | if(! contr_isclosed) {
|
---|
1525 | if (i <= order)
|
---|
1526 | return 0.0;
|
---|
1527 | else if (i <= num_of_points)
|
---|
1528 | return (double) (i - order);
|
---|
1529 | else
|
---|
1530 | return (double) (num_of_points - order);
|
---|
1531 | } else {
|
---|
1532 | return (double) i;
|
---|
1533 | }
|
---|
1534 | }
|
---|