source: Sophya/trunk/SophyaPI/PIGcont/gp_contour.c@ 1844

Last change on this file since 1844 was 1844, checked in by ansari, 24 years ago

changement de nom des fichiers (ajout de gp_ ou gpc_ ) pour eviter les confusions - Reza 30/12/2001

File size: 48.2 KB
RevLine 
[1844]1/* GNUPLOT - contour.c */
2
3/*[
4 * Copyright 1986 - 1993, 1998 Thomas Williams, Colin Kelley
5 *
6 * Permission to use, copy, and distribute this software and its
7 * documentation for any purpose with or without fee is hereby granted,
8 * provided that the above copyright notice appear in all copies and
9 * that both that copyright notice and this permission notice appear
10 * in supporting documentation.
11 *
12 * Permission to modify the software is granted, but not the right to
13 * distribute the complete modified source code. Modifications are to
14 * be distributed as patches to the released version. Permission to
15 * distribute binaries produced by compiling modified sources is granted,
16 * provided you
17 * 1. distribute the corresponding source modifications from the
18 * released version in the form of a patch file along with the binaries,
19 * 2. add special version identification to distinguish your version
20 * in addition to the base release version number,
21 * 3. provide your name and address as the primary contact for the
22 * support of your modified version, and
23 * 4. retain our contact information in regard to use of the base
24 * software.
25 * Permission to distribute the released version of the source code along
26 * with corresponding source modifications in the form of a patch file is
27 * granted with same provisions 2 through 4 for binary distributions.
28 *
29 * This software is provided "as is" without express or implied warranty
30 * to the extent permitted by applicable law.
31]*/
32
33
34/*
35 * AUTHORS
36 *
37 * Original Software:
38 * Gershon Elber
39 *
40 * Improvements to the numerical algorithms:
41 * Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de)
42 *
43 */
44
45#include "gp_contour.h"
46
47#include "gp_alloc.h"
48#include "gp_axis.h"
49/* #include "setshow.h" */
50
51/* exported variables (to be handled by the 'set' and friends): */
52
53char contour_format[32] = "%8.3g"; /* format for contour key entries */
54t_contour_kind contour_kind = CONTOUR_KIND_LINEAR;
55t_contour_levels_kind contour_levels_kind = LEVELS_AUTO;
56int contour_levels = DEFAULT_CONTOUR_LEVELS;
57int contour_order = DEFAULT_CONTOUR_ORDER;
58int contour_pts = DEFAULT_NUM_APPROX_PTS;
59
60dynarray dyn_contour_levels_list;/* storage for z levels to draw contours at */
61double * contour_levels_list=NULL;
62
63/* position of edge in mesh */
64typedef enum en_edge_position {
65 INNER_MESH=1,
66 BOUNDARY,
67 DIAGONAL
68} t_edge_position;
69
70
71/* Valeur de zero - Reza 21/12/2001 - Pourquoi zero = 0. ??? */
72static double zero = 0.;
73
74/* FIXME HBB 2000052: yet another local copy of 'epsilon'. Why? */
75#define EPSILON 1e-5 /* Used to decide if two float are equal. */
76
77
78#ifndef TRUE
79#define TRUE -1
80#define FALSE 0
81#endif
82
83
84#define MAX_POINTS_PER_CNTR 100
85
86#define SQR(x) ((x) * (x))
87
88/*
89 * struct vrtx_struct {
90 * double X, Y, Z;
91 * struct vrtx_struct *next;
92 * };
93 *
94 * replaced by 'struct coordinate ', see plot.h (HMK 1997)
95 */
96
97struct edge_struct {
98 struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */
99 struct coordinate *vertex[2]; /* The two extreme points of this edge. */
100 struct edge_struct *next; /* To chain lists */
101 TBOOLEAN is_active; /* is edge is 'active' at certain Z level? */
102 t_edge_position position; /* position of edge in mesh */
103};
104
105struct poly_struct {
106 struct edge_struct *edge[3]; /* As we do triangolation here... */
107 struct poly_struct *next; /* To chain lists. */
108};
109
110struct cntr_struct { /* Contours are saved using this struct list. */
111 double X, Y; /* The coordinates of this vertex. */
112 struct cntr_struct *next; /* To chain lists. */
113};
114
115static struct gnuplot_contours *contour_list = NULL;
116static double crnt_cntr[MAX_POINTS_PER_CNTR * 2];
117static int crnt_cntr_pt_index = 0;
118static double contour_level = 0.0;
119
120/* Linear, Cubic interp., Bspline: */
121static t_contour_kind interp_kind = CONTOUR_KIND_LINEAR;
122
123static double x_min, y_min, z_min; /* Minimum values of x, y, and z */
124static double x_max, y_max, z_max; /* Maximum values of x, y, and z */
125
126static void add_cntr_point (double x, double y);
127static void end_crnt_cntr (void);
128static void gen_contours(struct edge_struct * p_edges, double z_level,
129 double xx_min, double xx_max, double yy_min, double yy_max);
130static int update_all_edges(struct edge_struct * p_edges,
131 double z_level);
132static struct cntr_struct *gen_one_contour (
133 struct edge_struct * p_edges, double
134 z_level, TBOOLEAN *contr_isclosed,
135 int *num_active);
136static struct cntr_struct *trace_contour (
137 struct edge_struct * pe_start, double
138 z_level, int *num_active,
139 TBOOLEAN contr_isclosed);
140static struct cntr_struct *update_cntr_pt (struct edge_struct * p_edge,
141 double z_level);
142static int fuzzy_equal (struct cntr_struct * p_cntr1,
143 struct cntr_struct * p_cntr2);
144
145
146static void gen_triangle (int num_isolines,
147 struct iso_curve * iso_lines, struct poly_struct ** p_polys,
148 struct edge_struct ** p_edges);
149static void calc_min_max (int num_isolines,
150 struct iso_curve * iso_lines, double *xx_min, double *yy_min,
151 double *zz_min,
152 double *xx_max, double *yy_max, double *zz_max);
153static struct edge_struct *add_edge (struct coordinate * point0,
154 struct coordinate * point1, struct edge_struct
155 ** p_edge,
156 struct edge_struct ** pe_tail);
157static struct poly_struct *add_poly (struct edge_struct * edge0,
158 struct edge_struct * edge1, struct edge_struct * edge2,
159 struct poly_struct ** p_poly, struct poly_struct ** pp_tail);
160
161
162static void put_contour (struct cntr_struct * p_cntr, double z_level,
163 double xx_min, double xx_max, double yy_min, double yy_max,
164 TBOOLEAN contr_isclosed);
165static void put_contour_nothing (struct cntr_struct * p_cntr);
166static int chk_contour_kind (struct cntr_struct * p_cntr,
167 TBOOLEAN contr_isclosed);
168static void put_contour_cubic (struct cntr_struct * p_cntr,
169 double z_level, double xx_min, double xx_max, double
170 yy_min, double yy_max,
171 TBOOLEAN contr_isclosed);
172static void put_contour_bspline (struct cntr_struct * p_cntr,
173 double z_level, double xx_min, double xx_max, double
174 yy_min, double yy_max,
175 TBOOLEAN contr_isclosed);
176static void free_contour (struct cntr_struct * p_cntr);
177static int count_contour (struct cntr_struct * p_cntr);
178static int gen_cubic_spline (int num_pts, struct cntr_struct * p_cntr,
179 double d2x[], double d2y[], double delta_t[], TBOOLEAN contr_isclosed,
180 double unit_x, double unit_y);
181static void intp_cubic_spline (int n, struct cntr_struct * p_cntr,
182 double d2x[], double d2y[], double delta_t[], int n_intpol);
183static int solve_cubic_1 (tri_diag m[], int n);
184static void solve_cubic_2 (tri_diag m[], double x[], int n);
185static void gen_bspline_approx (struct cntr_struct * p_cntr,
186 int num_of_points, int order, TBOOLEAN contr_isclosed);
187static void eval_bspline (double t, struct cntr_struct * p_cntr,
188 int num_of_points, int order, int j, TBOOLEAN contr_isclosed, double *x,
189 double *y);
190static double fetch_knot (TBOOLEAN contr_isclosed, int num_of_points,
191 int order, int i);
192
193
194static int num_of_z_levels;/*_____ OP ___________*/ /* # Z contour levels. */
195
196int Get_Num_Of_Z_Levels(){
197return num_of_z_levels;
198} /* OP __________ */
199
200/*
201 * Entry routine to this whole set of contouring module.
202 */
203struct gnuplot_contours *
204contour(num_isolines, iso_lines)
205int num_isolines;
206struct iso_curve *iso_lines;
207{
208 int i;
209 /*OP int num_of_z_levels;*/ /* # Z contour levels. */
210 struct poly_struct *p_polys, *p_poly;
211 struct edge_struct *p_edges, *p_edge;
212 double z = 0, dz = 0;
213 struct gnuplot_contours *save_contour_list;
214
215 num_of_z_levels = contour_levels;
216 interp_kind = contour_kind;
217
218 contour_list = NULL;
219
220 /*
221 * Calculate min/max values :
222 */
223 calc_min_max(num_isolines, iso_lines,
224 &x_min, &y_min, &z_min, &x_max, &y_max, &z_max);
225
226 dz = fabs(z_max - z_min);
227 /*
228 * printf(" contour z_max %g z_min %g dz=%g kind %d \n",z_max, z_min , dz,contour_levels_kind);
229 * Generate list of edges (p_edges) and list of triangles (p_polys):
230 */
231
232 gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges);
233 crnt_cntr_pt_index = 0;
234 /*AJOUT OP */
235 if (contour_levels_kind == LEVELS_NUM) {
236 dz = fabs(z_max - z_min)/(num_of_z_levels);
237 z = z_min - dz/2.;
238 }
239
240 if (contour_levels_kind == LEVELS_AUTO) {
241 dz = fabs(z_max - z_min);
242 /*printf(" contour z_max %g z_min %g dz=%g\n",z_max, z_min , dz);*/
243 if (dz == 0)
244 return NULL; /* empty z range ? */
245 /* what is the deeper sense of this ? (joze) */
246 dz = set_tic(log10(dz), ((int) contour_levels + 1) * 2);
247 z = floor(z_min / dz) * dz;
248 num_of_z_levels = (int) floor((z_max - z) / dz);
249 /*printf("contour() : num_of_z_levels %d\n",num_of_z_levels);*/
250 }
251 for (i = 0; i < num_of_z_levels; i++) {
252 switch (contour_levels_kind) {
253 case LEVELS_AUTO:
254 case LEVELS_NUM:
255 z += dz;
256 break;
257 case LEVELS_INCREMENTAL:
258 z = contour_levels_list[0] + i * contour_levels_list[1];
259 break;
260 case LEVELS_DISCRETE:
261 /*printf("????? contour z=%f\n",contour_levels_list[i] );*/
262 /*z = AXIS_LOG_VALUE(FIRST_Z_AXIS, contour_levels_list[i]); PAS BESOIN ? OP */
263 z = contour_levels_list[i];
264 break;
265 }
266 contour_level = z;
267 /*printf(" contour z=%f\n",z);*/
268 save_contour_list = contour_list;
269 gen_contours(p_edges, z, x_min, x_max, y_min, y_max);
270 if (contour_list != save_contour_list) {
271 contour_list->isNewLevel = 1;
272 sprintf(contour_list->label, contour_format, AXIS_DE_LOG_VALUE(FIRST_Z_AXIS,z));
273#ifdef PM3D
274 contour_list->z = AXIS_DE_LOG_VALUE(FIRST_Z_AXIS, z);
275#endif
276 }
277 }
278
279 /* Free all contouring related temporary data. */
280 while (p_polys) {
281 p_poly = p_polys->next;
282 free(p_polys);
283 p_polys = p_poly;
284 }
285 while (p_edges) {
286 p_edge = p_edges->next;
287 free(p_edges);
288 p_edges = p_edge;
289 }
290
291 return contour_list;
292}
293
294/*
295 * Adds another point to the currently build contour.
296 */
297static void
298add_cntr_point(x, y)
299double x, y;
300{
301 int index;
302
303 if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) {
304 index = crnt_cntr_pt_index - 1;
305 end_crnt_cntr();
306 crnt_cntr[0] = crnt_cntr[index * 2];
307 crnt_cntr[1] = crnt_cntr[index * 2 + 1];
308 crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */
309 }
310 crnt_cntr[crnt_cntr_pt_index * 2] = x;
311 crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y;
312 crnt_cntr_pt_index++;
313}
314
315/*
316 * Done with current contour - create gnuplot data structure for it.
317 */
318static void
319end_crnt_cntr()
320{
321 int i;
322 struct gnuplot_contours *cntr = (struct gnuplot_contours *)
323 gp_alloc(sizeof(struct gnuplot_contours), "gnuplot_contour");
324 cntr->coords = (struct coordinate *)
325 gp_alloc(sizeof(struct coordinate) * crnt_cntr_pt_index,
326 "contour coords");
327
328 for (i = 0; i < crnt_cntr_pt_index; i++) {
329 cntr->coords[i].x = crnt_cntr[i * 2];
330 cntr->coords[i].y = crnt_cntr[i * 2 + 1];
331 cntr->coords[i].z = contour_level;
332 }
333 cntr->num_pts = crnt_cntr_pt_index;
334
335 cntr->next = contour_list;
336 contour_list = cntr;
337 contour_list->isNewLevel = 0;
338
339 crnt_cntr_pt_index = 0;
340}
341
342/*
343 * Generates all contours by tracing the intersecting triangles.
344 */
345static void
346gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max)
347struct edge_struct *p_edges;
348double z_level, xx_min, xx_max, yy_min, yy_max;
349{
350 int num_active; /* Number of edges marked ACTIVE. */
351 TBOOLEAN contr_isclosed; /* Is this contour a closed line? */
352 struct cntr_struct *p_cntr;
353
354 num_active = update_all_edges(p_edges, z_level); /* Do pass 1. */
355
356 contr_isclosed = FALSE; /* Start to look for contour on boundaries. */
357 /*printf("<gen_contour> z=%g num_active %d \n",z_level,num_active);*/
358 while (num_active > 0) { /* Do Pass 2. */
359 /* Generate One contour (and update MumActive as needed): */
360 p_cntr = gen_one_contour(p_edges, z_level, &contr_isclosed, &num_active);
361 if (p_cntr ==NULL) printf("<gen_contour> gen_one_contour retourne NULL \n");
362 /* Emit it in requested format: */
363 put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed);
364 }
365}
366
367/*
368 * Does pass 1, or marks the edges which are active (crosses this z_level)
369 * Returns number of active edges (marked ACTIVE).
370 */
371static int
372update_all_edges(p_edges, z_level)
373struct edge_struct *p_edges;
374double z_level;
375{
376 int count = 0;
377
378 while (p_edges) {
379 /* use the same test at both vertices to avoid roundoff errors */
380
381 if ((p_edges->vertex[0]->z >= z_level) !=
382 (p_edges->vertex[1]->z >= z_level)) {
383 p_edges->is_active = TRUE;
384 count++;
385 } else
386 p_edges->is_active = FALSE;
387 p_edges = p_edges->next;
388 }
389
390 return count;
391}
392
393/*
394 * Does pass 2, or find one complete contour out of the triangulation
395 * data base:
396 *
397 * Returns a pointer to the contour (as linked list), contr_isclosed
398 * tells if the contour is a closed line or not, and num_active is
399 * updated.
400 */
401static struct cntr_struct *
402gen_one_contour(p_edges, z_level, contr_isclosed, num_active)
403struct edge_struct *p_edges; /* list of edges input */
404double z_level; /* Z level of contour input */
405TBOOLEAN *contr_isclosed; /* open or closed contour, in/out */
406int *num_active; /* number of active edges in/out */
407{
408 struct edge_struct *pe_temp;
409
410 if (! *contr_isclosed) {
411 /*printf("<gen_one_contour> contr_isclosed FALSE \n");*/
412 /* Look for something to start with on boundary: */
413 pe_temp = p_edges;
414 while (pe_temp) {
415 if (pe_temp->is_active && (pe_temp->position == BOUNDARY))
416 break;
417 pe_temp = pe_temp->next;
418 }
419 if (!pe_temp)
420 *contr_isclosed = TRUE; /* No more contours on boundary. */
421 else {
422 /*printf("<gen_one_contour> contr_isclosed FALSE return \n");*/
423 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
424 }
425 }
426 if (*contr_isclosed) {
427 /* Look for something to start with inside: */
428 /*printf("<gen_one_contour> contr_isclosed TRUE \n");*/
429 pe_temp = p_edges;
430 while (pe_temp) {
431 if (pe_temp->is_active && (pe_temp->position != BOUNDARY))
432 break;
433 pe_temp = pe_temp->next;
434 }
435 if (!pe_temp) {
436 *num_active = 0;
437 fprintf(stderr, "gen_one_contour: no contour found\n");
438 return NULL;
439 } else {
440 *contr_isclosed = TRUE;
441 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
442 }
443 }
444 printf("<gen_one_contour> We should never be here, but lint... \n");
445 return NULL; /* We should never be here, but lint... */
446}
447
448/*
449 * Search the data base along a contour starts at the edge pe_start until
450 * a boundary edge is detected or until we close the loop back to pe_start.
451 * Returns a linked list of all the points on the contour
452 * Also decreases num_active by the number of points on contour.
453 */
454static struct cntr_struct *
455trace_contour(pe_start, z_level, num_active, contr_isclosed)
456 struct edge_struct *pe_start; /* edge to start contour input */
457 double z_level; /* Z level of contour input */
458 int *num_active; /* number of active edges in/out */
459 TBOOLEAN contr_isclosed; /* open or closed contour line (input) */
460{
461 struct cntr_struct *p_cntr, *pc_tail;
462 struct edge_struct *p_edge, *p_next_edge;
463 struct poly_struct *p_poly, *PLastpoly = NULL;
464 int i;
465
466 p_edge = pe_start; /* first edge to start contour */
467
468 /* Generate the header of the contour - the point on pe_start. */
469 if (! contr_isclosed) {
470 pe_start->is_active = FALSE;
471 (*num_active)--;
472 }
473 if (p_edge->poly[0] || p_edge->poly[1]) { /* more than one point */
474
475 p_cntr = pc_tail = update_cntr_pt(pe_start, z_level); /* first point */
476
477 do {
478 /* Find polygon to continue (Not where we came from - PLastpoly): */
479 if (p_edge->poly[0] == PLastpoly)
480 p_poly = p_edge->poly[1];
481 else
482 p_poly = p_edge->poly[0];
483 p_next_edge = NULL; /* In case of error, remains NULL. */
484 for (i = 0; i < 3; i++) /* Test the 3 edges of the polygon: */
485 if (p_poly->edge[i] != p_edge)
486 if (p_poly->edge[i]->is_active)
487 p_next_edge = p_poly->edge[i];
488 if (!p_next_edge) { /* Error exit */
489 pc_tail->next = NULL;
490 free_contour(p_cntr);
491 fprintf(stderr, "trace_contour: unexpected end of contour\n");
492 return NULL;
493 }
494 p_edge = p_next_edge;
495 PLastpoly = p_poly;
496 p_edge->is_active = FALSE;
497 (*num_active)--;
498
499 /* Do not allocate contour points on diagonal edges */
500 if (p_edge->position != DIAGONAL) {
501
502 pc_tail->next = update_cntr_pt(p_edge, z_level);
503
504 /* Remove nearby points */
505 if (fuzzy_equal(pc_tail, pc_tail->next)) {
506
507 free((char *) pc_tail->next);
508 } else
509 pc_tail = pc_tail->next;
510 }
511 } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY));
512
513 pc_tail->next = NULL;
514
515 /* For closed contour the first and last point should be equal */
516 if (pe_start == p_edge) {
517 (p_cntr->X) = (pc_tail->X);
518 (p_cntr->Y) = (pc_tail->Y);
519 }
520 } else { /* only one point, forget it */
521 p_cntr = NULL;
522 }
523
524 return p_cntr;
525}
526
527/*
528 * Allocates one contour location and update it to to correct position
529 * according to z_level and edge p_edge.
530 */
531static struct cntr_struct *
532update_cntr_pt(p_edge, z_level)
533struct edge_struct *p_edge;
534double z_level;
535{
536 double t;
537 struct cntr_struct *p_cntr;
538
539 t = (z_level - p_edge->vertex[0]->z) /
540 (p_edge->vertex[1]->z - p_edge->vertex[0]->z);
541
542 /* test if t is out of interval [0:1] (should not happen but who knows ...) */
543 /*if(t>1) printf(" <update_cntr_pt> t >1 !\n");*/
544 /*if(t<0) printf(" <update_cntr_pt> t negatif !\n");*/
545 t = (t < 0.0 ? 0.0 : t);
546 t = (t > 1.0 ? 1.0 : t);
547 /*printf(" <update_cntr_pt> Point 0 %g %g %g \n",p_edge->vertex[0]->x,p_edge->vertex[0]->y,p_edge->vertex[0]->z);*/
548 /*printf(" <update_cntr_pt> Point 1 %g %g %g \n",p_edge->vertex[1]->x,p_edge->vertex[1]->y,p_edge->vertex[1]->z);*/
549 p_cntr = (struct cntr_struct *)
550 gp_alloc(sizeof(struct cntr_struct), "contour cntr_struct");
551
552 p_cntr->X = p_edge->vertex[1]->x * t +
553 p_edge->vertex[0]->x * (1 - t);
554 p_cntr->Y = p_edge->vertex[1]->y * t +
555 p_edge->vertex[0]->y * (1 - t);
556 /*printf(" <update_cntr_pt> p_cntr X %g Y %g \n",p_cntr->X,p_cntr->Y);*/
557 return p_cntr;
558}
559
560/* Simple routine to decide if two contour points are equal by
561 * calculating the relative error (< EPSILON). */
562/* HBB 20010121: don't use absolute value 'zero' to compare to data
563 * values. */
564static int
565fuzzy_equal(p_cntr1, p_cntr2)
566 struct cntr_struct *p_cntr1, *p_cntr2;
567{
568 double unit_x, unit_y;
569 unit_x = fabs(x_max - x_min); /* reference */
570 unit_y = fabs(y_max - y_min);
571 return ((fabs(p_cntr1->X - p_cntr2->X) < unit_x * EPSILON)
572 && (fabs(p_cntr1->Y - p_cntr2->Y) < unit_y * EPSILON));
573}
574
575/*
576 * Generate the triangles.
577 * Returns the lists (edges & polys) via pointers to their heads.
578 */
579static void
580gen_triangle(num_isolines, iso_lines, p_polys, p_edges)
581int num_isolines; /* number of iso-lines input */
582struct iso_curve *iso_lines; /* iso-lines input */
583struct poly_struct **p_polys; /* list of polygons output */
584struct edge_struct **p_edges; /* list of edges output */
585{
586 int i, j, grid_x_max = iso_lines->p_count;
587 struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail,
588 *pe_tail2, *pe_temp;
589 struct poly_struct *pp_tail, *lower_tri, *upper_tri;
590 /* HBB 980308: need to tag *each* of them as ! */
591 struct coordinate *p_vrtx1, * p_vrtx2;
592
593 (*p_polys) = pp_tail = NULL; /* clear lists */
594 (*p_edges) = pe_tail = NULL;
595
596 p_vrtx1 = iso_lines->points; /* first row of vertices */
597 p_edge1 = pe_tail = NULL; /* clear list of edges */
598
599 /* Generate edges of first row */
600 for (j = 0; j < grid_x_max - 1; j++)
601 add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail);
602
603 (*p_edges) = p_edge1; /* update main list */
604
605
606 /*
607 * Combines vertices to edges and edges to triangles:
608 * ==================================================
609 * The edges are stored in the edge list, referenced by p_edges
610 * (pe_tail points on last edge).
611 *
612 * Temporary pointers:
613 * 1. p_edge2: Top horizontal edge list: +-----------------------+ 2
614 * 2. p_tail : end of middle edge list: |\ |\ |\ |\ |\ |\ |
615 * | \| \| \| \| \| \|
616 * 3. p_edge1: Bottom horizontal edge list: +-----------------------+ 1
617 *
618 * pe_tail2 : end of list beginning at p_edge2
619 * pe_temp : position inside list beginning at p_edge1
620 * p_edges : head of the master edge list (part of our output)
621 * p_vrtx1 : start of lower row of input vertices
622 * p_vrtx2 : start of higher row of input vertices
623 *
624 * The routine generates two triangle Lower Upper 1
625 * upper one and lower one: | \ ----
626 * (Nums. are edges order in polys) 0| \1 0\ |2
627 * The polygons are stored in the polygon ---- \ |
628 * list (*p_polys) (pp_tail points on 2
629 * last polygon).
630 * 1
631 * -----------
632 * In addition, the edge lists are updated - | \ 0 |
633 * each edge has two pointers on the two | \ |
634 * (one active if boundary) polygons which 0|1 0\1 0|1
635 * uses it. These two pointer to polygons | \ |
636 * are named: poly[0], poly[1]. The diagram | 1 \ |
637 * on the right show how they are used for the -----------
638 * upper and lower polygons (INNER_MESH polygons only). 0
639 */
640
641 for (i = 1; i < num_isolines; i++) {
642 /* Read next column and gen. polys. */
643 iso_lines = iso_lines->next;
644
645 p_vrtx2 = iso_lines->points; /* next row of vertices */
646 p_edge2 = pe_tail2 = NULL; /* clear top horizontal list */
647 pe_temp = p_edge1; /* pointer in bottom list */
648
649 /*
650 * Generate edges and triagles for next row:
651 */
652
653 /* generate first vertical edge */
654 edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail);
655
656 for (j = 0; j < grid_x_max - 1; j++) {
657
658 /* copy vertical edge for lower triangle */
659 edge0 = edge2;
660
661 if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) {
662 /* test lower edge */
663 edge2 = pe_temp;
664 pe_temp = pe_temp->next;
665 } else {
666 edge2 = NULL; /* edge is undefined */
667 }
668
669 /* generate diagonal edge */
670 edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail);
671 if (edge1)
672 edge1->position = DIAGONAL;
673
674 /* generate lower triangle */
675 lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
676
677 /* copy diagonal edge for upper triangle */
678 edge0 = edge1;
679
680 /* generate upper edge */
681 edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2);
682
683 /* generate vertical edge */
684 edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail);
685
686 /* generate upper triangle */
687 upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
688 }
689
690 if (p_edge2) {
691 /* HBB 19991130 bugfix: if p_edge2 list is empty,
692 * don't change p_edges list! Crashes by access
693 * to NULL pointer pe_tail, the second time through,
694 * otherwise */
695 if ((*p_edges)) { /* Chain new edges to main list. */
696 pe_tail->next = p_edge2;
697 pe_tail = pe_tail2;
698 } else {
699 (*p_edges) = p_edge2;
700 pe_tail = pe_tail2;
701 }
702 }
703
704 /* this row finished, move list heads up one row: */
705 p_edge1 = p_edge2;
706 p_vrtx1 = p_vrtx2;
707 }
708
709 /* Update the boundary flag, saved in each edge, and update indexes: */
710
711 pe_temp = (*p_edges);
712
713 while (pe_temp) {
714 if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1])))
715 (pe_temp->position) = BOUNDARY;
716 pe_temp = pe_temp->next;
717 }
718}
719
720/*
721 * Calculate minimum and maximum values
722 */
723static void
724calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max)
725 int num_isolines; /* number of iso-lines input */
726 struct iso_curve *iso_lines; /* iso-lines input */
727 double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */
728{
729 int i, j, grid_x_max;
730 struct coordinate *vertex;
731 /*printf("<calc_min_max> : iso_lines->p_count %ld \n",iso_lines->p_count);*/
732 grid_x_max = iso_lines->p_count; /* number of vertices per iso_line */
733
734 (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE; /* clear min/max values */
735 (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE;
736 /*printf(" <calc_min_max> %d \n",num_isolines);*/
737 for (j = 0; j < num_isolines; j++) {
738 /*printf(" <calc_min_max> iso_lines %lx %lx %d min %g max %g\n", */
739 /* iso_lines,iso_lines->points,grid_x_max,(*zz_min),(*zz_max)); */
740 vertex = iso_lines->points;
741
742 for (i = 0; i < grid_x_max; i++) {
743 if (vertex[i].type != UNDEFINED) {
744 if (vertex[i].x > (*xx_max))
745 (*xx_max) = vertex[i].x;
746 if (vertex[i].y > (*yy_max))
747 (*yy_max) = vertex[i].y;
748 if (vertex[i].z > (*zz_max))
749 (*zz_max) = vertex[i].z;
750 if (vertex[i].x < (*xx_min))
751 (*xx_min) = vertex[i].x;
752 if (vertex[i].y < (*yy_min))
753 (*yy_min) = vertex[i].y;
754 if (vertex[i].z < (*zz_min))
755 (*zz_min) = vertex[i].z;
756
757 }
758 }
759 iso_lines = iso_lines->next;
760 /*printf(" End of loop calc_min_max %d \n", j);*/
761 }
762 /* HBB 20000426: this code didn't take into account that axes might
763 * be logscaled... */
764#if 0
765 /* HBB 20001220: DON'T. The values are actually already stored
766 * logarithmized, as should be! */
767 axis_unlog_interval(FIRST_X_AXIS, xx_min, xx_max, 0);
768 axis_unlog_interval(FIRST_Y_AXIS, yy_min, yy_max, 0);
769 axis_unlog_interval(FIRST_Z_AXIS, zz_min, zz_max, 0);
770#endif
771
772 /*
773 * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max));
774 * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max));
775 * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max));
776 */
777}
778
779/*
780 * Generate new edge and append it to list, but only if both vertices are
781 * defined. The list is referenced by p_edge and pe_tail (p_edge points on
782 * first edge and pe_tail on last one).
783 * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit.
784 */
785static struct edge_struct *
786add_edge(point0, point1, p_edge, pe_tail)
787struct coordinate *point0; /* 2 vertices input */
788struct coordinate *point1;
789struct edge_struct **p_edge, **pe_tail; /* pointers to edge list in/out */
790{
791 struct edge_struct *pe_temp = NULL;
792
793#if 1
794 if (point0->type == INRANGE && point1->type == INRANGE) {
795#else
796 if (point0->type != UNDEFINED && point1->type != UNDEFINED) {
797#endif
798
799 pe_temp = (struct edge_struct *)
800 gp_alloc(sizeof(struct edge_struct), "contour edge");
801
802 pe_temp->poly[0] = NULL; /* clear links */
803 pe_temp->poly[1] = NULL;
804 pe_temp->vertex[0] = point0; /* First vertex of edge. */
805 pe_temp->vertex[1] = point1; /* Second vertex of edge. */
806 pe_temp->next = NULL;
807 pe_temp->position = INNER_MESH; /* default position in mesh */
808
809 if ((*pe_tail)) {
810 (*pe_tail)->next = pe_temp; /* Stick new record as last one. */
811 } else {
812 (*p_edge) = pe_temp; /* start new list if empty */
813 }
814 (*pe_tail) = pe_temp; /* continue to last record. */
815
816 }
817 return pe_temp; /* returns NULL, if no edge allocated */
818}
819
820/*
821 * Generate new triangle and append it to list, but only if all edges are defined.
822 * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon
823 * and pp_tail on last one).
824 * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit.
825 */
826static struct poly_struct *
827add_poly(edge0, edge1, edge2, p_poly, pp_tail)
828 struct edge_struct *edge0, *edge1, *edge2; /* 3 edges input */
829 struct poly_struct **p_poly, **pp_tail; /* pointers to polygon list in/out */
830{
831 struct poly_struct *pp_temp = NULL;
832
833 if (edge0 && edge1 && edge2) {
834
835 pp_temp = (struct poly_struct *)
836 gp_alloc(sizeof(struct poly_struct), "contour polygon");
837
838 pp_temp->edge[0] = edge0; /* First edge of triangle */
839 pp_temp->edge[1] = edge1; /* Second one */
840 pp_temp->edge[2] = edge2; /* Third one */
841 pp_temp->next = NULL;
842
843 if (edge0->poly[0]) /* update edge0 */
844 edge0->poly[1] = pp_temp;
845 else
846 edge0->poly[0] = pp_temp;
847
848 if (edge1->poly[0]) /* update edge1 */
849 edge1->poly[1] = pp_temp;
850 else
851 edge1->poly[0] = pp_temp;
852
853 if (edge2->poly[0]) /* update edge2 */
854 edge2->poly[1] = pp_temp;
855 else
856 edge2->poly[0] = pp_temp;
857
858 if ((*pp_tail)) /* Stick new record as last one. */
859 (*pp_tail)->next = pp_temp;
860 else
861 (*p_poly) = pp_temp; /* start new list if empty */
862
863 (*pp_tail) = pp_temp; /* continue to last record. */
864
865 }
866 return pp_temp; /* returns NULL, if no edge allocated */
867}
868
869
870
871/*
872 * Calls the (hopefully) desired interpolation/approximation routine.
873 */
874static void
875put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
876 struct cntr_struct *p_cntr; /* contour structure input */
877 double z_level; /* Z level of contour input */
878 double xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */
879 TBOOLEAN contr_isclosed; /* contour line closed? (input) */
880{
881
882 if (!p_cntr)
883 return; /* Nothing to do if it is empty contour. */
884
885 switch (interp_kind) {
886 case CONTOUR_KIND_LINEAR: /* No interpolation/approximation. */
887 put_contour_nothing(p_cntr);
888 break;
889 case CONTOUR_KIND_CUBIC_SPL: /* Cubic spline interpolation. */
890 put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
891 chk_contour_kind(p_cntr, contr_isclosed));
892
893 break;
894 case CONTOUR_KIND_BSPLINE: /* Bspline approximation. */
895 put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
896 chk_contour_kind(p_cntr, contr_isclosed));
897 break;
898 }
899 free_contour(p_cntr);
900}
901
902/*
903 * Simply puts contour coordinates in order with no interpolation or
904 * approximation.
905 */
906static void
907put_contour_nothing(p_cntr)
908struct cntr_struct *p_cntr;
909{
910 while (p_cntr) {
911 add_cntr_point(p_cntr->X, p_cntr->Y);
912 p_cntr = p_cntr->next;
913 }
914 end_crnt_cntr();
915}
916
917/*
918 * for some reason contours are never flagged as 'isclosed'
919 * if first point == last point, set flag accordingly
920 *
921 */
922
923static int
924chk_contour_kind(p_cntr, contr_isclosed)
925 struct cntr_struct *p_cntr;
926 TBOOLEAN contr_isclosed;
927{
928 struct cntr_struct *pc_tail = NULL;
929 TBOOLEAN current_contr_isclosed;
930
931 /*fprintf(stderr, "check_contour_kind: current contour_kind value is %d\n", contour_kind);*/
932
933 current_contr_isclosed = contr_isclosed;
934
935 if (! contr_isclosed) {
936 pc_tail = p_cntr;
937 while (pc_tail->next)
938 pc_tail = pc_tail->next; /* Find last point. */
939
940 /* test if first and last point are equal */
941 if (fuzzy_equal(pc_tail, p_cntr)) {
942 current_contr_isclosed = TRUE;
943 fprintf(stderr, "check_contour_kind: contr_isclosed changed to %d\n", current_contr_isclosed);
944 }
945 }
946 return (current_contr_isclosed);
947}
948
949/*
950 * Generate a cubic spline curve through the points (x_i,y_i) which are
951 * stored in the linked list p_cntr.
952 * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
953 * parameter t is the length of the linear stroke.
954 */
955static void
956put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
957 struct cntr_struct *p_cntr;
958 double z_level, xx_min, xx_max, yy_min, yy_max;
959 TBOOLEAN contr_isclosed;
960{
961 int num_pts, num_intpol;
962 double unit_x, unit_y; /* To define norm (x,y)-plane */
963 double *delta_t; /* Interval length t_{i+1}-t_i */
964 double *d2x, *d2y; /* Second derivatives x''(t_i), y''(t_i) */
965 struct cntr_struct *pc_tail;
966
967 num_pts = count_contour(p_cntr); /* Number of points in contour. */
968
969 pc_tail = p_cntr; /* Find last point. */
970 while (pc_tail->next)
971 pc_tail = pc_tail->next;
972
973 if (contr_isclosed) {
974 /* Test if first and last point are equal (should be) */
975 if (!fuzzy_equal(pc_tail, p_cntr)) {
976 pc_tail->next = p_cntr; /* Close contour list - make it circular. */
977 num_pts++;
978 }
979 }
980 delta_t = (double *) gp_alloc(num_pts * sizeof(double), "contour delta_t");
981 d2x = (double *) gp_alloc(num_pts * sizeof(double), "contour d2x");
982 d2y = (double *) gp_alloc(num_pts * sizeof(double), "contour d2y");
983
984 /* Width and height of the grid is used as a unit length (2d-norm) */
985 unit_x = xx_max - x_min;
986 unit_y = yy_max - y_min;
987 /* FIXME HBB 20010121: 'zero' should not be used as an absolute
988 * figure to compare to data */
989 unit_x = (unit_x > zero ? unit_x : zero); /* should not be zero */
990 unit_y = (unit_y > zero ? unit_y : zero);
991
992 if (num_pts > 2) {
993 /*
994 * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]:
995 */
996 if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t,
997 contr_isclosed, unit_x, unit_y)) {
998 free((char *) delta_t);
999 free((char *) d2x);
1000 free((char *) d2y);
1001 if (contr_isclosed)
1002 pc_tail->next = NULL; /* Un-circular list */
1003 return;
1004 }
1005 }
1006 /* If following (num_pts > 1) is TRUE then exactly 2 points in contour. */
1007 else if (num_pts > 1) {
1008 /* set all second derivatives to zero, interval length to 1 */
1009 d2x[0] = 0.;
1010 d2y[0] = 0.;
1011 d2x[1] = 0.;
1012 d2y[1] = 0.;
1013 delta_t[0] = 1.;
1014 } else { /* Only one point ( ?? ) - ignore it. */
1015 free((char *) delta_t);
1016 free((char *) d2x);
1017 free((char *) d2y);
1018 if (contr_isclosed)
1019 pc_tail->next = NULL; /* Un-circular list */
1020 return;
1021 }
1022
1023 /* Calculate "num_intpol" interpolated values */
1024 num_intpol = 1 + (num_pts - 1) * contour_pts; /* global: contour_pts */
1025 intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol);
1026
1027 free((char *) delta_t);
1028 free((char *) d2x);
1029 free((char *) d2y);
1030
1031 if (contr_isclosed)
1032 pc_tail->next = NULL; /* Un-circular list */
1033
1034 end_crnt_cntr();
1035}
1036
1037
1038/*
1039 * Find Bspline approximation for this data set.
1040 * Uses global variable contour_pts to determine number of samples per
1041 * interval, where the knot vector intervals are assumed to be uniform, and
1042 * global variable contour_order for the order of Bspline to use.
1043 */
1044static void
1045put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
1046struct cntr_struct *p_cntr;
1047double z_level, xx_min, xx_max, yy_min, yy_max;
1048TBOOLEAN contr_isclosed;
1049{
1050 int num_pts;
1051 int order = contour_order - 1;
1052
1053 num_pts = count_contour(p_cntr); /* Number of points in contour. */
1054 if (num_pts < 2)
1055 return; /* Can't do nothing if empty or one points! */
1056 /* Order must be less than number of points in curve - fix it if needed. */
1057 if (order > num_pts - 1)
1058 order = num_pts - 1;
1059
1060 gen_bspline_approx(p_cntr, num_pts, order, contr_isclosed);
1061 end_crnt_cntr();
1062}
1063
1064/*
1065 * Free all elements in the contour list.
1066 */
1067static void
1068free_contour(p_cntr)
1069struct cntr_struct *p_cntr;
1070{
1071 struct cntr_struct *pc_temp;
1072
1073 while (p_cntr) {
1074 pc_temp = p_cntr;
1075 p_cntr = p_cntr->next;
1076 free((char *) pc_temp);
1077 }
1078}
1079
1080/*
1081 * Counts number of points in contour.
1082 */
1083static int
1084count_contour(p_cntr)
1085struct cntr_struct *p_cntr;
1086{
1087 int count = 0;
1088
1089 while (p_cntr) {
1090 count++;
1091 p_cntr = p_cntr->next;
1092 }
1093 return count;
1094}
1095
1096/*
1097 * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
1098 * through list of points (x_i,y_i). The parameter t is calculated as the
1099 * length of the linear stroke. The number of points must be at least 3.
1100 * Note: For closed contours the first and last point must be equal.
1101 */
1102static int
1103gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_isclosed, unit_x, unit_y)
1104int num_pts; /* Number of points (num_pts>=3), input */
1105struct cntr_struct *p_cntr; /* List of points (x(t_i),y(t_i)), input */
1106double d2x[], d2y[], /* Second derivatives (x''(t_i),y''(t_i)), output */
1107 delta_t[]; /* List of interval lengths t_{i+1}-t_{i}, output */
1108TBOOLEAN contr_isclosed; /* Closed or open contour?, input */
1109double unit_x, unit_y; /* Unit length in x and y (norm=1), input */
1110{
1111 int n, i;
1112 double norm;
1113 tri_diag *m; /* The tri-diagonal matrix is saved here. */
1114 struct cntr_struct *pc_temp;
1115
1116 m = (tri_diag *) gp_alloc(num_pts * sizeof(tri_diag), "contour tridiag m");
1117
1118 /*
1119 * Calculate first differences in (d2x[i], d2y[i]) and interval lengths
1120 * in delta_t[i]:
1121 */
1122 pc_temp = p_cntr;
1123 for (i = 0; i < num_pts - 1; i++) {
1124 d2x[i] = pc_temp->next->X - pc_temp->X;
1125 d2y[i] = pc_temp->next->Y - pc_temp->Y;
1126 /*
1127 * The norm of a linear stroke is calculated in "normal coordinates"
1128 * and used as interval length:
1129 */
1130 delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y));
1131
1132 d2x[i] /= delta_t[i]; /* first difference, with unit norm: */
1133 d2y[i] /= delta_t[i]; /* || (d2x[i], d2y[i]) || = 1 */
1134
1135 pc_temp = pc_temp->next;
1136 }
1137
1138 /*
1139 * Setup linear system: m * x = b
1140 */
1141 n = num_pts - 2; /* Without first and last point */
1142 if (contr_isclosed) {
1143 /* First and last points must be equal for closed contours */
1144 delta_t[num_pts - 1] = delta_t[0];
1145 d2x[num_pts - 1] = d2x[0];
1146 d2y[num_pts - 1] = d2y[0];
1147 n++; /* Add last point (= first point) */
1148 }
1149 for (i = 0; i < n; i++) {
1150 /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */
1151 m[i][0] = delta_t[i]; /* Off-diagonal element M_{i,i-1} */
1152 m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]); /* M_{i,i} */
1153 m[i][2] = delta_t[i + 1]; /* Off-diagonal element M_{i,i+1} */
1154
1155 /* Right side b_x and b_y */
1156 d2x[i] = (d2x[i + 1] - d2x[i]) * 6.;
1157 d2y[i] = (d2y[i + 1] - d2y[i]) * 6.;
1158
1159 /*
1160 * If the linear stroke shows a cusps of more than 90 degree, the right
1161 * side is reduced to avoid oscillations in the spline:
1162 */
1163 norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5;
1164
1165 if (norm > 1.) {
1166 d2x[i] /= norm;
1167 d2y[i] /= norm;
1168 /* The first derivative will not be continuous */
1169 }
1170 }
1171
1172 if (!contr_isclosed) {
1173 /* Third derivative is set to zero at both ends */
1174 m[0][1] += m[0][0]; /* M_{0,0} */
1175 m[0][0] = 0.; /* M_{0,n-1} */
1176 m[n - 1][1] += m[n - 1][2]; /* M_{n-1,n-1} */
1177 m[n - 1][2] = 0.; /* M_{n-1,0} */
1178 }
1179 /* Solve linear systems for d2x[] and d2y[] */
1180
1181
1182 if (solve_cubic_1(m, n)) { /* Calculate Cholesky decomposition */
1183 solve_cubic_2(m, d2x, n); /* solve M * d2x = b_x */
1184 solve_cubic_2(m, d2y, n); /* solve M * d2y = b_y */
1185
1186 } else { /* Should not happen, but who knows ... */
1187 free((char *) m);
1188 return FALSE;
1189 }
1190
1191 /* Shift all second derivatives one place right and abdate end points */
1192 for (i = n; i > 0; i--) {
1193 d2x[i] = d2x[i - 1];
1194 d2y[i] = d2y[i - 1];
1195 }
1196 if (contr_isclosed) {
1197 d2x[0] = d2x[n];
1198 d2y[0] = d2y[n];
1199 } else {
1200 d2x[0] = d2x[1]; /* Third derivative is zero in */
1201 d2y[0] = d2y[1]; /* first and last interval */
1202 d2x[n + 1] = d2x[n];
1203 d2y[n + 1] = d2y[n];
1204 }
1205
1206 free((char *) m);
1207 return TRUE;
1208}
1209
1210/*
1211 * Calculate interpolated values of the spline function (defined via p_cntr
1212 * and the second derivatives d2x[] and d2y[]). The number of tabulated
1213 * values is n. On an equidistant grid n_intpol values are calculated.
1214 */
1215static void
1216intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol)
1217int n;
1218struct cntr_struct *p_cntr;
1219double d2x[], d2y[], delta_t[];
1220int n_intpol;
1221{
1222 double t, t_skip, t_max;
1223 double x0, x1, x, y0, y1, y;
1224 double d, hx, dx0, dx01, hy, dy0, dy01;
1225 int i;
1226
1227 /* The length of the total interval */
1228 t_max = 0.;
1229 for (i = 0; i < n - 1; i++)
1230 t_max += delta_t[i];
1231
1232 /* The distance between interpolated points */
1233 t_skip = (1. - 1e-7) * t_max / (n_intpol - 1);
1234
1235 t = 0.; /* Parameter value */
1236 x1 = p_cntr->X;
1237 y1 = p_cntr->Y;
1238 add_cntr_point(x1, y1); /* First point. */
1239 t += t_skip;
1240
1241 for (i = 0; i < n - 1; i++) {
1242 p_cntr = p_cntr->next;
1243
1244 d = delta_t[i]; /* Interval length */
1245 x0 = x1;
1246 y0 = y1;
1247 x1 = p_cntr->X;
1248 y1 = p_cntr->Y;
1249 hx = (x1 - x0) / d;
1250 hy = (y1 - y0) / d;
1251 dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.;
1252 dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.;
1253 dx01 = (d2x[i + 1] - d2x[i]) / (6. * d);
1254 dy01 = (d2y[i + 1] - d2y[i]) / (6. * d);
1255 while (t <= delta_t[i]) { /* t in current interval ? */
1256 x = x0 + t * (hx + (t - d) * (dx0 + t * dx01));
1257 y = y0 + t * (hy + (t - d) * (dy0 + t * dy01));
1258 add_cntr_point(x, y); /* next point. */
1259 t += t_skip;
1260 }
1261 t -= delta_t[i]; /* Parameter t relative to start of next interval */
1262 }
1263}
1264
1265/*
1266 * The following two procedures solve the special linear system which arise
1267 * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
1268 * equations can be written as (i=0,1,...,n-1):
1269 * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
1270 * In matrix notation one gets M * x = b, where the matrix M is tridiagonal
1271 * with additional elements in the upper right and lower left position:
1272 * m[i][0] = M_{i,i-1} for i=1,2,...,n-1 and m[0][0] = M_{0,n-1} ,
1273 * m[i][1] = M_{i, i } for i=0,1,...,n-1
1274 * m[i][2] = M_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = M_{n-1,0}.
1275 * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite.
1276 * The size of the system is given in n (n>=1).
1277 *
1278 * In the first procedure the Cholesky decomposition M = C^T * D * C
1279 * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
1280 * Return TRUE if decomposition exist.
1281 */
1282static int
1283solve_cubic_1(m, n)
1284tri_diag m[];
1285int n;
1286{
1287 int i;
1288 double m_ij, m_n, m_nn, d;
1289
1290 if (n < 1)
1291 return FALSE; /* Dimension should be at least 1 */
1292
1293 d = m[0][1]; /* D_{0,0} = M_{0,0} */
1294 if (d <= 0.)
1295 return FALSE; /* M (or D) should be positiv definite */
1296 m_n = m[0][0]; /* M_{0,n-1} */
1297 m_nn = m[n - 1][1]; /* M_{n-1,n-1} */
1298 for (i = 0; i < n - 2; i++) {
1299 m_ij = m[i][2]; /* M_{i,1} */
1300 m[i][2] = m_ij / d; /* C_{i,i+1} */
1301 m[i][0] = m_n / d; /* C_{i,n-1} */
1302 m_nn -= m[i][0] * m_n; /* to get C_{n-1,n-1} */
1303 m_n = -m[i][2] * m_n; /* to get C_{i+1,n-1} */
1304 d = m[i + 1][1] - m[i][2] * m_ij; /* D_{i+1,i+1} */
1305 if (d <= 0.)
1306 return FALSE; /* Elements of D should be positiv */
1307 m[i + 1][1] = d;
1308 }
1309 if (n >= 2) { /* Complete last column */
1310 m_n += m[n - 2][2]; /* add M_{n-2,n-1} */
1311 m[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
1312 m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n; /* D_{n-1,n-1} */
1313 if (d <= 0.)
1314 return FALSE;
1315 }
1316 return TRUE;
1317}
1318
1319/*
1320 * The second procedure solves the linear system, with the Choleky
1321 * decomposition calculated above (in m[][]) and the right side b given
1322 * in x[]. The solution x overwrites the right side in x[].
1323 */
1324static void
1325solve_cubic_2(m, x, n)
1326tri_diag m[];
1327double x[];
1328int n;
1329{
1330 int i;
1331 double x_n;
1332
1333 /* Division by transpose of C : b = C^{-T} * b */
1334 x_n = x[n - 1];
1335 for (i = 0; i < n - 2; i++) {
1336 x[i + 1] -= m[i][2] * x[i]; /* C_{i,i+1} * x_{i} */
1337 x_n -= m[i][0] * x[i]; /* C_{i,n-1} * x_{i} */
1338 }
1339 if (n >= 2)
1340 x[n - 1] = x_n - m[n - 2][0] * x[n - 2]; /* C_{n-2,n-1} * x_{n-1} */
1341
1342 /* Division by D: b = D^{-1} * b */
1343 for (i = 0; i < n; i++)
1344 x[i] /= m[i][1];
1345
1346 /* Division by C: b = C^{-1} * b */
1347 x_n = x[n - 1];
1348 if (n >= 2)
1349 x[n - 2] -= m[n - 2][0] * x_n; /* C_{n-2,n-1} * x_{n-1} */
1350 for (i = n - 3; i >= 0; i--) {
1351 /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
1352 x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n;
1353 }
1354 return;
1355}
1356
1357/*
1358 * Solve tri diagonal linear system equation. The tri diagonal matrix is
1359 * defined via matrix M, right side is r, and solution X i.e. M * X = R.
1360 * Size of system given in n. Return TRUE if solution exist.
1361 */
1362/* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */
1363
1364int
1365solve_tri_diag(m, r, x, n)
1366tri_diag m[];
1367double r[], x[];
1368int n;
1369{
1370 int i;
1371 double t;
1372
1373 for (i = 1; i < n; i++) { /* Eliminate element m[i][i-1] (lower diagonal). */
1374 if (m[i - 1][1] == 0)
1375 return FALSE;
1376 t = m[i][0] / m[i - 1][1]; /* Find ratio between the two lines. */
1377/* m[i][0] = m[i][0] - m[i-1][1] * t; */
1378/* m[i][0] is not used any more (and set to 0 in the above line) */
1379 m[i][1] = m[i][1] - m[i - 1][2] * t;
1380 r[i] = r[i] - r[i - 1] * t;
1381 }
1382 /* Now do back subtitution - update the solution vector X: */
1383 if (m[n - 1][1] == 0)
1384 return FALSE;
1385 x[n - 1] = r[n - 1] / m[n - 1][1]; /* Find last element. */
1386 for (i = n - 2; i >= 0; i--) {
1387 if (m[i][1] == 0)
1388 return FALSE;
1389 x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1];
1390 }
1391 return TRUE;
1392}
1393
1394/*
1395 * Generate a Bspline curve defined by all the points given in linked list p:
1396 * Algorithm: using deBoor algorithm
1397 * Note: if Curvekind is open contour than Open end knot vector is assumed,
1398 * else (closed contour) Float end knot vector is assumed.
1399 * It is assumed that num_of_points is at least 2, and order of Bspline is less
1400 * than num_of_points!
1401 */
1402static void
1403gen_bspline_approx(p_cntr, num_of_points, order, contr_isclosed)
1404struct cntr_struct *p_cntr;
1405int num_of_points, order;
1406TBOOLEAN contr_isclosed;
1407{
1408 int knot_index = 0, pts_count = 1;
1409 double dt, t, next_t, t_min, t_max, x, y;
1410 struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL;
1411
1412 /* If the contour is Closed one we must update few things:
1413 * 1. Make the list temporary circular, so we can close the contour.
1414 * 2. Update num_of_points - increase it by "order-1" so contour will be
1415 * closed. This will evaluate order more sections to close it!
1416 */
1417 if (contr_isclosed) {
1418 pc_tail = p_cntr;
1419 while (pc_tail->next)
1420 pc_tail = pc_tail->next; /* Find last point. */
1421
1422 /* test if first and last point are equal */
1423 if (fuzzy_equal(pc_tail, p_cntr)) {
1424 /* Close contour list - make it circular. */
1425 pc_tail->next = p_cntr->next;
1426 num_of_points += order - 1;
1427 } else {
1428 pc_tail->next = p_cntr;
1429 num_of_points += order;
1430 }
1431 }
1432 /* Find first (t_min) and last (t_max) t value to eval: */
1433 t = t_min = fetch_knot(contr_isclosed, num_of_points, order, order);
1434 t_max = fetch_knot(contr_isclosed, num_of_points, order, num_of_points);
1435 next_t = t_min + 1.0;
1436 knot_index = order;
1437 dt = 1.0 / contour_pts; /* Number of points per one section. */
1438
1439
1440 while (t < t_max) {
1441 if (t > next_t) {
1442 pc_temp = pc_temp->next; /* Next order ctrl. pt. to blend. */
1443 knot_index++;
1444 next_t += 1.0;
1445 }
1446 eval_bspline(t, pc_temp, num_of_points, order, knot_index,
1447 contr_isclosed, &x, &y); /* Next pt. */
1448 add_cntr_point(x, y);
1449 pts_count++;
1450 /* As we might have some real number round off problems we do */
1451 /* the last point outside the loop */
1452 if (pts_count == contour_pts * (num_of_points - order) + 1)
1453 break;
1454 t += dt;
1455 }
1456
1457 /* Now do the last point */
1458 eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index,
1459 contr_isclosed, &x, &y);
1460 add_cntr_point(x, y); /* Complete the contour. */
1461
1462 if (contr_isclosed) /* Update list - un-circular it. */
1463 pc_tail->next = NULL;
1464}
1465
1466/*
1467 * The routine to evaluate the B-spline value at point t using knot vector
1468 * from function fetch_knot(), and the control points p_cntr.
1469 * Returns (x, y) of approximated B-spline. Note that p_cntr points on the
1470 * first control point to blend with. The B-spline is of order order.
1471 */
1472static void
1473eval_bspline(t, p_cntr, num_of_points, order, j, contr_isclosed, x, y)
1474double t;
1475struct cntr_struct *p_cntr;
1476int num_of_points, order, j;
1477TBOOLEAN contr_isclosed;
1478double *x, *y;
1479{
1480 int i, p;
1481 double ti, tikp, *dx, *dy; /* Copy p_cntr into it to make it faster. */
1482
1483 dx = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1484 dy = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1485
1486 /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */
1487 for (i = j - order; i <= j; i++) {
1488 dx[i] = p_cntr->X;
1489 dy[i] = p_cntr->Y;
1490 p_cntr = p_cntr->next;
1491 }
1492
1493 for (p = 1; p <= order; p++) { /* Iteration (b-spline level) counter. */
1494 for (i = j; i >= j - order + p; i--) { /* Control points indexing. */
1495 ti = fetch_knot(contr_isclosed, num_of_points, order, i);
1496 tikp = fetch_knot(contr_isclosed, num_of_points, order, i + order + 1 - p);
1497 if (ti == tikp) { /* Should not be a problems but how knows... */
1498 } else {
1499 dx[i] = dx[i] * (t - ti) / (tikp - ti) + /* Calculate x. */
1500 dx[i - 1] * (tikp - t) / (tikp - ti);
1501 dy[i] = dy[i] * (t - ti) / (tikp - ti) + /* Calculate y. */
1502 dy[i - 1] * (tikp - t) / (tikp - ti);
1503 }
1504 }
1505 }
1506 *x = dx[j];
1507 *y = dy[j];
1508 free((char *) dx);
1509 free((char *) dy);
1510}
1511
1512/*
1513 * Routine to get the i knot from uniform knot vector. The knot vector
1514 * might be float (Knot(i) = i) or open (where the first and last "order"
1515 * knots are equal). contr_isclosed determines knot kind - open contour means
1516 * open knot vector, and closed contour selects float knot vector.
1517 * Note the knot vector is not exist and this routine simulates it existance
1518 * Also note the indexes for the knot vector starts from 0.
1519 */
1520static double
1521fetch_knot(contr_isclosed, num_of_points, order, i)
1522 TBOOLEAN contr_isclosed;
1523 int num_of_points, order, i;
1524{
1525 if(! contr_isclosed) {
1526 if (i <= order)
1527 return 0.0;
1528 else if (i <= num_of_points)
1529 return (double) (i - order);
1530 else
1531 return (double) (num_of_points - order);
1532 } else {
1533 return (double) i;
1534 }
1535}
Note: See TracBrowser for help on using the repository browser.