source: Sophya/trunk/SophyaPI/PIGcont/gp_contour.c@ 3096

Last change on this file since 3096 was 1901, checked in by ansari, 24 years ago

Portage sous Mac OS X, variables globales passees en statique - Reza 15/02/2002

File size: 50.1 KB
RevLine 
[1844]1/* GNUPLOT - contour.c */
2
3/*[
4 * Copyright 1986 - 1993, 1998 Thomas Williams, Colin Kelley
5 *
6 * Permission to use, copy, and distribute this software and its
7 * documentation for any purpose with or without fee is hereby granted,
8 * provided that the above copyright notice appear in all copies and
9 * that both that copyright notice and this permission notice appear
10 * in supporting documentation.
11 *
12 * Permission to modify the software is granted, but not the right to
13 * distribute the complete modified source code. Modifications are to
14 * be distributed as patches to the released version. Permission to
15 * distribute binaries produced by compiling modified sources is granted,
16 * provided you
17 * 1. distribute the corresponding source modifications from the
18 * released version in the form of a patch file along with the binaries,
19 * 2. add special version identification to distinguish your version
20 * in addition to the base release version number,
21 * 3. provide your name and address as the primary contact for the
22 * support of your modified version, and
23 * 4. retain our contact information in regard to use of the base
24 * software.
25 * Permission to distribute the released version of the source code along
26 * with corresponding source modifications in the form of a patch file is
27 * granted with same provisions 2 through 4 for binary distributions.
28 *
29 * This software is provided "as is" without express or implied warranty
30 * to the extent permitted by applicable law.
31]*/
32
33
34/*
35 * AUTHORS
36 *
37 * Original Software:
38 * Gershon Elber
39 *
40 * Improvements to the numerical algorithms:
41 * Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de)
42 *
[1857]43 * Quelques modifs (adaptation pour SOPHYA/PEIDA) O. PErdereau 11/2001
[1844]44 */
45
46#include "gp_contour.h"
47
48#include "gp_alloc.h"
49#include "gp_axis.h"
[1857]50
51#include <sys/time.h>
52#include <sys/resource.h>
53
[1844]54/* #include "setshow.h" */
55
56/* exported variables (to be handled by the 'set' and friends): */
57
58char contour_format[32] = "%8.3g"; /* format for contour key entries */
[1857]59static t_contour_kind contour_kind = CONTOUR_KIND_LINEAR;
60static t_contour_levels_kind contour_levels_kind = LEVELS_AUTO;
61static int contour_levels = DEFAULT_CONTOUR_LEVELS;
62static int contour_order = DEFAULT_CONTOUR_ORDER;
63static int contour_pts = DEFAULT_NUM_APPROX_PTS;
[1844]64
[1901]65static dynarray dyn_contour_levels_list;/* storage for z levels to draw contours at */
66static double * contour_levels_list=NULL;
[1844]67
68/* position of edge in mesh */
69typedef enum en_edge_position {
70 INNER_MESH=1,
71 BOUNDARY,
72 DIAGONAL
73} t_edge_position;
74
75
76/* Valeur de zero - Reza 21/12/2001 - Pourquoi zero = 0. ??? */
[1857]77 double zero = 0.;
[1844]78
79/* FIXME HBB 2000052: yet another local copy of 'epsilon'. Why? */
80#define EPSILON 1e-5 /* Used to decide if two float are equal. */
81
82
83#ifndef TRUE
84#define TRUE -1
85#define FALSE 0
86#endif
87
88
89#define MAX_POINTS_PER_CNTR 100
90
91#define SQR(x) ((x) * (x))
92
93/*
94 * struct vrtx_struct {
95 * double X, Y, Z;
96 * struct vrtx_struct *next;
97 * };
98 *
99 * replaced by 'struct coordinate ', see plot.h (HMK 1997)
100 */
101
102struct edge_struct {
103 struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */
104 struct coordinate *vertex[2]; /* The two extreme points of this edge. */
105 struct edge_struct *next; /* To chain lists */
106 TBOOLEAN is_active; /* is edge is 'active' at certain Z level? */
107 t_edge_position position; /* position of edge in mesh */
108};
109
110struct poly_struct {
111 struct edge_struct *edge[3]; /* As we do triangolation here... */
112 struct poly_struct *next; /* To chain lists. */
113};
114
115struct cntr_struct { /* Contours are saved using this struct list. */
116 double X, Y; /* The coordinates of this vertex. */
117 struct cntr_struct *next; /* To chain lists. */
118};
119
120static struct gnuplot_contours *contour_list = NULL;
121static double crnt_cntr[MAX_POINTS_PER_CNTR * 2];
122static int crnt_cntr_pt_index = 0;
123static double contour_level = 0.0;
124
125/* Linear, Cubic interp., Bspline: */
126static t_contour_kind interp_kind = CONTOUR_KIND_LINEAR;
127
128static double x_min, y_min, z_min; /* Minimum values of x, y, and z */
129static double x_max, y_max, z_max; /* Maximum values of x, y, and z */
130
131static void add_cntr_point (double x, double y);
132static void end_crnt_cntr (void);
133static void gen_contours(struct edge_struct * p_edges, double z_level,
134 double xx_min, double xx_max, double yy_min, double yy_max);
135static int update_all_edges(struct edge_struct * p_edges,
136 double z_level);
137static struct cntr_struct *gen_one_contour (
138 struct edge_struct * p_edges, double
139 z_level, TBOOLEAN *contr_isclosed,
140 int *num_active);
141static struct cntr_struct *trace_contour (
142 struct edge_struct * pe_start, double
143 z_level, int *num_active,
144 TBOOLEAN contr_isclosed);
145static struct cntr_struct *update_cntr_pt (struct edge_struct * p_edge,
146 double z_level);
147static int fuzzy_equal (struct cntr_struct * p_cntr1,
148 struct cntr_struct * p_cntr2);
149
150
151static void gen_triangle (int num_isolines,
152 struct iso_curve * iso_lines, struct poly_struct ** p_polys,
153 struct edge_struct ** p_edges);
154static void calc_min_max (int num_isolines,
155 struct iso_curve * iso_lines, double *xx_min, double *yy_min,
156 double *zz_min,
157 double *xx_max, double *yy_max, double *zz_max);
158static struct edge_struct *add_edge (struct coordinate * point0,
159 struct coordinate * point1, struct edge_struct
160 ** p_edge,
161 struct edge_struct ** pe_tail);
162static struct poly_struct *add_poly (struct edge_struct * edge0,
163 struct edge_struct * edge1, struct edge_struct * edge2,
164 struct poly_struct ** p_poly, struct poly_struct ** pp_tail);
165
166
167static void put_contour (struct cntr_struct * p_cntr, double z_level,
168 double xx_min, double xx_max, double yy_min, double yy_max,
169 TBOOLEAN contr_isclosed);
170static void put_contour_nothing (struct cntr_struct * p_cntr);
171static int chk_contour_kind (struct cntr_struct * p_cntr,
172 TBOOLEAN contr_isclosed);
173static void put_contour_cubic (struct cntr_struct * p_cntr,
174 double z_level, double xx_min, double xx_max, double
175 yy_min, double yy_max,
176 TBOOLEAN contr_isclosed);
177static void put_contour_bspline (struct cntr_struct * p_cntr,
178 double z_level, double xx_min, double xx_max, double
179 yy_min, double yy_max,
180 TBOOLEAN contr_isclosed);
181static void free_contour (struct cntr_struct * p_cntr);
182static int count_contour (struct cntr_struct * p_cntr);
183static int gen_cubic_spline (int num_pts, struct cntr_struct * p_cntr,
184 double d2x[], double d2y[], double delta_t[], TBOOLEAN contr_isclosed,
185 double unit_x, double unit_y);
186static void intp_cubic_spline (int n, struct cntr_struct * p_cntr,
187 double d2x[], double d2y[], double delta_t[], int n_intpol);
188static int solve_cubic_1 (tri_diag m[], int n);
189static void solve_cubic_2 (tri_diag m[], double x[], int n);
190static void gen_bspline_approx (struct cntr_struct * p_cntr,
191 int num_of_points, int order, TBOOLEAN contr_isclosed);
192static void eval_bspline (double t, struct cntr_struct * p_cntr,
193 int num_of_points, int order, int j, TBOOLEAN contr_isclosed, double *x,
194 double *y);
195static double fetch_knot (TBOOLEAN contr_isclosed, int num_of_points,
196 int order, int i);
197
198
199static int num_of_z_levels;/*_____ OP ___________*/ /* # Z contour levels. */
200
201int Get_Num_Of_Z_Levels(){
202return num_of_z_levels;
203} /* OP __________ */
204
205/*
206 * Entry routine to this whole set of contouring module.
207 */
208struct gnuplot_contours *
209contour(num_isolines, iso_lines)
210int num_isolines;
211struct iso_curve *iso_lines;
212{
[1857]213 struct rusage r_usage;
214 int rcus;
215
[1844]216 int i;
217 /*OP int num_of_z_levels;*/ /* # Z contour levels. */
218 struct poly_struct *p_polys, *p_poly;
219 struct edge_struct *p_edges, *p_edge;
220 double z = 0, dz = 0;
221 struct gnuplot_contours *save_contour_list;
222
223 num_of_z_levels = contour_levels;
224 interp_kind = contour_kind;
225
226 contour_list = NULL;
[1857]227 /******* DEBUG ********
228 rcus = getrusage( RUSAGE_SELF , &r_usage);
229 if(rcus==0)
230 printf("contour[1] / rusage -> %ld , %ld , %ld \n", r_usage.ru_maxrss , r_usage.ru_ixrss , r_usage.ru_ixrss);
231 else
232 perror("contour/1er appel");
233 *************/
[1844]234 /*
235 * Calculate min/max values :
236 */
237 calc_min_max(num_isolines, iso_lines,
238 &x_min, &y_min, &z_min, &x_max, &y_max, &z_max);
239
[1857]240
[1844]241 dz = fabs(z_max - z_min);
242 /*
243 * printf(" contour z_max %g z_min %g dz=%g kind %d \n",z_max, z_min , dz,contour_levels_kind);
244 * Generate list of edges (p_edges) and list of triangles (p_polys):
245 */
246
247 gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges);
248 crnt_cntr_pt_index = 0;
[1857]249
250
[1844]251 /*AJOUT OP */
252 if (contour_levels_kind == LEVELS_NUM) {
253 dz = fabs(z_max - z_min)/(num_of_z_levels);
254 z = z_min - dz/2.;
255 }
256
257 if (contour_levels_kind == LEVELS_AUTO) {
258 dz = fabs(z_max - z_min);
259 /*printf(" contour z_max %g z_min %g dz=%g\n",z_max, z_min , dz);*/
260 if (dz == 0)
261 return NULL; /* empty z range ? */
262 /* what is the deeper sense of this ? (joze) */
263 dz = set_tic(log10(dz), ((int) contour_levels + 1) * 2);
264 z = floor(z_min / dz) * dz;
265 num_of_z_levels = (int) floor((z_max - z) / dz);
266 /*printf("contour() : num_of_z_levels %d\n",num_of_z_levels);*/
267 }
268 for (i = 0; i < num_of_z_levels; i++) {
269 switch (contour_levels_kind) {
270 case LEVELS_AUTO:
271 case LEVELS_NUM:
272 z += dz;
273 break;
274 case LEVELS_INCREMENTAL:
275 z = contour_levels_list[0] + i * contour_levels_list[1];
276 break;
277 case LEVELS_DISCRETE:
278 /*printf("????? contour z=%f\n",contour_levels_list[i] );*/
279 /*z = AXIS_LOG_VALUE(FIRST_Z_AXIS, contour_levels_list[i]); PAS BESOIN ? OP */
280 z = contour_levels_list[i];
281 break;
282 }
283 contour_level = z;
284 /*printf(" contour z=%f\n",z);*/
285 save_contour_list = contour_list;
286 gen_contours(p_edges, z, x_min, x_max, y_min, y_max);
287 if (contour_list != save_contour_list) {
288 contour_list->isNewLevel = 1;
289 sprintf(contour_list->label, contour_format, AXIS_DE_LOG_VALUE(FIRST_Z_AXIS,z));
290#ifdef PM3D
291 contour_list->z = AXIS_DE_LOG_VALUE(FIRST_Z_AXIS, z);
292#endif
293 }
294 }
295
296 /* Free all contouring related temporary data. */
297 while (p_polys) {
[1857]298
[1844]299 p_poly = p_polys->next;
300 free(p_polys);
301 p_polys = p_poly;
302 }
[1857]303
304
305 while (p_edges) {
[1844]306 p_edge = p_edges->next;
307 free(p_edges);
308 p_edges = p_edge;
309 }
[1857]310 /*********DEBUG
311 rcus = getrusage( RUSAGE_SELF , &r_usage);
312 if(rcus==0)
313 printf("contour[5] / rusage -> %ld , %ld , %ld \n", r_usage.ru_maxrss , r_usage.ru_ixrss , r_usage.ru_ixrss);
314 else
315 perror("contour / 5eme appel");
316 rcus = getrusage( RUSAGE_SELF , &r_usage);
317 ********/
[1844]318
319 return contour_list;
320}
321
322/*
323 * Adds another point to the currently build contour.
324 */
325static void
326add_cntr_point(x, y)
327double x, y;
328{
329 int index;
330
331 if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) {
332 index = crnt_cntr_pt_index - 1;
333 end_crnt_cntr();
334 crnt_cntr[0] = crnt_cntr[index * 2];
335 crnt_cntr[1] = crnt_cntr[index * 2 + 1];
336 crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */
337 }
338 crnt_cntr[crnt_cntr_pt_index * 2] = x;
339 crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y;
340 crnt_cntr_pt_index++;
341}
342
343/*
344 * Done with current contour - create gnuplot data structure for it.
345 */
346static void
347end_crnt_cntr()
348{
349 int i;
350 struct gnuplot_contours *cntr = (struct gnuplot_contours *)
351 gp_alloc(sizeof(struct gnuplot_contours), "gnuplot_contour");
352 cntr->coords = (struct coordinate *)
353 gp_alloc(sizeof(struct coordinate) * crnt_cntr_pt_index,
354 "contour coords");
355
356 for (i = 0; i < crnt_cntr_pt_index; i++) {
357 cntr->coords[i].x = crnt_cntr[i * 2];
358 cntr->coords[i].y = crnt_cntr[i * 2 + 1];
359 cntr->coords[i].z = contour_level;
360 }
361 cntr->num_pts = crnt_cntr_pt_index;
362
363 cntr->next = contour_list;
364 contour_list = cntr;
365 contour_list->isNewLevel = 0;
366
367 crnt_cntr_pt_index = 0;
368}
369
370/*
371 * Generates all contours by tracing the intersecting triangles.
372 */
373static void
374gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max)
375struct edge_struct *p_edges;
376double z_level, xx_min, xx_max, yy_min, yy_max;
377{
378 int num_active; /* Number of edges marked ACTIVE. */
379 TBOOLEAN contr_isclosed; /* Is this contour a closed line? */
380 struct cntr_struct *p_cntr;
381
382 num_active = update_all_edges(p_edges, z_level); /* Do pass 1. */
383
384 contr_isclosed = FALSE; /* Start to look for contour on boundaries. */
385 /*printf("<gen_contour> z=%g num_active %d \n",z_level,num_active);*/
386 while (num_active > 0) { /* Do Pass 2. */
387 /* Generate One contour (and update MumActive as needed): */
388 p_cntr = gen_one_contour(p_edges, z_level, &contr_isclosed, &num_active);
389 if (p_cntr ==NULL) printf("<gen_contour> gen_one_contour retourne NULL \n");
390 /* Emit it in requested format: */
391 put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed);
392 }
393}
394
395/*
396 * Does pass 1, or marks the edges which are active (crosses this z_level)
397 * Returns number of active edges (marked ACTIVE).
398 */
399static int
400update_all_edges(p_edges, z_level)
401struct edge_struct *p_edges;
402double z_level;
403{
404 int count = 0;
405
406 while (p_edges) {
407 /* use the same test at both vertices to avoid roundoff errors */
408
409 if ((p_edges->vertex[0]->z >= z_level) !=
410 (p_edges->vertex[1]->z >= z_level)) {
411 p_edges->is_active = TRUE;
412 count++;
413 } else
414 p_edges->is_active = FALSE;
415 p_edges = p_edges->next;
416 }
417
418 return count;
419}
420
421/*
422 * Does pass 2, or find one complete contour out of the triangulation
423 * data base:
424 *
425 * Returns a pointer to the contour (as linked list), contr_isclosed
426 * tells if the contour is a closed line or not, and num_active is
427 * updated.
428 */
429static struct cntr_struct *
430gen_one_contour(p_edges, z_level, contr_isclosed, num_active)
431struct edge_struct *p_edges; /* list of edges input */
432double z_level; /* Z level of contour input */
433TBOOLEAN *contr_isclosed; /* open or closed contour, in/out */
434int *num_active; /* number of active edges in/out */
435{
436 struct edge_struct *pe_temp;
437
438 if (! *contr_isclosed) {
439 /*printf("<gen_one_contour> contr_isclosed FALSE \n");*/
440 /* Look for something to start with on boundary: */
441 pe_temp = p_edges;
442 while (pe_temp) {
443 if (pe_temp->is_active && (pe_temp->position == BOUNDARY))
444 break;
445 pe_temp = pe_temp->next;
446 }
447 if (!pe_temp)
448 *contr_isclosed = TRUE; /* No more contours on boundary. */
449 else {
450 /*printf("<gen_one_contour> contr_isclosed FALSE return \n");*/
451 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
452 }
453 }
454 if (*contr_isclosed) {
455 /* Look for something to start with inside: */
456 /*printf("<gen_one_contour> contr_isclosed TRUE \n");*/
457 pe_temp = p_edges;
458 while (pe_temp) {
459 if (pe_temp->is_active && (pe_temp->position != BOUNDARY))
460 break;
461 pe_temp = pe_temp->next;
462 }
463 if (!pe_temp) {
464 *num_active = 0;
465 fprintf(stderr, "gen_one_contour: no contour found\n");
466 return NULL;
467 } else {
468 *contr_isclosed = TRUE;
469 return trace_contour(pe_temp, z_level, num_active, *contr_isclosed);
470 }
471 }
472 printf("<gen_one_contour> We should never be here, but lint... \n");
473 return NULL; /* We should never be here, but lint... */
474}
475
476/*
477 * Search the data base along a contour starts at the edge pe_start until
478 * a boundary edge is detected or until we close the loop back to pe_start.
479 * Returns a linked list of all the points on the contour
480 * Also decreases num_active by the number of points on contour.
481 */
482static struct cntr_struct *
483trace_contour(pe_start, z_level, num_active, contr_isclosed)
484 struct edge_struct *pe_start; /* edge to start contour input */
485 double z_level; /* Z level of contour input */
486 int *num_active; /* number of active edges in/out */
487 TBOOLEAN contr_isclosed; /* open or closed contour line (input) */
488{
489 struct cntr_struct *p_cntr, *pc_tail;
490 struct edge_struct *p_edge, *p_next_edge;
491 struct poly_struct *p_poly, *PLastpoly = NULL;
492 int i;
493
494 p_edge = pe_start; /* first edge to start contour */
495
496 /* Generate the header of the contour - the point on pe_start. */
497 if (! contr_isclosed) {
498 pe_start->is_active = FALSE;
499 (*num_active)--;
500 }
501 if (p_edge->poly[0] || p_edge->poly[1]) { /* more than one point */
502
503 p_cntr = pc_tail = update_cntr_pt(pe_start, z_level); /* first point */
504
505 do {
506 /* Find polygon to continue (Not where we came from - PLastpoly): */
507 if (p_edge->poly[0] == PLastpoly)
508 p_poly = p_edge->poly[1];
509 else
510 p_poly = p_edge->poly[0];
511 p_next_edge = NULL; /* In case of error, remains NULL. */
512 for (i = 0; i < 3; i++) /* Test the 3 edges of the polygon: */
513 if (p_poly->edge[i] != p_edge)
514 if (p_poly->edge[i]->is_active)
515 p_next_edge = p_poly->edge[i];
516 if (!p_next_edge) { /* Error exit */
517 pc_tail->next = NULL;
518 free_contour(p_cntr);
519 fprintf(stderr, "trace_contour: unexpected end of contour\n");
520 return NULL;
521 }
522 p_edge = p_next_edge;
523 PLastpoly = p_poly;
524 p_edge->is_active = FALSE;
525 (*num_active)--;
526
527 /* Do not allocate contour points on diagonal edges */
528 if (p_edge->position != DIAGONAL) {
529
530 pc_tail->next = update_cntr_pt(p_edge, z_level);
531
532 /* Remove nearby points */
533 if (fuzzy_equal(pc_tail, pc_tail->next)) {
534
535 free((char *) pc_tail->next);
536 } else
537 pc_tail = pc_tail->next;
538 }
539 } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY));
540
541 pc_tail->next = NULL;
542
543 /* For closed contour the first and last point should be equal */
544 if (pe_start == p_edge) {
545 (p_cntr->X) = (pc_tail->X);
546 (p_cntr->Y) = (pc_tail->Y);
547 }
548 } else { /* only one point, forget it */
549 p_cntr = NULL;
550 }
551
552 return p_cntr;
553}
554
555/*
556 * Allocates one contour location and update it to to correct position
557 * according to z_level and edge p_edge.
558 */
559static struct cntr_struct *
560update_cntr_pt(p_edge, z_level)
561struct edge_struct *p_edge;
562double z_level;
563{
564 double t;
565 struct cntr_struct *p_cntr;
566
567 t = (z_level - p_edge->vertex[0]->z) /
568 (p_edge->vertex[1]->z - p_edge->vertex[0]->z);
569
570 /* test if t is out of interval [0:1] (should not happen but who knows ...) */
571 /*if(t>1) printf(" <update_cntr_pt> t >1 !\n");*/
572 /*if(t<0) printf(" <update_cntr_pt> t negatif !\n");*/
573 t = (t < 0.0 ? 0.0 : t);
574 t = (t > 1.0 ? 1.0 : t);
575 /*printf(" <update_cntr_pt> Point 0 %g %g %g \n",p_edge->vertex[0]->x,p_edge->vertex[0]->y,p_edge->vertex[0]->z);*/
576 /*printf(" <update_cntr_pt> Point 1 %g %g %g \n",p_edge->vertex[1]->x,p_edge->vertex[1]->y,p_edge->vertex[1]->z);*/
577 p_cntr = (struct cntr_struct *)
578 gp_alloc(sizeof(struct cntr_struct), "contour cntr_struct");
579
580 p_cntr->X = p_edge->vertex[1]->x * t +
581 p_edge->vertex[0]->x * (1 - t);
582 p_cntr->Y = p_edge->vertex[1]->y * t +
583 p_edge->vertex[0]->y * (1 - t);
584 /*printf(" <update_cntr_pt> p_cntr X %g Y %g \n",p_cntr->X,p_cntr->Y);*/
585 return p_cntr;
586}
587
588/* Simple routine to decide if two contour points are equal by
589 * calculating the relative error (< EPSILON). */
590/* HBB 20010121: don't use absolute value 'zero' to compare to data
591 * values. */
592static int
593fuzzy_equal(p_cntr1, p_cntr2)
594 struct cntr_struct *p_cntr1, *p_cntr2;
595{
596 double unit_x, unit_y;
597 unit_x = fabs(x_max - x_min); /* reference */
598 unit_y = fabs(y_max - y_min);
599 return ((fabs(p_cntr1->X - p_cntr2->X) < unit_x * EPSILON)
600 && (fabs(p_cntr1->Y - p_cntr2->Y) < unit_y * EPSILON));
601}
602
603/*
604 * Generate the triangles.
605 * Returns the lists (edges & polys) via pointers to their heads.
606 */
607static void
608gen_triangle(num_isolines, iso_lines, p_polys, p_edges)
609int num_isolines; /* number of iso-lines input */
610struct iso_curve *iso_lines; /* iso-lines input */
611struct poly_struct **p_polys; /* list of polygons output */
612struct edge_struct **p_edges; /* list of edges output */
613{
614 int i, j, grid_x_max = iso_lines->p_count;
615 struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail,
616 *pe_tail2, *pe_temp;
617 struct poly_struct *pp_tail, *lower_tri, *upper_tri;
618 /* HBB 980308: need to tag *each* of them as ! */
619 struct coordinate *p_vrtx1, * p_vrtx2;
620
621 (*p_polys) = pp_tail = NULL; /* clear lists */
622 (*p_edges) = pe_tail = NULL;
623
624 p_vrtx1 = iso_lines->points; /* first row of vertices */
625 p_edge1 = pe_tail = NULL; /* clear list of edges */
626
627 /* Generate edges of first row */
628 for (j = 0; j < grid_x_max - 1; j++)
629 add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail);
630
631 (*p_edges) = p_edge1; /* update main list */
632
633
634 /*
635 * Combines vertices to edges and edges to triangles:
636 * ==================================================
637 * The edges are stored in the edge list, referenced by p_edges
638 * (pe_tail points on last edge).
639 *
640 * Temporary pointers:
641 * 1. p_edge2: Top horizontal edge list: +-----------------------+ 2
642 * 2. p_tail : end of middle edge list: |\ |\ |\ |\ |\ |\ |
643 * | \| \| \| \| \| \|
644 * 3. p_edge1: Bottom horizontal edge list: +-----------------------+ 1
645 *
646 * pe_tail2 : end of list beginning at p_edge2
647 * pe_temp : position inside list beginning at p_edge1
648 * p_edges : head of the master edge list (part of our output)
649 * p_vrtx1 : start of lower row of input vertices
650 * p_vrtx2 : start of higher row of input vertices
651 *
652 * The routine generates two triangle Lower Upper 1
653 * upper one and lower one: | \ ----
654 * (Nums. are edges order in polys) 0| \1 0\ |2
655 * The polygons are stored in the polygon ---- \ |
656 * list (*p_polys) (pp_tail points on 2
657 * last polygon).
658 * 1
659 * -----------
660 * In addition, the edge lists are updated - | \ 0 |
661 * each edge has two pointers on the two | \ |
662 * (one active if boundary) polygons which 0|1 0\1 0|1
663 * uses it. These two pointer to polygons | \ |
664 * are named: poly[0], poly[1]. The diagram | 1 \ |
665 * on the right show how they are used for the -----------
666 * upper and lower polygons (INNER_MESH polygons only). 0
667 */
668
669 for (i = 1; i < num_isolines; i++) {
670 /* Read next column and gen. polys. */
671 iso_lines = iso_lines->next;
672
673 p_vrtx2 = iso_lines->points; /* next row of vertices */
674 p_edge2 = pe_tail2 = NULL; /* clear top horizontal list */
675 pe_temp = p_edge1; /* pointer in bottom list */
676
677 /*
678 * Generate edges and triagles for next row:
679 */
680
681 /* generate first vertical edge */
682 edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail);
683
684 for (j = 0; j < grid_x_max - 1; j++) {
685
686 /* copy vertical edge for lower triangle */
687 edge0 = edge2;
688
689 if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) {
690 /* test lower edge */
691 edge2 = pe_temp;
692 pe_temp = pe_temp->next;
693 } else {
694 edge2 = NULL; /* edge is undefined */
695 }
696
697 /* generate diagonal edge */
698 edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail);
699 if (edge1)
700 edge1->position = DIAGONAL;
701
702 /* generate lower triangle */
703 lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
704
705 /* copy diagonal edge for upper triangle */
706 edge0 = edge1;
707
708 /* generate upper edge */
709 edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2);
710
711 /* generate vertical edge */
712 edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail);
713
714 /* generate upper triangle */
715 upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
716 }
717
718 if (p_edge2) {
719 /* HBB 19991130 bugfix: if p_edge2 list is empty,
720 * don't change p_edges list! Crashes by access
721 * to NULL pointer pe_tail, the second time through,
722 * otherwise */
723 if ((*p_edges)) { /* Chain new edges to main list. */
724 pe_tail->next = p_edge2;
725 pe_tail = pe_tail2;
726 } else {
727 (*p_edges) = p_edge2;
728 pe_tail = pe_tail2;
729 }
730 }
731
732 /* this row finished, move list heads up one row: */
733 p_edge1 = p_edge2;
734 p_vrtx1 = p_vrtx2;
735 }
736
737 /* Update the boundary flag, saved in each edge, and update indexes: */
738
739 pe_temp = (*p_edges);
740
741 while (pe_temp) {
742 if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1])))
743 (pe_temp->position) = BOUNDARY;
744 pe_temp = pe_temp->next;
745 }
746}
747
748/*
749 * Calculate minimum and maximum values
750 */
751static void
752calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max)
753 int num_isolines; /* number of iso-lines input */
754 struct iso_curve *iso_lines; /* iso-lines input */
755 double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */
756{
757 int i, j, grid_x_max;
758 struct coordinate *vertex;
759 /*printf("<calc_min_max> : iso_lines->p_count %ld \n",iso_lines->p_count);*/
760 grid_x_max = iso_lines->p_count; /* number of vertices per iso_line */
761
762 (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE; /* clear min/max values */
763 (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE;
764 /*printf(" <calc_min_max> %d \n",num_isolines);*/
765 for (j = 0; j < num_isolines; j++) {
766 /*printf(" <calc_min_max> iso_lines %lx %lx %d min %g max %g\n", */
767 /* iso_lines,iso_lines->points,grid_x_max,(*zz_min),(*zz_max)); */
768 vertex = iso_lines->points;
769
770 for (i = 0; i < grid_x_max; i++) {
771 if (vertex[i].type != UNDEFINED) {
772 if (vertex[i].x > (*xx_max))
773 (*xx_max) = vertex[i].x;
774 if (vertex[i].y > (*yy_max))
775 (*yy_max) = vertex[i].y;
776 if (vertex[i].z > (*zz_max))
777 (*zz_max) = vertex[i].z;
778 if (vertex[i].x < (*xx_min))
779 (*xx_min) = vertex[i].x;
780 if (vertex[i].y < (*yy_min))
781 (*yy_min) = vertex[i].y;
782 if (vertex[i].z < (*zz_min))
783 (*zz_min) = vertex[i].z;
784
785 }
786 }
787 iso_lines = iso_lines->next;
788 /*printf(" End of loop calc_min_max %d \n", j);*/
789 }
790 /* HBB 20000426: this code didn't take into account that axes might
791 * be logscaled... */
792#if 0
793 /* HBB 20001220: DON'T. The values are actually already stored
794 * logarithmized, as should be! */
795 axis_unlog_interval(FIRST_X_AXIS, xx_min, xx_max, 0);
796 axis_unlog_interval(FIRST_Y_AXIS, yy_min, yy_max, 0);
797 axis_unlog_interval(FIRST_Z_AXIS, zz_min, zz_max, 0);
798#endif
799
800 /*
801 * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max));
802 * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max));
803 * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max));
804 */
805}
806
807/*
808 * Generate new edge and append it to list, but only if both vertices are
809 * defined. The list is referenced by p_edge and pe_tail (p_edge points on
810 * first edge and pe_tail on last one).
811 * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit.
812 */
813static struct edge_struct *
814add_edge(point0, point1, p_edge, pe_tail)
815struct coordinate *point0; /* 2 vertices input */
816struct coordinate *point1;
817struct edge_struct **p_edge, **pe_tail; /* pointers to edge list in/out */
818{
819 struct edge_struct *pe_temp = NULL;
820
821#if 1
822 if (point0->type == INRANGE && point1->type == INRANGE) {
823#else
824 if (point0->type != UNDEFINED && point1->type != UNDEFINED) {
825#endif
826
827 pe_temp = (struct edge_struct *)
828 gp_alloc(sizeof(struct edge_struct), "contour edge");
829
830 pe_temp->poly[0] = NULL; /* clear links */
831 pe_temp->poly[1] = NULL;
832 pe_temp->vertex[0] = point0; /* First vertex of edge. */
833 pe_temp->vertex[1] = point1; /* Second vertex of edge. */
834 pe_temp->next = NULL;
835 pe_temp->position = INNER_MESH; /* default position in mesh */
836
837 if ((*pe_tail)) {
838 (*pe_tail)->next = pe_temp; /* Stick new record as last one. */
839 } else {
840 (*p_edge) = pe_temp; /* start new list if empty */
841 }
842 (*pe_tail) = pe_temp; /* continue to last record. */
843
844 }
845 return pe_temp; /* returns NULL, if no edge allocated */
846}
847
848/*
849 * Generate new triangle and append it to list, but only if all edges are defined.
850 * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon
851 * and pp_tail on last one).
852 * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit.
853 */
854static struct poly_struct *
855add_poly(edge0, edge1, edge2, p_poly, pp_tail)
856 struct edge_struct *edge0, *edge1, *edge2; /* 3 edges input */
857 struct poly_struct **p_poly, **pp_tail; /* pointers to polygon list in/out */
858{
859 struct poly_struct *pp_temp = NULL;
860
861 if (edge0 && edge1 && edge2) {
862
863 pp_temp = (struct poly_struct *)
864 gp_alloc(sizeof(struct poly_struct), "contour polygon");
865
866 pp_temp->edge[0] = edge0; /* First edge of triangle */
867 pp_temp->edge[1] = edge1; /* Second one */
868 pp_temp->edge[2] = edge2; /* Third one */
869 pp_temp->next = NULL;
870
871 if (edge0->poly[0]) /* update edge0 */
872 edge0->poly[1] = pp_temp;
873 else
874 edge0->poly[0] = pp_temp;
875
876 if (edge1->poly[0]) /* update edge1 */
877 edge1->poly[1] = pp_temp;
878 else
879 edge1->poly[0] = pp_temp;
880
881 if (edge2->poly[0]) /* update edge2 */
882 edge2->poly[1] = pp_temp;
883 else
884 edge2->poly[0] = pp_temp;
885
886 if ((*pp_tail)) /* Stick new record as last one. */
887 (*pp_tail)->next = pp_temp;
888 else
889 (*p_poly) = pp_temp; /* start new list if empty */
890
891 (*pp_tail) = pp_temp; /* continue to last record. */
892
893 }
894 return pp_temp; /* returns NULL, if no edge allocated */
895}
896
897
898
899/*
900 * Calls the (hopefully) desired interpolation/approximation routine.
901 */
902static void
903put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
904 struct cntr_struct *p_cntr; /* contour structure input */
905 double z_level; /* Z level of contour input */
906 double xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */
907 TBOOLEAN contr_isclosed; /* contour line closed? (input) */
908{
909
910 if (!p_cntr)
911 return; /* Nothing to do if it is empty contour. */
912
913 switch (interp_kind) {
914 case CONTOUR_KIND_LINEAR: /* No interpolation/approximation. */
915 put_contour_nothing(p_cntr);
916 break;
917 case CONTOUR_KIND_CUBIC_SPL: /* Cubic spline interpolation. */
918 put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
919 chk_contour_kind(p_cntr, contr_isclosed));
920
921 break;
922 case CONTOUR_KIND_BSPLINE: /* Bspline approximation. */
923 put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
924 chk_contour_kind(p_cntr, contr_isclosed));
925 break;
926 }
927 free_contour(p_cntr);
928}
929
930/*
931 * Simply puts contour coordinates in order with no interpolation or
932 * approximation.
933 */
934static void
935put_contour_nothing(p_cntr)
936struct cntr_struct *p_cntr;
937{
938 while (p_cntr) {
939 add_cntr_point(p_cntr->X, p_cntr->Y);
940 p_cntr = p_cntr->next;
941 }
942 end_crnt_cntr();
943}
944
945/*
946 * for some reason contours are never flagged as 'isclosed'
947 * if first point == last point, set flag accordingly
948 *
949 */
950
951static int
952chk_contour_kind(p_cntr, contr_isclosed)
953 struct cntr_struct *p_cntr;
954 TBOOLEAN contr_isclosed;
955{
956 struct cntr_struct *pc_tail = NULL;
957 TBOOLEAN current_contr_isclosed;
958
959 /*fprintf(stderr, "check_contour_kind: current contour_kind value is %d\n", contour_kind);*/
960
961 current_contr_isclosed = contr_isclosed;
962
963 if (! contr_isclosed) {
964 pc_tail = p_cntr;
965 while (pc_tail->next)
966 pc_tail = pc_tail->next; /* Find last point. */
967
968 /* test if first and last point are equal */
969 if (fuzzy_equal(pc_tail, p_cntr)) {
970 current_contr_isclosed = TRUE;
971 fprintf(stderr, "check_contour_kind: contr_isclosed changed to %d\n", current_contr_isclosed);
972 }
973 }
974 return (current_contr_isclosed);
975}
976
977/*
978 * Generate a cubic spline curve through the points (x_i,y_i) which are
979 * stored in the linked list p_cntr.
980 * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
981 * parameter t is the length of the linear stroke.
982 */
983static void
984put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
985 struct cntr_struct *p_cntr;
986 double z_level, xx_min, xx_max, yy_min, yy_max;
987 TBOOLEAN contr_isclosed;
988{
989 int num_pts, num_intpol;
990 double unit_x, unit_y; /* To define norm (x,y)-plane */
991 double *delta_t; /* Interval length t_{i+1}-t_i */
992 double *d2x, *d2y; /* Second derivatives x''(t_i), y''(t_i) */
993 struct cntr_struct *pc_tail;
994
995 num_pts = count_contour(p_cntr); /* Number of points in contour. */
996
997 pc_tail = p_cntr; /* Find last point. */
998 while (pc_tail->next)
999 pc_tail = pc_tail->next;
1000
1001 if (contr_isclosed) {
1002 /* Test if first and last point are equal (should be) */
1003 if (!fuzzy_equal(pc_tail, p_cntr)) {
1004 pc_tail->next = p_cntr; /* Close contour list - make it circular. */
1005 num_pts++;
1006 }
1007 }
1008 delta_t = (double *) gp_alloc(num_pts * sizeof(double), "contour delta_t");
1009 d2x = (double *) gp_alloc(num_pts * sizeof(double), "contour d2x");
1010 d2y = (double *) gp_alloc(num_pts * sizeof(double), "contour d2y");
1011
1012 /* Width and height of the grid is used as a unit length (2d-norm) */
1013 unit_x = xx_max - x_min;
1014 unit_y = yy_max - y_min;
1015 /* FIXME HBB 20010121: 'zero' should not be used as an absolute
1016 * figure to compare to data */
1017 unit_x = (unit_x > zero ? unit_x : zero); /* should not be zero */
1018 unit_y = (unit_y > zero ? unit_y : zero);
1019
1020 if (num_pts > 2) {
1021 /*
1022 * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]:
1023 */
1024 if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t,
1025 contr_isclosed, unit_x, unit_y)) {
1026 free((char *) delta_t);
1027 free((char *) d2x);
1028 free((char *) d2y);
1029 if (contr_isclosed)
1030 pc_tail->next = NULL; /* Un-circular list */
1031 return;
1032 }
1033 }
1034 /* If following (num_pts > 1) is TRUE then exactly 2 points in contour. */
1035 else if (num_pts > 1) {
1036 /* set all second derivatives to zero, interval length to 1 */
1037 d2x[0] = 0.;
1038 d2y[0] = 0.;
1039 d2x[1] = 0.;
1040 d2y[1] = 0.;
1041 delta_t[0] = 1.;
1042 } else { /* Only one point ( ?? ) - ignore it. */
1043 free((char *) delta_t);
1044 free((char *) d2x);
1045 free((char *) d2y);
1046 if (contr_isclosed)
1047 pc_tail->next = NULL; /* Un-circular list */
1048 return;
1049 }
1050
1051 /* Calculate "num_intpol" interpolated values */
1052 num_intpol = 1 + (num_pts - 1) * contour_pts; /* global: contour_pts */
1053 intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol);
1054
1055 free((char *) delta_t);
1056 free((char *) d2x);
1057 free((char *) d2y);
1058
1059 if (contr_isclosed)
1060 pc_tail->next = NULL; /* Un-circular list */
1061
1062 end_crnt_cntr();
1063}
1064
1065
1066/*
1067 * Find Bspline approximation for this data set.
1068 * Uses global variable contour_pts to determine number of samples per
1069 * interval, where the knot vector intervals are assumed to be uniform, and
1070 * global variable contour_order for the order of Bspline to use.
1071 */
1072static void
1073put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed)
1074struct cntr_struct *p_cntr;
1075double z_level, xx_min, xx_max, yy_min, yy_max;
1076TBOOLEAN contr_isclosed;
1077{
1078 int num_pts;
1079 int order = contour_order - 1;
1080
1081 num_pts = count_contour(p_cntr); /* Number of points in contour. */
1082 if (num_pts < 2)
1083 return; /* Can't do nothing if empty or one points! */
1084 /* Order must be less than number of points in curve - fix it if needed. */
1085 if (order > num_pts - 1)
1086 order = num_pts - 1;
1087
1088 gen_bspline_approx(p_cntr, num_pts, order, contr_isclosed);
1089 end_crnt_cntr();
1090}
1091
1092/*
1093 * Free all elements in the contour list.
1094 */
1095static void
1096free_contour(p_cntr)
1097struct cntr_struct *p_cntr;
1098{
1099 struct cntr_struct *pc_temp;
1100
1101 while (p_cntr) {
1102 pc_temp = p_cntr;
1103 p_cntr = p_cntr->next;
1104 free((char *) pc_temp);
1105 }
1106}
1107
1108/*
1109 * Counts number of points in contour.
1110 */
1111static int
1112count_contour(p_cntr)
1113struct cntr_struct *p_cntr;
1114{
1115 int count = 0;
1116
1117 while (p_cntr) {
1118 count++;
1119 p_cntr = p_cntr->next;
1120 }
1121 return count;
1122}
1123
1124/*
1125 * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
1126 * through list of points (x_i,y_i). The parameter t is calculated as the
1127 * length of the linear stroke. The number of points must be at least 3.
1128 * Note: For closed contours the first and last point must be equal.
1129 */
1130static int
1131gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_isclosed, unit_x, unit_y)
1132int num_pts; /* Number of points (num_pts>=3), input */
1133struct cntr_struct *p_cntr; /* List of points (x(t_i),y(t_i)), input */
1134double d2x[], d2y[], /* Second derivatives (x''(t_i),y''(t_i)), output */
1135 delta_t[]; /* List of interval lengths t_{i+1}-t_{i}, output */
1136TBOOLEAN contr_isclosed; /* Closed or open contour?, input */
1137double unit_x, unit_y; /* Unit length in x and y (norm=1), input */
1138{
1139 int n, i;
1140 double norm;
1141 tri_diag *m; /* The tri-diagonal matrix is saved here. */
1142 struct cntr_struct *pc_temp;
1143
1144 m = (tri_diag *) gp_alloc(num_pts * sizeof(tri_diag), "contour tridiag m");
1145
1146 /*
1147 * Calculate first differences in (d2x[i], d2y[i]) and interval lengths
1148 * in delta_t[i]:
1149 */
1150 pc_temp = p_cntr;
1151 for (i = 0; i < num_pts - 1; i++) {
1152 d2x[i] = pc_temp->next->X - pc_temp->X;
1153 d2y[i] = pc_temp->next->Y - pc_temp->Y;
1154 /*
1155 * The norm of a linear stroke is calculated in "normal coordinates"
1156 * and used as interval length:
1157 */
1158 delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y));
1159
1160 d2x[i] /= delta_t[i]; /* first difference, with unit norm: */
1161 d2y[i] /= delta_t[i]; /* || (d2x[i], d2y[i]) || = 1 */
1162
1163 pc_temp = pc_temp->next;
1164 }
1165
1166 /*
1167 * Setup linear system: m * x = b
1168 */
1169 n = num_pts - 2; /* Without first and last point */
1170 if (contr_isclosed) {
1171 /* First and last points must be equal for closed contours */
1172 delta_t[num_pts - 1] = delta_t[0];
1173 d2x[num_pts - 1] = d2x[0];
1174 d2y[num_pts - 1] = d2y[0];
1175 n++; /* Add last point (= first point) */
1176 }
1177 for (i = 0; i < n; i++) {
1178 /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */
1179 m[i][0] = delta_t[i]; /* Off-diagonal element M_{i,i-1} */
1180 m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]); /* M_{i,i} */
1181 m[i][2] = delta_t[i + 1]; /* Off-diagonal element M_{i,i+1} */
1182
1183 /* Right side b_x and b_y */
1184 d2x[i] = (d2x[i + 1] - d2x[i]) * 6.;
1185 d2y[i] = (d2y[i + 1] - d2y[i]) * 6.;
1186
1187 /*
1188 * If the linear stroke shows a cusps of more than 90 degree, the right
1189 * side is reduced to avoid oscillations in the spline:
1190 */
1191 norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5;
1192
1193 if (norm > 1.) {
1194 d2x[i] /= norm;
1195 d2y[i] /= norm;
1196 /* The first derivative will not be continuous */
1197 }
1198 }
1199
1200 if (!contr_isclosed) {
1201 /* Third derivative is set to zero at both ends */
1202 m[0][1] += m[0][0]; /* M_{0,0} */
1203 m[0][0] = 0.; /* M_{0,n-1} */
1204 m[n - 1][1] += m[n - 1][2]; /* M_{n-1,n-1} */
1205 m[n - 1][2] = 0.; /* M_{n-1,0} */
1206 }
1207 /* Solve linear systems for d2x[] and d2y[] */
1208
1209
1210 if (solve_cubic_1(m, n)) { /* Calculate Cholesky decomposition */
1211 solve_cubic_2(m, d2x, n); /* solve M * d2x = b_x */
1212 solve_cubic_2(m, d2y, n); /* solve M * d2y = b_y */
1213
1214 } else { /* Should not happen, but who knows ... */
1215 free((char *) m);
1216 return FALSE;
1217 }
1218
1219 /* Shift all second derivatives one place right and abdate end points */
1220 for (i = n; i > 0; i--) {
1221 d2x[i] = d2x[i - 1];
1222 d2y[i] = d2y[i - 1];
1223 }
1224 if (contr_isclosed) {
1225 d2x[0] = d2x[n];
1226 d2y[0] = d2y[n];
1227 } else {
1228 d2x[0] = d2x[1]; /* Third derivative is zero in */
1229 d2y[0] = d2y[1]; /* first and last interval */
1230 d2x[n + 1] = d2x[n];
1231 d2y[n + 1] = d2y[n];
1232 }
1233
1234 free((char *) m);
1235 return TRUE;
1236}
1237
1238/*
1239 * Calculate interpolated values of the spline function (defined via p_cntr
1240 * and the second derivatives d2x[] and d2y[]). The number of tabulated
1241 * values is n. On an equidistant grid n_intpol values are calculated.
1242 */
1243static void
1244intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol)
1245int n;
1246struct cntr_struct *p_cntr;
1247double d2x[], d2y[], delta_t[];
1248int n_intpol;
1249{
1250 double t, t_skip, t_max;
1251 double x0, x1, x, y0, y1, y;
1252 double d, hx, dx0, dx01, hy, dy0, dy01;
1253 int i;
1254
1255 /* The length of the total interval */
1256 t_max = 0.;
1257 for (i = 0; i < n - 1; i++)
1258 t_max += delta_t[i];
1259
1260 /* The distance between interpolated points */
1261 t_skip = (1. - 1e-7) * t_max / (n_intpol - 1);
1262
1263 t = 0.; /* Parameter value */
1264 x1 = p_cntr->X;
1265 y1 = p_cntr->Y;
1266 add_cntr_point(x1, y1); /* First point. */
1267 t += t_skip;
1268
1269 for (i = 0; i < n - 1; i++) {
1270 p_cntr = p_cntr->next;
1271
1272 d = delta_t[i]; /* Interval length */
1273 x0 = x1;
1274 y0 = y1;
1275 x1 = p_cntr->X;
1276 y1 = p_cntr->Y;
1277 hx = (x1 - x0) / d;
1278 hy = (y1 - y0) / d;
1279 dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.;
1280 dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.;
1281 dx01 = (d2x[i + 1] - d2x[i]) / (6. * d);
1282 dy01 = (d2y[i + 1] - d2y[i]) / (6. * d);
1283 while (t <= delta_t[i]) { /* t in current interval ? */
1284 x = x0 + t * (hx + (t - d) * (dx0 + t * dx01));
1285 y = y0 + t * (hy + (t - d) * (dy0 + t * dy01));
1286 add_cntr_point(x, y); /* next point. */
1287 t += t_skip;
1288 }
1289 t -= delta_t[i]; /* Parameter t relative to start of next interval */
1290 }
1291}
1292
1293/*
1294 * The following two procedures solve the special linear system which arise
1295 * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
1296 * equations can be written as (i=0,1,...,n-1):
1297 * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
1298 * In matrix notation one gets M * x = b, where the matrix M is tridiagonal
1299 * with additional elements in the upper right and lower left position:
1300 * m[i][0] = M_{i,i-1} for i=1,2,...,n-1 and m[0][0] = M_{0,n-1} ,
1301 * m[i][1] = M_{i, i } for i=0,1,...,n-1
1302 * m[i][2] = M_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = M_{n-1,0}.
1303 * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite.
1304 * The size of the system is given in n (n>=1).
1305 *
1306 * In the first procedure the Cholesky decomposition M = C^T * D * C
1307 * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
1308 * Return TRUE if decomposition exist.
1309 */
1310static int
1311solve_cubic_1(m, n)
1312tri_diag m[];
1313int n;
1314{
1315 int i;
1316 double m_ij, m_n, m_nn, d;
1317
1318 if (n < 1)
1319 return FALSE; /* Dimension should be at least 1 */
1320
1321 d = m[0][1]; /* D_{0,0} = M_{0,0} */
1322 if (d <= 0.)
1323 return FALSE; /* M (or D) should be positiv definite */
1324 m_n = m[0][0]; /* M_{0,n-1} */
1325 m_nn = m[n - 1][1]; /* M_{n-1,n-1} */
1326 for (i = 0; i < n - 2; i++) {
1327 m_ij = m[i][2]; /* M_{i,1} */
1328 m[i][2] = m_ij / d; /* C_{i,i+1} */
1329 m[i][0] = m_n / d; /* C_{i,n-1} */
1330 m_nn -= m[i][0] * m_n; /* to get C_{n-1,n-1} */
1331 m_n = -m[i][2] * m_n; /* to get C_{i+1,n-1} */
1332 d = m[i + 1][1] - m[i][2] * m_ij; /* D_{i+1,i+1} */
1333 if (d <= 0.)
1334 return FALSE; /* Elements of D should be positiv */
1335 m[i + 1][1] = d;
1336 }
1337 if (n >= 2) { /* Complete last column */
1338 m_n += m[n - 2][2]; /* add M_{n-2,n-1} */
1339 m[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
1340 m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n; /* D_{n-1,n-1} */
1341 if (d <= 0.)
1342 return FALSE;
1343 }
1344 return TRUE;
1345}
1346
1347/*
1348 * The second procedure solves the linear system, with the Choleky
1349 * decomposition calculated above (in m[][]) and the right side b given
1350 * in x[]. The solution x overwrites the right side in x[].
1351 */
1352static void
1353solve_cubic_2(m, x, n)
1354tri_diag m[];
1355double x[];
1356int n;
1357{
1358 int i;
1359 double x_n;
1360
1361 /* Division by transpose of C : b = C^{-T} * b */
1362 x_n = x[n - 1];
1363 for (i = 0; i < n - 2; i++) {
1364 x[i + 1] -= m[i][2] * x[i]; /* C_{i,i+1} * x_{i} */
1365 x_n -= m[i][0] * x[i]; /* C_{i,n-1} * x_{i} */
1366 }
1367 if (n >= 2)
1368 x[n - 1] = x_n - m[n - 2][0] * x[n - 2]; /* C_{n-2,n-1} * x_{n-1} */
1369
1370 /* Division by D: b = D^{-1} * b */
1371 for (i = 0; i < n; i++)
1372 x[i] /= m[i][1];
1373
1374 /* Division by C: b = C^{-1} * b */
1375 x_n = x[n - 1];
1376 if (n >= 2)
1377 x[n - 2] -= m[n - 2][0] * x_n; /* C_{n-2,n-1} * x_{n-1} */
1378 for (i = n - 3; i >= 0; i--) {
1379 /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
1380 x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n;
1381 }
1382 return;
1383}
1384
1385/*
1386 * Solve tri diagonal linear system equation. The tri diagonal matrix is
1387 * defined via matrix M, right side is r, and solution X i.e. M * X = R.
1388 * Size of system given in n. Return TRUE if solution exist.
1389 */
1390/* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */
1391
1392int
1393solve_tri_diag(m, r, x, n)
1394tri_diag m[];
1395double r[], x[];
1396int n;
1397{
1398 int i;
1399 double t;
1400
1401 for (i = 1; i < n; i++) { /* Eliminate element m[i][i-1] (lower diagonal). */
1402 if (m[i - 1][1] == 0)
1403 return FALSE;
1404 t = m[i][0] / m[i - 1][1]; /* Find ratio between the two lines. */
1405/* m[i][0] = m[i][0] - m[i-1][1] * t; */
1406/* m[i][0] is not used any more (and set to 0 in the above line) */
1407 m[i][1] = m[i][1] - m[i - 1][2] * t;
1408 r[i] = r[i] - r[i - 1] * t;
1409 }
1410 /* Now do back subtitution - update the solution vector X: */
1411 if (m[n - 1][1] == 0)
1412 return FALSE;
1413 x[n - 1] = r[n - 1] / m[n - 1][1]; /* Find last element. */
1414 for (i = n - 2; i >= 0; i--) {
1415 if (m[i][1] == 0)
1416 return FALSE;
1417 x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1];
1418 }
1419 return TRUE;
1420}
1421
1422/*
1423 * Generate a Bspline curve defined by all the points given in linked list p:
1424 * Algorithm: using deBoor algorithm
1425 * Note: if Curvekind is open contour than Open end knot vector is assumed,
1426 * else (closed contour) Float end knot vector is assumed.
1427 * It is assumed that num_of_points is at least 2, and order of Bspline is less
1428 * than num_of_points!
1429 */
1430static void
1431gen_bspline_approx(p_cntr, num_of_points, order, contr_isclosed)
1432struct cntr_struct *p_cntr;
1433int num_of_points, order;
1434TBOOLEAN contr_isclosed;
1435{
1436 int knot_index = 0, pts_count = 1;
1437 double dt, t, next_t, t_min, t_max, x, y;
1438 struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL;
1439
1440 /* If the contour is Closed one we must update few things:
1441 * 1. Make the list temporary circular, so we can close the contour.
1442 * 2. Update num_of_points - increase it by "order-1" so contour will be
1443 * closed. This will evaluate order more sections to close it!
1444 */
1445 if (contr_isclosed) {
1446 pc_tail = p_cntr;
1447 while (pc_tail->next)
1448 pc_tail = pc_tail->next; /* Find last point. */
1449
1450 /* test if first and last point are equal */
1451 if (fuzzy_equal(pc_tail, p_cntr)) {
1452 /* Close contour list - make it circular. */
1453 pc_tail->next = p_cntr->next;
1454 num_of_points += order - 1;
1455 } else {
1456 pc_tail->next = p_cntr;
1457 num_of_points += order;
1458 }
1459 }
1460 /* Find first (t_min) and last (t_max) t value to eval: */
1461 t = t_min = fetch_knot(contr_isclosed, num_of_points, order, order);
1462 t_max = fetch_knot(contr_isclosed, num_of_points, order, num_of_points);
1463 next_t = t_min + 1.0;
1464 knot_index = order;
1465 dt = 1.0 / contour_pts; /* Number of points per one section. */
1466
1467
1468 while (t < t_max) {
1469 if (t > next_t) {
1470 pc_temp = pc_temp->next; /* Next order ctrl. pt. to blend. */
1471 knot_index++;
1472 next_t += 1.0;
1473 }
1474 eval_bspline(t, pc_temp, num_of_points, order, knot_index,
1475 contr_isclosed, &x, &y); /* Next pt. */
1476 add_cntr_point(x, y);
1477 pts_count++;
1478 /* As we might have some real number round off problems we do */
1479 /* the last point outside the loop */
1480 if (pts_count == contour_pts * (num_of_points - order) + 1)
1481 break;
1482 t += dt;
1483 }
1484
1485 /* Now do the last point */
1486 eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index,
1487 contr_isclosed, &x, &y);
1488 add_cntr_point(x, y); /* Complete the contour. */
1489
1490 if (contr_isclosed) /* Update list - un-circular it. */
1491 pc_tail->next = NULL;
1492}
1493
1494/*
1495 * The routine to evaluate the B-spline value at point t using knot vector
1496 * from function fetch_knot(), and the control points p_cntr.
1497 * Returns (x, y) of approximated B-spline. Note that p_cntr points on the
1498 * first control point to blend with. The B-spline is of order order.
1499 */
1500static void
1501eval_bspline(t, p_cntr, num_of_points, order, j, contr_isclosed, x, y)
1502double t;
1503struct cntr_struct *p_cntr;
1504int num_of_points, order, j;
1505TBOOLEAN contr_isclosed;
1506double *x, *y;
1507{
1508 int i, p;
1509 double ti, tikp, *dx, *dy; /* Copy p_cntr into it to make it faster. */
1510
1511 dx = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1512 dy = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline");
1513
1514 /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */
1515 for (i = j - order; i <= j; i++) {
1516 dx[i] = p_cntr->X;
1517 dy[i] = p_cntr->Y;
1518 p_cntr = p_cntr->next;
1519 }
1520
1521 for (p = 1; p <= order; p++) { /* Iteration (b-spline level) counter. */
1522 for (i = j; i >= j - order + p; i--) { /* Control points indexing. */
1523 ti = fetch_knot(contr_isclosed, num_of_points, order, i);
1524 tikp = fetch_knot(contr_isclosed, num_of_points, order, i + order + 1 - p);
1525 if (ti == tikp) { /* Should not be a problems but how knows... */
1526 } else {
1527 dx[i] = dx[i] * (t - ti) / (tikp - ti) + /* Calculate x. */
1528 dx[i - 1] * (tikp - t) / (tikp - ti);
1529 dy[i] = dy[i] * (t - ti) / (tikp - ti) + /* Calculate y. */
1530 dy[i - 1] * (tikp - t) / (tikp - ti);
1531 }
1532 }
1533 }
1534 *x = dx[j];
1535 *y = dy[j];
1536 free((char *) dx);
1537 free((char *) dy);
1538}
1539
1540/*
1541 * Routine to get the i knot from uniform knot vector. The knot vector
1542 * might be float (Knot(i) = i) or open (where the first and last "order"
1543 * knots are equal). contr_isclosed determines knot kind - open contour means
1544 * open knot vector, and closed contour selects float knot vector.
1545 * Note the knot vector is not exist and this routine simulates it existance
1546 * Also note the indexes for the knot vector starts from 0.
1547 */
1548static double
1549fetch_knot(contr_isclosed, num_of_points, order, i)
1550 TBOOLEAN contr_isclosed;
1551 int num_of_points, order, i;
1552{
1553 if(! contr_isclosed) {
1554 if (i <= order)
1555 return 0.0;
1556 else if (i <= num_of_points)
1557 return (double) (i - order);
1558 else
1559 return (double) (num_of_points - order);
1560 } else {
1561 return (double) i;
1562 }
1563}
[1857]1564
1565
1566/* setting et getting de variables */
1567/* OP 01/2002 */
1568
1569void set_contour_kind(t_contour_kind in){
1570 contour_kind = in;
1571}
1572
1573t_contour_kind get_contour_kind(){
1574 return (contour_kind);
1575}
1576
1577void set_contour_levels_kind(t_contour_levels_kind in){
1578 contour_levels_kind = in;
1579
1580}
1581
1582t_contour_levels_kind get_contour_levels_kind(){
1583
1584 return(contour_levels_kind);
1585}
1586
1587void set_contour_levels(int num){
1588 contour_levels = num;
1589}
1590
1591int get_contour_levels(){
1592 return(contour_levels);
1593}
1594void set_contour_levels_list(double *vec){
1595
1596 contour_levels_list=vec;
1597}
1598
1599/*******
1600void set_contour_levels_list(double *vec,int sz){
1601 int i;
1602 printf(" <set_contour_levels_list> sz %d \n",sz);
1603 contour_levels_list = (double *) malloc(sz*sizeof(double));
1604 for (i=0 ; i<sz ; i++){
1605 printf(" <set_contour_levels_list> i %d vec %g\n",i,vec[i]);
1606 contour_levels_list[i] = vec[i];
1607
1608 }
1609}
1610void free_contour_levels_list(){
1611 if(contour_levels_list != NULL){
1612 free(contour_levels_list);
1613 contour_levels_list = NULL;
1614 }
1615}
1616*****/
1617double * get_contour_levels_list(){
1618
1619return(contour_levels_list);
1620}
1621
Note: See TracBrowser for help on using the repository browser.