| 1 | /* GNUPLOT - contour.c */ | 
|---|
| 2 |  | 
|---|
| 3 | /*[ | 
|---|
| 4 | * Copyright 1986 - 1993, 1998   Thomas Williams, Colin Kelley | 
|---|
| 5 | * | 
|---|
| 6 | * Permission to use, copy, and distribute this software and its | 
|---|
| 7 | * documentation for any purpose with or without fee is hereby granted, | 
|---|
| 8 | * provided that the above copyright notice appear in all copies and | 
|---|
| 9 | * that both that copyright notice and this permission notice appear | 
|---|
| 10 | * in supporting documentation. | 
|---|
| 11 | * | 
|---|
| 12 | * Permission to modify the software is granted, but not the right to | 
|---|
| 13 | * distribute the complete modified source code.  Modifications are to | 
|---|
| 14 | * be distributed as patches to the released version.  Permission to | 
|---|
| 15 | * distribute binaries produced by compiling modified sources is granted, | 
|---|
| 16 | * provided you | 
|---|
| 17 | *   1. distribute the corresponding source modifications from the | 
|---|
| 18 | *    released version in the form of a patch file along with the binaries, | 
|---|
| 19 | *   2. add special version identification to distinguish your version | 
|---|
| 20 | *    in addition to the base release version number, | 
|---|
| 21 | *   3. provide your name and address as the primary contact for the | 
|---|
| 22 | *    support of your modified version, and | 
|---|
| 23 | *   4. retain our contact information in regard to use of the base | 
|---|
| 24 | *    software. | 
|---|
| 25 | * Permission to distribute the released version of the source code along | 
|---|
| 26 | * with corresponding source modifications in the form of a patch file is | 
|---|
| 27 | * granted with same provisions 2 through 4 for binary distributions. | 
|---|
| 28 | * | 
|---|
| 29 | * This software is provided "as is" without express or implied warranty | 
|---|
| 30 | * to the extent permitted by applicable law. | 
|---|
| 31 | ]*/ | 
|---|
| 32 |  | 
|---|
| 33 |  | 
|---|
| 34 | /* | 
|---|
| 35 | * AUTHORS | 
|---|
| 36 | * | 
|---|
| 37 | *   Original Software: | 
|---|
| 38 | *       Gershon Elber | 
|---|
| 39 | * | 
|---|
| 40 | *   Improvements to the numerical algorithms: | 
|---|
| 41 | *        Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de) | 
|---|
| 42 | * | 
|---|
| 43 | *   Quelques modifs (adaptation pour SOPHYA/PEIDA) O. PErdereau 11/2001 | 
|---|
| 44 | */ | 
|---|
| 45 |  | 
|---|
| 46 | #include "gp_contour.h" | 
|---|
| 47 |  | 
|---|
| 48 | #include "gp_alloc.h" | 
|---|
| 49 | #include "gp_axis.h" | 
|---|
| 50 |  | 
|---|
| 51 | #include <sys/time.h> | 
|---|
| 52 | #include <sys/resource.h> | 
|---|
| 53 |  | 
|---|
| 54 | /*  #include "setshow.h" */ | 
|---|
| 55 |  | 
|---|
| 56 | /* exported variables (to be handled by the 'set' and friends): */ | 
|---|
| 57 |  | 
|---|
| 58 | char contour_format[32] = "%8.3g";      /* format for contour key entries */ | 
|---|
| 59 | static t_contour_kind contour_kind = CONTOUR_KIND_LINEAR; | 
|---|
| 60 | static t_contour_levels_kind contour_levels_kind = LEVELS_AUTO; | 
|---|
| 61 | static int contour_levels = DEFAULT_CONTOUR_LEVELS; | 
|---|
| 62 | static int contour_order = DEFAULT_CONTOUR_ORDER; | 
|---|
| 63 | static int contour_pts = DEFAULT_NUM_APPROX_PTS; | 
|---|
| 64 |  | 
|---|
| 65 | static dynarray dyn_contour_levels_list;/* storage for z levels to draw contours at */ | 
|---|
| 66 | static double * contour_levels_list=NULL; | 
|---|
| 67 |  | 
|---|
| 68 | /* position of edge in mesh */ | 
|---|
| 69 | typedef enum en_edge_position { | 
|---|
| 70 | INNER_MESH=1, | 
|---|
| 71 | BOUNDARY, | 
|---|
| 72 | DIAGONAL | 
|---|
| 73 | } t_edge_position; | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 | /* Valeur de zero - Reza 21/12/2001 - Pourquoi zero = 0. ??? */ | 
|---|
| 77 | double zero = 0.; | 
|---|
| 78 |  | 
|---|
| 79 | /* FIXME HBB 2000052: yet another local copy of 'epsilon'. Why? */ | 
|---|
| 80 | #define EPSILON  1e-5           /* Used to decide if two float are equal. */ | 
|---|
| 81 |  | 
|---|
| 82 |  | 
|---|
| 83 | #ifndef TRUE | 
|---|
| 84 | #define TRUE     -1 | 
|---|
| 85 | #define FALSE    0 | 
|---|
| 86 | #endif | 
|---|
| 87 |  | 
|---|
| 88 |  | 
|---|
| 89 | #define MAX_POINTS_PER_CNTR     100 | 
|---|
| 90 |  | 
|---|
| 91 | #define SQR(x)  ((x) * (x)) | 
|---|
| 92 |  | 
|---|
| 93 | /* | 
|---|
| 94 | * struct vrtx_struct { | 
|---|
| 95 | *      double X, Y, Z; | 
|---|
| 96 | *      struct vrtx_struct *next; | 
|---|
| 97 | * }; | 
|---|
| 98 | * | 
|---|
| 99 | * replaced by 'struct coordinate  ', see plot.h (HMK 1997) | 
|---|
| 100 | */ | 
|---|
| 101 |  | 
|---|
| 102 | struct edge_struct { | 
|---|
| 103 | struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */ | 
|---|
| 104 | struct coordinate  *vertex[2]; /* The two extreme points of this edge. */ | 
|---|
| 105 | struct edge_struct *next;   /* To chain lists */ | 
|---|
| 106 | TBOOLEAN is_active;         /* is edge is 'active' at certain Z level? */ | 
|---|
| 107 | t_edge_position position;   /* position of edge in mesh */ | 
|---|
| 108 | }; | 
|---|
| 109 |  | 
|---|
| 110 | struct poly_struct { | 
|---|
| 111 | struct edge_struct *edge[3];        /* As we do triangolation here... */ | 
|---|
| 112 | struct poly_struct *next;   /* To chain lists. */ | 
|---|
| 113 | }; | 
|---|
| 114 |  | 
|---|
| 115 | struct cntr_struct {            /* Contours are saved using this struct list. */ | 
|---|
| 116 | double X, Y;                /* The coordinates of this vertex. */ | 
|---|
| 117 | struct cntr_struct *next;   /* To chain lists. */ | 
|---|
| 118 | }; | 
|---|
| 119 |  | 
|---|
| 120 | static struct gnuplot_contours *contour_list = NULL; | 
|---|
| 121 | static double crnt_cntr[MAX_POINTS_PER_CNTR * 2]; | 
|---|
| 122 | static int crnt_cntr_pt_index = 0; | 
|---|
| 123 | static double contour_level = 0.0; | 
|---|
| 124 |  | 
|---|
| 125 | /* Linear, Cubic interp., Bspline: */ | 
|---|
| 126 | static t_contour_kind interp_kind = CONTOUR_KIND_LINEAR; | 
|---|
| 127 |  | 
|---|
| 128 | static double x_min, y_min, z_min;      /* Minimum values of x, y, and z */ | 
|---|
| 129 | static double x_max, y_max, z_max;      /* Maximum values of x, y, and z */ | 
|---|
| 130 |  | 
|---|
| 131 | static void add_cntr_point (double x, double y); | 
|---|
| 132 | static void end_crnt_cntr (void); | 
|---|
| 133 | static void gen_contours(struct edge_struct * p_edges, double z_level, | 
|---|
| 134 | double xx_min, double xx_max, double yy_min, double yy_max); | 
|---|
| 135 | static int update_all_edges(struct edge_struct * p_edges, | 
|---|
| 136 | double z_level); | 
|---|
| 137 | static struct cntr_struct *gen_one_contour ( | 
|---|
| 138 | struct edge_struct * p_edges, double | 
|---|
| 139 | z_level, TBOOLEAN *contr_isclosed, | 
|---|
| 140 | int *num_active); | 
|---|
| 141 | static struct cntr_struct *trace_contour ( | 
|---|
| 142 | struct edge_struct * pe_start, double | 
|---|
| 143 | z_level, int *num_active, | 
|---|
| 144 | TBOOLEAN contr_isclosed); | 
|---|
| 145 | static struct cntr_struct *update_cntr_pt (struct edge_struct * p_edge, | 
|---|
| 146 | double z_level); | 
|---|
| 147 | static int fuzzy_equal (struct cntr_struct * p_cntr1, | 
|---|
| 148 | struct cntr_struct * p_cntr2); | 
|---|
| 149 |  | 
|---|
| 150 |  | 
|---|
| 151 | static void gen_triangle (int num_isolines, | 
|---|
| 152 | struct iso_curve * iso_lines, struct poly_struct ** p_polys, | 
|---|
| 153 | struct edge_struct ** p_edges); | 
|---|
| 154 | static void calc_min_max (int num_isolines, | 
|---|
| 155 | struct iso_curve * iso_lines, double *xx_min, double *yy_min, | 
|---|
| 156 | double *zz_min, | 
|---|
| 157 | double *xx_max, double *yy_max, double *zz_max); | 
|---|
| 158 | static struct edge_struct *add_edge (struct coordinate  * point0, | 
|---|
| 159 | struct coordinate  * point1, struct edge_struct | 
|---|
| 160 | ** p_edge, | 
|---|
| 161 | struct edge_struct ** pe_tail); | 
|---|
| 162 | static struct poly_struct *add_poly (struct edge_struct * edge0, | 
|---|
| 163 | struct edge_struct * edge1, struct edge_struct * edge2, | 
|---|
| 164 | struct poly_struct ** p_poly, struct poly_struct ** pp_tail); | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 | static void put_contour (struct cntr_struct * p_cntr, double z_level, | 
|---|
| 168 | double xx_min, double xx_max, double yy_min, double yy_max, | 
|---|
| 169 | TBOOLEAN contr_isclosed); | 
|---|
| 170 | static void put_contour_nothing (struct cntr_struct * p_cntr); | 
|---|
| 171 | static int chk_contour_kind (struct cntr_struct * p_cntr, | 
|---|
| 172 | TBOOLEAN contr_isclosed); | 
|---|
| 173 | static void put_contour_cubic (struct cntr_struct * p_cntr, | 
|---|
| 174 | double z_level, double xx_min, double xx_max, double | 
|---|
| 175 | yy_min, double yy_max, | 
|---|
| 176 | TBOOLEAN contr_isclosed); | 
|---|
| 177 | static void put_contour_bspline (struct cntr_struct * p_cntr, | 
|---|
| 178 | double z_level, double xx_min, double xx_max, double | 
|---|
| 179 | yy_min, double yy_max, | 
|---|
| 180 | TBOOLEAN contr_isclosed); | 
|---|
| 181 | static void free_contour (struct cntr_struct * p_cntr); | 
|---|
| 182 | static int count_contour (struct cntr_struct * p_cntr); | 
|---|
| 183 | static int gen_cubic_spline (int num_pts, struct cntr_struct * p_cntr, | 
|---|
| 184 | double d2x[], double d2y[], double delta_t[], TBOOLEAN contr_isclosed, | 
|---|
| 185 | double unit_x, double unit_y); | 
|---|
| 186 | static void intp_cubic_spline (int n, struct cntr_struct * p_cntr, | 
|---|
| 187 | double d2x[], double d2y[], double delta_t[], int n_intpol); | 
|---|
| 188 | static int solve_cubic_1 (tri_diag m[], int n); | 
|---|
| 189 | static void solve_cubic_2 (tri_diag m[], double x[], int n); | 
|---|
| 190 | static void gen_bspline_approx (struct cntr_struct * p_cntr, | 
|---|
| 191 | int num_of_points, int order, TBOOLEAN contr_isclosed); | 
|---|
| 192 | static void eval_bspline (double t, struct cntr_struct * p_cntr, | 
|---|
| 193 | int num_of_points, int order, int j, TBOOLEAN contr_isclosed, double *x, | 
|---|
| 194 | double *y); | 
|---|
| 195 | static double fetch_knot (TBOOLEAN contr_isclosed, int num_of_points, | 
|---|
| 196 | int order, int i); | 
|---|
| 197 |  | 
|---|
| 198 |  | 
|---|
| 199 | static int num_of_z_levels;/*_____ OP ___________*/     /* # Z contour levels. */ | 
|---|
| 200 |  | 
|---|
| 201 | int Get_Num_Of_Z_Levels(){ | 
|---|
| 202 | return num_of_z_levels; | 
|---|
| 203 | } /* OP       __________ */ | 
|---|
| 204 |  | 
|---|
| 205 | /* | 
|---|
| 206 | * Entry routine to this whole set of contouring module. | 
|---|
| 207 | */ | 
|---|
| 208 | struct gnuplot_contours * | 
|---|
| 209 | contour(num_isolines, iso_lines) | 
|---|
| 210 | int num_isolines; | 
|---|
| 211 | struct iso_curve *iso_lines; | 
|---|
| 212 | { | 
|---|
| 213 | struct rusage r_usage; | 
|---|
| 214 | int rcus; | 
|---|
| 215 |  | 
|---|
| 216 | int i; | 
|---|
| 217 | /*OP    int num_of_z_levels;*/      /* # Z contour levels. */ | 
|---|
| 218 | struct poly_struct *p_polys, *p_poly; | 
|---|
| 219 | struct edge_struct *p_edges, *p_edge; | 
|---|
| 220 | double z = 0, dz = 0; | 
|---|
| 221 | struct gnuplot_contours *save_contour_list; | 
|---|
| 222 |  | 
|---|
| 223 | num_of_z_levels = contour_levels; | 
|---|
| 224 | interp_kind = contour_kind; | 
|---|
| 225 |  | 
|---|
| 226 | contour_list = NULL; | 
|---|
| 227 | /******* DEBUG ******** | 
|---|
| 228 | rcus = getrusage( RUSAGE_SELF , &r_usage); | 
|---|
| 229 | if(rcus==0) | 
|---|
| 230 | printf("contour[1] / rusage -> %ld , %ld , %ld \n",  r_usage.ru_maxrss , r_usage.ru_ixrss , r_usage.ru_ixrss); | 
|---|
| 231 | else | 
|---|
| 232 | perror("contour/1er appel"); | 
|---|
| 233 | *************/ | 
|---|
| 234 | /* | 
|---|
| 235 | * Calculate min/max values : | 
|---|
| 236 | */ | 
|---|
| 237 | calc_min_max(num_isolines, iso_lines, | 
|---|
| 238 | &x_min, &y_min, &z_min, &x_max, &y_max, &z_max); | 
|---|
| 239 |  | 
|---|
| 240 |  | 
|---|
| 241 | dz = fabs(z_max - z_min); | 
|---|
| 242 | /* | 
|---|
| 243 | *  printf(" contour z_max %g z_min %g dz=%g kind %d   \n",z_max, z_min , dz,contour_levels_kind); | 
|---|
| 244 | * Generate list of edges (p_edges) and list of triangles (p_polys): | 
|---|
| 245 | */ | 
|---|
| 246 |  | 
|---|
| 247 | gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges); | 
|---|
| 248 | crnt_cntr_pt_index = 0; | 
|---|
| 249 |  | 
|---|
| 250 |  | 
|---|
| 251 | /*AJOUT OP */ | 
|---|
| 252 | if (contour_levels_kind == LEVELS_NUM) { | 
|---|
| 253 | dz = fabs(z_max - z_min)/(num_of_z_levels); | 
|---|
| 254 | z = z_min - dz/2.; | 
|---|
| 255 | } | 
|---|
| 256 |  | 
|---|
| 257 | if (contour_levels_kind == LEVELS_AUTO) { | 
|---|
| 258 | dz = fabs(z_max - z_min); | 
|---|
| 259 | /*printf(" contour z_max %g z_min %g dz=%g\n",z_max, z_min , dz);*/ | 
|---|
| 260 | if (dz == 0) | 
|---|
| 261 | return NULL;        /* empty z range ? */ | 
|---|
| 262 | /* what is the deeper sense of this ? (joze) */ | 
|---|
| 263 | dz = set_tic(log10(dz), ((int) contour_levels + 1) * 2); | 
|---|
| 264 | z = floor(z_min / dz) * dz; | 
|---|
| 265 | num_of_z_levels = (int) floor((z_max - z) / dz); | 
|---|
| 266 | /*printf("contour() : num_of_z_levels %d\n",num_of_z_levels);*/ | 
|---|
| 267 | } | 
|---|
| 268 | for (i = 0; i < num_of_z_levels; i++) { | 
|---|
| 269 | switch (contour_levels_kind) { | 
|---|
| 270 | case LEVELS_AUTO: | 
|---|
| 271 | case LEVELS_NUM: | 
|---|
| 272 | z += dz; | 
|---|
| 273 | break; | 
|---|
| 274 | case LEVELS_INCREMENTAL: | 
|---|
| 275 | z = contour_levels_list[0] + i * contour_levels_list[1]; | 
|---|
| 276 | break; | 
|---|
| 277 | case LEVELS_DISCRETE: | 
|---|
| 278 | /*printf("????? contour z=%f\n",contour_levels_list[i] );*/ | 
|---|
| 279 | /*z = AXIS_LOG_VALUE(FIRST_Z_AXIS, contour_levels_list[i]); PAS BESOIN ? OP */ | 
|---|
| 280 | z = contour_levels_list[i]; | 
|---|
| 281 | break; | 
|---|
| 282 | } | 
|---|
| 283 | contour_level = z; | 
|---|
| 284 | /*printf(" contour z=%f\n",z);*/ | 
|---|
| 285 | save_contour_list = contour_list; | 
|---|
| 286 | gen_contours(p_edges, z, x_min, x_max, y_min, y_max); | 
|---|
| 287 | if (contour_list != save_contour_list) { | 
|---|
| 288 | contour_list->isNewLevel = 1; | 
|---|
| 289 | sprintf(contour_list->label, contour_format, AXIS_DE_LOG_VALUE(FIRST_Z_AXIS,z)); | 
|---|
| 290 | #ifdef PM3D | 
|---|
| 291 | contour_list->z = AXIS_DE_LOG_VALUE(FIRST_Z_AXIS, z); | 
|---|
| 292 | #endif | 
|---|
| 293 | } | 
|---|
| 294 | } | 
|---|
| 295 |  | 
|---|
| 296 | /* Free all contouring related temporary data. */ | 
|---|
| 297 | while (p_polys) { | 
|---|
| 298 |  | 
|---|
| 299 | p_poly = p_polys->next; | 
|---|
| 300 | free(p_polys); | 
|---|
| 301 | p_polys = p_poly; | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 |  | 
|---|
| 305 | while (p_edges) { | 
|---|
| 306 | p_edge = p_edges->next; | 
|---|
| 307 | free(p_edges); | 
|---|
| 308 | p_edges = p_edge; | 
|---|
| 309 | } | 
|---|
| 310 | /*********DEBUG | 
|---|
| 311 | rcus = getrusage( RUSAGE_SELF , &r_usage); | 
|---|
| 312 | if(rcus==0) | 
|---|
| 313 | printf("contour[5] / rusage -> %ld , %ld , %ld \n",  r_usage.ru_maxrss , r_usage.ru_ixrss , r_usage.ru_ixrss); | 
|---|
| 314 | else | 
|---|
| 315 | perror("contour / 5eme appel"); | 
|---|
| 316 | rcus = getrusage( RUSAGE_SELF , &r_usage); | 
|---|
| 317 | ********/ | 
|---|
| 318 |  | 
|---|
| 319 | return contour_list; | 
|---|
| 320 | } | 
|---|
| 321 |  | 
|---|
| 322 | /* | 
|---|
| 323 | * Adds another point to the currently build contour. | 
|---|
| 324 | */ | 
|---|
| 325 | static void | 
|---|
| 326 | add_cntr_point(x, y) | 
|---|
| 327 | double x, y; | 
|---|
| 328 | { | 
|---|
| 329 | int index; | 
|---|
| 330 |  | 
|---|
| 331 | if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) { | 
|---|
| 332 | index = crnt_cntr_pt_index - 1; | 
|---|
| 333 | end_crnt_cntr(); | 
|---|
| 334 | crnt_cntr[0] = crnt_cntr[index * 2]; | 
|---|
| 335 | crnt_cntr[1] = crnt_cntr[index * 2 + 1]; | 
|---|
| 336 | crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */ | 
|---|
| 337 | } | 
|---|
| 338 | crnt_cntr[crnt_cntr_pt_index * 2] = x; | 
|---|
| 339 | crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y; | 
|---|
| 340 | crnt_cntr_pt_index++; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | /* | 
|---|
| 344 | * Done with current contour - create gnuplot data structure for it. | 
|---|
| 345 | */ | 
|---|
| 346 | static void | 
|---|
| 347 | end_crnt_cntr() | 
|---|
| 348 | { | 
|---|
| 349 | int i; | 
|---|
| 350 | struct gnuplot_contours *cntr = (struct gnuplot_contours *) | 
|---|
| 351 | gp_alloc(sizeof(struct gnuplot_contours), "gnuplot_contour"); | 
|---|
| 352 | cntr->coords = (struct coordinate  *) | 
|---|
| 353 | gp_alloc(sizeof(struct coordinate) * crnt_cntr_pt_index, | 
|---|
| 354 | "contour coords"); | 
|---|
| 355 |  | 
|---|
| 356 | for (i = 0; i < crnt_cntr_pt_index; i++) { | 
|---|
| 357 | cntr->coords[i].x = crnt_cntr[i * 2]; | 
|---|
| 358 | cntr->coords[i].y = crnt_cntr[i * 2 + 1]; | 
|---|
| 359 | cntr->coords[i].z = contour_level; | 
|---|
| 360 | } | 
|---|
| 361 | cntr->num_pts = crnt_cntr_pt_index; | 
|---|
| 362 |  | 
|---|
| 363 | cntr->next = contour_list; | 
|---|
| 364 | contour_list = cntr; | 
|---|
| 365 | contour_list->isNewLevel = 0; | 
|---|
| 366 |  | 
|---|
| 367 | crnt_cntr_pt_index = 0; | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | /* | 
|---|
| 371 | * Generates all contours by tracing the intersecting triangles. | 
|---|
| 372 | */ | 
|---|
| 373 | static void | 
|---|
| 374 | gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max) | 
|---|
| 375 | struct edge_struct *p_edges; | 
|---|
| 376 | double z_level, xx_min, xx_max, yy_min, yy_max; | 
|---|
| 377 | { | 
|---|
| 378 | int num_active;             /* Number of edges marked ACTIVE. */ | 
|---|
| 379 | TBOOLEAN contr_isclosed;    /* Is this contour a closed line? */ | 
|---|
| 380 | struct cntr_struct *p_cntr; | 
|---|
| 381 |  | 
|---|
| 382 | num_active = update_all_edges(p_edges, z_level);    /* Do pass 1. */ | 
|---|
| 383 |  | 
|---|
| 384 | contr_isclosed = FALSE;     /* Start to look for contour on boundaries. */ | 
|---|
| 385 | /*printf("<gen_contour> z=%g num_active %d \n",z_level,num_active);*/ | 
|---|
| 386 | while (num_active > 0) {    /* Do Pass 2. */ | 
|---|
| 387 | /* Generate One contour (and update MumActive as needed): */ | 
|---|
| 388 | p_cntr = gen_one_contour(p_edges, z_level, &contr_isclosed, &num_active); | 
|---|
| 389 | if (p_cntr ==NULL) printf("<gen_contour> gen_one_contour retourne NULL \n"); | 
|---|
| 390 | /* Emit it in requested format: */ | 
|---|
| 391 | put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed); | 
|---|
| 392 | } | 
|---|
| 393 | } | 
|---|
| 394 |  | 
|---|
| 395 | /* | 
|---|
| 396 | * Does pass 1, or marks the edges which are active (crosses this z_level) | 
|---|
| 397 | * Returns number of active edges (marked ACTIVE). | 
|---|
| 398 | */ | 
|---|
| 399 | static int | 
|---|
| 400 | update_all_edges(p_edges, z_level) | 
|---|
| 401 | struct edge_struct *p_edges; | 
|---|
| 402 | double z_level; | 
|---|
| 403 | { | 
|---|
| 404 | int count = 0; | 
|---|
| 405 |  | 
|---|
| 406 | while (p_edges) { | 
|---|
| 407 | /* use the same test at both vertices to avoid roundoff errors */ | 
|---|
| 408 |  | 
|---|
| 409 | if ((p_edges->vertex[0]->z >= z_level) != | 
|---|
| 410 | (p_edges->vertex[1]->z >= z_level)) { | 
|---|
| 411 | p_edges->is_active = TRUE; | 
|---|
| 412 | count++; | 
|---|
| 413 | } else | 
|---|
| 414 | p_edges->is_active = FALSE; | 
|---|
| 415 | p_edges = p_edges->next; | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | return count; | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | /* | 
|---|
| 422 | * Does pass 2, or find one complete contour out of the triangulation | 
|---|
| 423 | * data base: | 
|---|
| 424 | * | 
|---|
| 425 | * Returns a pointer to the contour (as linked list), contr_isclosed | 
|---|
| 426 | * tells if the contour is a closed line or not, and num_active is | 
|---|
| 427 | * updated. | 
|---|
| 428 | */ | 
|---|
| 429 | static struct cntr_struct * | 
|---|
| 430 | gen_one_contour(p_edges, z_level, contr_isclosed, num_active) | 
|---|
| 431 | struct edge_struct *p_edges;    /* list of edges input */ | 
|---|
| 432 | double z_level;                 /* Z level of contour input */ | 
|---|
| 433 | TBOOLEAN *contr_isclosed;       /* open or closed contour, in/out */ | 
|---|
| 434 | int *num_active;                /* number of active edges     in/out */ | 
|---|
| 435 | { | 
|---|
| 436 | struct edge_struct *pe_temp; | 
|---|
| 437 |  | 
|---|
| 438 | if (! *contr_isclosed) { | 
|---|
| 439 | /*printf("<gen_one_contour> contr_isclosed FALSE \n");*/ | 
|---|
| 440 | /* Look for something to start with on boundary: */ | 
|---|
| 441 | pe_temp = p_edges; | 
|---|
| 442 | while (pe_temp) { | 
|---|
| 443 | if (pe_temp->is_active && (pe_temp->position == BOUNDARY)) | 
|---|
| 444 | break; | 
|---|
| 445 | pe_temp = pe_temp->next; | 
|---|
| 446 | } | 
|---|
| 447 | if (!pe_temp) | 
|---|
| 448 | *contr_isclosed = TRUE;     /* No more contours on boundary. */ | 
|---|
| 449 | else { | 
|---|
| 450 | /*printf("<gen_one_contour> contr_isclosed FALSE return \n");*/ | 
|---|
| 451 | return trace_contour(pe_temp, z_level, num_active, *contr_isclosed); | 
|---|
| 452 | } | 
|---|
| 453 | } | 
|---|
| 454 | if (*contr_isclosed) { | 
|---|
| 455 | /* Look for something to start with inside: */ | 
|---|
| 456 | /*printf("<gen_one_contour> contr_isclosed TRUE \n");*/ | 
|---|
| 457 | pe_temp = p_edges; | 
|---|
| 458 | while (pe_temp) { | 
|---|
| 459 | if (pe_temp->is_active && (pe_temp->position != BOUNDARY)) | 
|---|
| 460 | break; | 
|---|
| 461 | pe_temp = pe_temp->next; | 
|---|
| 462 | } | 
|---|
| 463 | if (!pe_temp) { | 
|---|
| 464 | *num_active = 0; | 
|---|
| 465 | fprintf(stderr, "gen_one_contour: no contour found\n"); | 
|---|
| 466 | return NULL; | 
|---|
| 467 | } else { | 
|---|
| 468 | *contr_isclosed = TRUE; | 
|---|
| 469 | return trace_contour(pe_temp, z_level, num_active, *contr_isclosed); | 
|---|
| 470 | } | 
|---|
| 471 | } | 
|---|
| 472 | printf("<gen_one_contour> We should never be here, but lint... \n"); | 
|---|
| 473 | return NULL;                /* We should never be here, but lint... */ | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | /* | 
|---|
| 477 | * Search the data base along a contour starts at the edge pe_start until | 
|---|
| 478 | * a boundary edge is detected or until we close the loop back to pe_start. | 
|---|
| 479 | * Returns a linked list of all the points on the contour | 
|---|
| 480 | * Also decreases num_active by the number of points on contour. | 
|---|
| 481 | */ | 
|---|
| 482 | static struct cntr_struct * | 
|---|
| 483 | trace_contour(pe_start, z_level, num_active, contr_isclosed) | 
|---|
| 484 | struct edge_struct *pe_start; /* edge to start contour input */ | 
|---|
| 485 | double z_level;             /* Z level of contour input */ | 
|---|
| 486 | int *num_active;            /* number of active edges in/out */ | 
|---|
| 487 | TBOOLEAN contr_isclosed;    /* open or closed contour line (input) */ | 
|---|
| 488 | { | 
|---|
| 489 | struct cntr_struct *p_cntr, *pc_tail; | 
|---|
| 490 | struct edge_struct *p_edge, *p_next_edge; | 
|---|
| 491 | struct poly_struct *p_poly, *PLastpoly = NULL; | 
|---|
| 492 | int i; | 
|---|
| 493 |  | 
|---|
| 494 | p_edge = pe_start;          /* first edge to start contour */ | 
|---|
| 495 |  | 
|---|
| 496 | /* Generate the header of the contour - the point on pe_start. */ | 
|---|
| 497 | if (! contr_isclosed) { | 
|---|
| 498 | pe_start->is_active = FALSE; | 
|---|
| 499 | (*num_active)--; | 
|---|
| 500 | } | 
|---|
| 501 | if (p_edge->poly[0] || p_edge->poly[1]) {   /* more than one point */ | 
|---|
| 502 |  | 
|---|
| 503 | p_cntr = pc_tail = update_cntr_pt(pe_start, z_level);   /* first point */ | 
|---|
| 504 |  | 
|---|
| 505 | do { | 
|---|
| 506 | /* Find polygon to continue (Not where we came from - PLastpoly): */ | 
|---|
| 507 | if (p_edge->poly[0] == PLastpoly) | 
|---|
| 508 | p_poly = p_edge->poly[1]; | 
|---|
| 509 | else | 
|---|
| 510 | p_poly = p_edge->poly[0]; | 
|---|
| 511 | p_next_edge = NULL; /* In case of error, remains NULL. */ | 
|---|
| 512 | for (i = 0; i < 3; i++)     /* Test the 3 edges of the polygon: */ | 
|---|
| 513 | if (p_poly->edge[i] != p_edge) | 
|---|
| 514 | if (p_poly->edge[i]->is_active) | 
|---|
| 515 | p_next_edge = p_poly->edge[i]; | 
|---|
| 516 | if (!p_next_edge) { /* Error exit */ | 
|---|
| 517 | pc_tail->next = NULL; | 
|---|
| 518 | free_contour(p_cntr); | 
|---|
| 519 | fprintf(stderr, "trace_contour: unexpected end of contour\n"); | 
|---|
| 520 | return NULL; | 
|---|
| 521 | } | 
|---|
| 522 | p_edge = p_next_edge; | 
|---|
| 523 | PLastpoly = p_poly; | 
|---|
| 524 | p_edge->is_active = FALSE; | 
|---|
| 525 | (*num_active)--; | 
|---|
| 526 |  | 
|---|
| 527 | /* Do not allocate contour points on diagonal edges */ | 
|---|
| 528 | if (p_edge->position != DIAGONAL) { | 
|---|
| 529 |  | 
|---|
| 530 | pc_tail->next = update_cntr_pt(p_edge, z_level); | 
|---|
| 531 |  | 
|---|
| 532 | /* Remove nearby points */ | 
|---|
| 533 | if (fuzzy_equal(pc_tail, pc_tail->next)) { | 
|---|
| 534 |  | 
|---|
| 535 | free((char *) pc_tail->next); | 
|---|
| 536 | } else | 
|---|
| 537 | pc_tail = pc_tail->next; | 
|---|
| 538 | } | 
|---|
| 539 | } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY)); | 
|---|
| 540 |  | 
|---|
| 541 | pc_tail->next = NULL; | 
|---|
| 542 |  | 
|---|
| 543 | /* For closed contour the first and last point should be equal */ | 
|---|
| 544 | if (pe_start == p_edge) { | 
|---|
| 545 | (p_cntr->X) = (pc_tail->X); | 
|---|
| 546 | (p_cntr->Y) = (pc_tail->Y); | 
|---|
| 547 | } | 
|---|
| 548 | } else {                    /* only one point, forget it */ | 
|---|
| 549 | p_cntr = NULL; | 
|---|
| 550 | } | 
|---|
| 551 |  | 
|---|
| 552 | return p_cntr; | 
|---|
| 553 | } | 
|---|
| 554 |  | 
|---|
| 555 | /* | 
|---|
| 556 | * Allocates one contour location and update it to to correct position | 
|---|
| 557 | * according to z_level and edge p_edge. | 
|---|
| 558 | */ | 
|---|
| 559 | static struct cntr_struct * | 
|---|
| 560 | update_cntr_pt(p_edge, z_level) | 
|---|
| 561 | struct edge_struct *p_edge; | 
|---|
| 562 | double z_level; | 
|---|
| 563 | { | 
|---|
| 564 | double t; | 
|---|
| 565 | struct cntr_struct *p_cntr; | 
|---|
| 566 |  | 
|---|
| 567 | t = (z_level - p_edge->vertex[0]->z) / | 
|---|
| 568 | (p_edge->vertex[1]->z - p_edge->vertex[0]->z); | 
|---|
| 569 |  | 
|---|
| 570 | /* test if t is out of interval [0:1] (should not happen but who knows ...) */ | 
|---|
| 571 | /*if(t>1) printf(" <update_cntr_pt> t >1 !\n");*/ | 
|---|
| 572 | /*if(t<0) printf(" <update_cntr_pt> t negatif !\n");*/ | 
|---|
| 573 | t = (t < 0.0 ? 0.0 : t); | 
|---|
| 574 | t = (t > 1.0 ? 1.0 : t); | 
|---|
| 575 | /*printf(" <update_cntr_pt> Point 0 %g %g %g \n",p_edge->vertex[0]->x,p_edge->vertex[0]->y,p_edge->vertex[0]->z);*/ | 
|---|
| 576 | /*printf(" <update_cntr_pt> Point 1 %g %g %g \n",p_edge->vertex[1]->x,p_edge->vertex[1]->y,p_edge->vertex[1]->z);*/ | 
|---|
| 577 | p_cntr = (struct cntr_struct *) | 
|---|
| 578 | gp_alloc(sizeof(struct cntr_struct), "contour cntr_struct"); | 
|---|
| 579 |  | 
|---|
| 580 | p_cntr->X = p_edge->vertex[1]->x * t + | 
|---|
| 581 | p_edge->vertex[0]->x * (1 - t); | 
|---|
| 582 | p_cntr->Y = p_edge->vertex[1]->y * t + | 
|---|
| 583 | p_edge->vertex[0]->y * (1 - t); | 
|---|
| 584 | /*printf(" <update_cntr_pt> p_cntr X %g Y %g \n",p_cntr->X,p_cntr->Y);*/ | 
|---|
| 585 | return p_cntr; | 
|---|
| 586 | } | 
|---|
| 587 |  | 
|---|
| 588 | /* Simple routine to decide if two contour points are equal by | 
|---|
| 589 | * calculating the relative error (< EPSILON).  */ | 
|---|
| 590 | /* HBB 20010121: don't use absolute value 'zero' to compare to data | 
|---|
| 591 | * values. */ | 
|---|
| 592 | static int | 
|---|
| 593 | fuzzy_equal(p_cntr1, p_cntr2) | 
|---|
| 594 | struct cntr_struct *p_cntr1, *p_cntr2; | 
|---|
| 595 | { | 
|---|
| 596 | double unit_x, unit_y; | 
|---|
| 597 | unit_x = fabs(x_max - x_min);               /* reference */ | 
|---|
| 598 | unit_y = fabs(y_max - y_min); | 
|---|
| 599 | return ((fabs(p_cntr1->X - p_cntr2->X) < unit_x * EPSILON) | 
|---|
| 600 | && (fabs(p_cntr1->Y - p_cntr2->Y) < unit_y * EPSILON)); | 
|---|
| 601 | } | 
|---|
| 602 |  | 
|---|
| 603 | /* | 
|---|
| 604 | * Generate the triangles. | 
|---|
| 605 | * Returns the lists (edges & polys) via pointers to their heads. | 
|---|
| 606 | */ | 
|---|
| 607 | static void | 
|---|
| 608 | gen_triangle(num_isolines, iso_lines, p_polys, p_edges) | 
|---|
| 609 | int num_isolines;               /* number of iso-lines input */ | 
|---|
| 610 | struct iso_curve *iso_lines;    /* iso-lines input */ | 
|---|
| 611 | struct poly_struct **p_polys;   /* list of polygons output */ | 
|---|
| 612 | struct edge_struct **p_edges;   /* list of edges output */ | 
|---|
| 613 | { | 
|---|
| 614 | int i, j, grid_x_max = iso_lines->p_count; | 
|---|
| 615 | struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail, | 
|---|
| 616 | *pe_tail2, *pe_temp; | 
|---|
| 617 | struct poly_struct *pp_tail, *lower_tri, *upper_tri; | 
|---|
| 618 | /* HBB 980308: need to tag *each* of them as ! */ | 
|---|
| 619 | struct coordinate  *p_vrtx1,  * p_vrtx2; | 
|---|
| 620 |  | 
|---|
| 621 | (*p_polys) = pp_tail = NULL;        /* clear lists */ | 
|---|
| 622 | (*p_edges) = pe_tail = NULL; | 
|---|
| 623 |  | 
|---|
| 624 | p_vrtx1 = iso_lines->points;        /* first row of vertices */ | 
|---|
| 625 | p_edge1 = pe_tail = NULL;   /* clear list of edges */ | 
|---|
| 626 |  | 
|---|
| 627 | /* Generate edges of first row */ | 
|---|
| 628 | for (j = 0; j < grid_x_max - 1; j++) | 
|---|
| 629 | add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail); | 
|---|
| 630 |  | 
|---|
| 631 | (*p_edges) = p_edge1;       /* update main list */ | 
|---|
| 632 |  | 
|---|
| 633 |  | 
|---|
| 634 | /* | 
|---|
| 635 | * Combines vertices to edges and edges to triangles: | 
|---|
| 636 | * ================================================== | 
|---|
| 637 | * The edges are stored in the edge list, referenced by p_edges | 
|---|
| 638 | * (pe_tail points on last edge). | 
|---|
| 639 | * | 
|---|
| 640 | * Temporary pointers: | 
|---|
| 641 | * 1. p_edge2: Top horizontal edge list:      +-----------------------+ 2 | 
|---|
| 642 | * 2. p_tail : end of middle edge list:       |\  |\  |\  |\  |\  |\  | | 
|---|
| 643 | *                                            |  \|  \|  \|  \|  \|  \| | 
|---|
| 644 | * 3. p_edge1: Bottom horizontal edge list:   +-----------------------+ 1 | 
|---|
| 645 | * | 
|---|
| 646 | * pe_tail2  : end of list beginning at p_edge2 | 
|---|
| 647 | * pe_temp   : position inside list beginning at p_edge1 | 
|---|
| 648 | * p_edges   : head of the master edge list (part of our output) | 
|---|
| 649 | * p_vrtx1   : start of lower row of input vertices | 
|---|
| 650 | * p_vrtx2   : start of higher row of input vertices | 
|---|
| 651 | * | 
|---|
| 652 | * The routine generates two triangle            Lower      Upper 1 | 
|---|
| 653 | * upper one and lower one:                     | \           ---- | 
|---|
| 654 | * (Nums. are edges order in polys)            0|   \1       0\   |2 | 
|---|
| 655 | * The polygons are stored in the polygon        ----           \ | | 
|---|
| 656 | * list (*p_polys) (pp_tail points on             2 | 
|---|
| 657 | * last polygon). | 
|---|
| 658 | *                                                        1 | 
|---|
| 659 | *                                                   ----------- | 
|---|
| 660 | * In addition, the edge lists are updated -        | \   0     | | 
|---|
| 661 | * each edge has two pointers on the two            |   \       | | 
|---|
| 662 | * (one active if boundary) polygons which         0|1   0\1   0|1 | 
|---|
| 663 | * uses it. These two pointer to polygons           |       \   | | 
|---|
| 664 | * are named: poly[0], poly[1]. The diagram         |    1    \ | | 
|---|
| 665 | * on the right show how they are used for the       ----------- | 
|---|
| 666 | * upper and lower polygons (INNER_MESH polygons only).  0 | 
|---|
| 667 | */ | 
|---|
| 668 |  | 
|---|
| 669 | for (i = 1; i < num_isolines; i++) { | 
|---|
| 670 | /* Read next column and gen. polys. */ | 
|---|
| 671 | iso_lines = iso_lines->next; | 
|---|
| 672 |  | 
|---|
| 673 | p_vrtx2 = iso_lines->points;    /* next row of vertices */ | 
|---|
| 674 | p_edge2 = pe_tail2 = NULL;      /* clear top horizontal list */ | 
|---|
| 675 | pe_temp = p_edge1;      /* pointer in bottom list */ | 
|---|
| 676 |  | 
|---|
| 677 | /* | 
|---|
| 678 | * Generate edges and triagles for next row: | 
|---|
| 679 | */ | 
|---|
| 680 |  | 
|---|
| 681 | /* generate first vertical edge */ | 
|---|
| 682 | edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail); | 
|---|
| 683 |  | 
|---|
| 684 | for (j = 0; j < grid_x_max - 1; j++) { | 
|---|
| 685 |  | 
|---|
| 686 | /* copy vertical edge for lower triangle */ | 
|---|
| 687 | edge0 = edge2; | 
|---|
| 688 |  | 
|---|
| 689 | if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) { | 
|---|
| 690 | /* test lower edge */ | 
|---|
| 691 | edge2 = pe_temp; | 
|---|
| 692 | pe_temp = pe_temp->next; | 
|---|
| 693 | } else { | 
|---|
| 694 | edge2 = NULL;   /* edge is undefined */ | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 | /* generate diagonal edge */ | 
|---|
| 698 | edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail); | 
|---|
| 699 | if (edge1) | 
|---|
| 700 | edge1->position = DIAGONAL; | 
|---|
| 701 |  | 
|---|
| 702 | /* generate lower triangle */ | 
|---|
| 703 | lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail); | 
|---|
| 704 |  | 
|---|
| 705 | /* copy diagonal edge for upper triangle */ | 
|---|
| 706 | edge0 = edge1; | 
|---|
| 707 |  | 
|---|
| 708 | /* generate upper edge */ | 
|---|
| 709 | edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2); | 
|---|
| 710 |  | 
|---|
| 711 | /* generate vertical edge */ | 
|---|
| 712 | edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail); | 
|---|
| 713 |  | 
|---|
| 714 | /* generate upper triangle */ | 
|---|
| 715 | upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail); | 
|---|
| 716 | } | 
|---|
| 717 |  | 
|---|
| 718 | if (p_edge2) { | 
|---|
| 719 | /* HBB 19991130 bugfix: if p_edge2 list is empty, | 
|---|
| 720 | * don't change p_edges list! Crashes by access | 
|---|
| 721 | * to NULL pointer pe_tail, the second time through, | 
|---|
| 722 | * otherwise */ | 
|---|
| 723 | if ((*p_edges)) {   /* Chain new edges to main list. */ | 
|---|
| 724 | pe_tail->next = p_edge2; | 
|---|
| 725 | pe_tail = pe_tail2; | 
|---|
| 726 | } else { | 
|---|
| 727 | (*p_edges) = p_edge2; | 
|---|
| 728 | pe_tail = pe_tail2; | 
|---|
| 729 | } | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | /* this row finished, move list heads up one row: */ | 
|---|
| 733 | p_edge1 = p_edge2; | 
|---|
| 734 | p_vrtx1 = p_vrtx2; | 
|---|
| 735 | } | 
|---|
| 736 |  | 
|---|
| 737 | /* Update the boundary flag, saved in each edge, and update indexes: */ | 
|---|
| 738 |  | 
|---|
| 739 | pe_temp = (*p_edges); | 
|---|
| 740 |  | 
|---|
| 741 | while (pe_temp) { | 
|---|
| 742 | if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1]))) | 
|---|
| 743 | (pe_temp->position) = BOUNDARY; | 
|---|
| 744 | pe_temp = pe_temp->next; | 
|---|
| 745 | } | 
|---|
| 746 | } | 
|---|
| 747 |  | 
|---|
| 748 | /* | 
|---|
| 749 | * Calculate minimum and maximum values | 
|---|
| 750 | */ | 
|---|
| 751 | static void | 
|---|
| 752 | calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max) | 
|---|
| 753 | int num_isolines;           /* number of iso-lines input */ | 
|---|
| 754 | struct iso_curve *iso_lines; /* iso-lines input */ | 
|---|
| 755 | double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */ | 
|---|
| 756 | { | 
|---|
| 757 | int i, j, grid_x_max; | 
|---|
| 758 | struct coordinate  *vertex; | 
|---|
| 759 | /*printf("<calc_min_max> :  iso_lines->p_count %ld \n",iso_lines->p_count);*/ | 
|---|
| 760 | grid_x_max = iso_lines->p_count;    /* number of vertices per iso_line */ | 
|---|
| 761 |  | 
|---|
| 762 | (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE;      /* clear min/max values */ | 
|---|
| 763 | (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE; | 
|---|
| 764 | /*printf(" <calc_min_max> %d \n",num_isolines);*/ | 
|---|
| 765 | for (j = 0; j < num_isolines; j++) { | 
|---|
| 766 | /*printf(" <calc_min_max> iso_lines %lx %lx %d min %g max %g\n",      */ | 
|---|
| 767 | /*       iso_lines,iso_lines->points,grid_x_max,(*zz_min),(*zz_max)); */ | 
|---|
| 768 | vertex = iso_lines->points; | 
|---|
| 769 |  | 
|---|
| 770 | for (i = 0; i < grid_x_max; i++) { | 
|---|
| 771 | if (vertex[i].type != UNDEFINED) { | 
|---|
| 772 | if (vertex[i].x > (*xx_max)) | 
|---|
| 773 | (*xx_max) = vertex[i].x; | 
|---|
| 774 | if (vertex[i].y > (*yy_max)) | 
|---|
| 775 | (*yy_max) = vertex[i].y; | 
|---|
| 776 | if (vertex[i].z > (*zz_max)) | 
|---|
| 777 | (*zz_max) = vertex[i].z; | 
|---|
| 778 | if (vertex[i].x < (*xx_min)) | 
|---|
| 779 | (*xx_min) = vertex[i].x; | 
|---|
| 780 | if (vertex[i].y < (*yy_min)) | 
|---|
| 781 | (*yy_min) = vertex[i].y; | 
|---|
| 782 | if (vertex[i].z < (*zz_min)) | 
|---|
| 783 | (*zz_min) = vertex[i].z; | 
|---|
| 784 |  | 
|---|
| 785 | } | 
|---|
| 786 | } | 
|---|
| 787 | iso_lines = iso_lines->next; | 
|---|
| 788 | /*printf(" End of loop calc_min_max %d \n", j);*/ | 
|---|
| 789 | } | 
|---|
| 790 | /* HBB 20000426: this code didn't take into account that axes might | 
|---|
| 791 | * be logscaled... */ | 
|---|
| 792 | #if 0 | 
|---|
| 793 | /* HBB 20001220: DON'T. The values are actually already stored | 
|---|
| 794 | * logarithmized, as should be! */ | 
|---|
| 795 | axis_unlog_interval(FIRST_X_AXIS, xx_min, xx_max, 0); | 
|---|
| 796 | axis_unlog_interval(FIRST_Y_AXIS, yy_min, yy_max, 0); | 
|---|
| 797 | axis_unlog_interval(FIRST_Z_AXIS, zz_min, zz_max, 0); | 
|---|
| 798 | #endif | 
|---|
| 799 |  | 
|---|
| 800 | /* | 
|---|
| 801 | * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max)); | 
|---|
| 802 | * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max)); | 
|---|
| 803 | * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max)); | 
|---|
| 804 | */ | 
|---|
| 805 | } | 
|---|
| 806 |  | 
|---|
| 807 | /* | 
|---|
| 808 | * Generate new edge and append it to list, but only if both vertices are | 
|---|
| 809 | * defined. The list is referenced by p_edge and pe_tail (p_edge points on | 
|---|
| 810 | * first edge and pe_tail on last one). | 
|---|
| 811 | * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit. | 
|---|
| 812 | */ | 
|---|
| 813 | static struct edge_struct * | 
|---|
| 814 | add_edge(point0, point1, p_edge, pe_tail) | 
|---|
| 815 | struct coordinate  *point0;     /* 2 vertices input */ | 
|---|
| 816 | struct coordinate  *point1; | 
|---|
| 817 | struct edge_struct **p_edge, **pe_tail;         /* pointers to edge list in/out */ | 
|---|
| 818 | { | 
|---|
| 819 | struct edge_struct *pe_temp = NULL; | 
|---|
| 820 |  | 
|---|
| 821 | #if 1 | 
|---|
| 822 | if (point0->type == INRANGE && point1->type == INRANGE) { | 
|---|
| 823 | #else | 
|---|
| 824 | if (point0->type != UNDEFINED && point1->type != UNDEFINED) { | 
|---|
| 825 | #endif | 
|---|
| 826 |  | 
|---|
| 827 | pe_temp = (struct edge_struct *) | 
|---|
| 828 | gp_alloc(sizeof(struct edge_struct), "contour edge"); | 
|---|
| 829 |  | 
|---|
| 830 | pe_temp->poly[0] = NULL;        /* clear links           */ | 
|---|
| 831 | pe_temp->poly[1] = NULL; | 
|---|
| 832 | pe_temp->vertex[0] = point0;    /* First vertex of edge. */ | 
|---|
| 833 | pe_temp->vertex[1] = point1;    /* Second vertex of edge. */ | 
|---|
| 834 | pe_temp->next = NULL; | 
|---|
| 835 | pe_temp->position = INNER_MESH;         /* default position in mesh */ | 
|---|
| 836 |  | 
|---|
| 837 | if ((*pe_tail)) { | 
|---|
| 838 | (*pe_tail)->next = pe_temp;         /* Stick new record as last one. */ | 
|---|
| 839 | } else { | 
|---|
| 840 | (*p_edge) = pe_temp;        /* start new list if empty */ | 
|---|
| 841 | } | 
|---|
| 842 | (*pe_tail) = pe_temp;   /* continue to last record. */ | 
|---|
| 843 |  | 
|---|
| 844 | } | 
|---|
| 845 | return pe_temp;             /* returns NULL, if no edge allocated */ | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | /* | 
|---|
| 849 | * Generate new triangle and append it to list, but only if all edges are defined. | 
|---|
| 850 | * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon | 
|---|
| 851 | * and pp_tail on last one). | 
|---|
| 852 | * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit. | 
|---|
| 853 | */ | 
|---|
| 854 | static struct poly_struct * | 
|---|
| 855 | add_poly(edge0, edge1, edge2, p_poly, pp_tail) | 
|---|
| 856 | struct edge_struct *edge0, *edge1, *edge2;  /* 3 edges input */ | 
|---|
| 857 | struct poly_struct **p_poly, **pp_tail;             /* pointers to polygon list in/out */ | 
|---|
| 858 | { | 
|---|
| 859 | struct poly_struct *pp_temp = NULL; | 
|---|
| 860 |  | 
|---|
| 861 | if (edge0 && edge1 && edge2) { | 
|---|
| 862 |  | 
|---|
| 863 | pp_temp = (struct poly_struct *) | 
|---|
| 864 | gp_alloc(sizeof(struct poly_struct), "contour polygon"); | 
|---|
| 865 |  | 
|---|
| 866 | pp_temp->edge[0] = edge0;       /* First edge of triangle */ | 
|---|
| 867 | pp_temp->edge[1] = edge1;       /* Second one             */ | 
|---|
| 868 | pp_temp->edge[2] = edge2;       /* Third one              */ | 
|---|
| 869 | pp_temp->next = NULL; | 
|---|
| 870 |  | 
|---|
| 871 | if (edge0->poly[0])     /* update edge0 */ | 
|---|
| 872 | edge0->poly[1] = pp_temp; | 
|---|
| 873 | else | 
|---|
| 874 | edge0->poly[0] = pp_temp; | 
|---|
| 875 |  | 
|---|
| 876 | if (edge1->poly[0])     /* update edge1 */ | 
|---|
| 877 | edge1->poly[1] = pp_temp; | 
|---|
| 878 | else | 
|---|
| 879 | edge1->poly[0] = pp_temp; | 
|---|
| 880 |  | 
|---|
| 881 | if (edge2->poly[0])     /* update edge2 */ | 
|---|
| 882 | edge2->poly[1] = pp_temp; | 
|---|
| 883 | else | 
|---|
| 884 | edge2->poly[0] = pp_temp; | 
|---|
| 885 |  | 
|---|
| 886 | if ((*pp_tail))         /* Stick new record as last one. */ | 
|---|
| 887 | (*pp_tail)->next = pp_temp; | 
|---|
| 888 | else | 
|---|
| 889 | (*p_poly) = pp_temp;        /* start new list if empty */ | 
|---|
| 890 |  | 
|---|
| 891 | (*pp_tail) = pp_temp;   /* continue to last record. */ | 
|---|
| 892 |  | 
|---|
| 893 | } | 
|---|
| 894 | return pp_temp;             /* returns NULL, if no edge allocated */ | 
|---|
| 895 | } | 
|---|
| 896 |  | 
|---|
| 897 |  | 
|---|
| 898 |  | 
|---|
| 899 | /* | 
|---|
| 900 | * Calls the (hopefully) desired interpolation/approximation routine. | 
|---|
| 901 | */ | 
|---|
| 902 | static void | 
|---|
| 903 | put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed) | 
|---|
| 904 | struct cntr_struct *p_cntr; /* contour structure input */ | 
|---|
| 905 | double z_level;             /* Z level of contour input */ | 
|---|
| 906 | double xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */ | 
|---|
| 907 | TBOOLEAN contr_isclosed;            /* contour line closed? (input) */ | 
|---|
| 908 | { | 
|---|
| 909 |  | 
|---|
| 910 | if (!p_cntr) | 
|---|
| 911 | return;                 /* Nothing to do if it is empty contour. */ | 
|---|
| 912 |  | 
|---|
| 913 | switch (interp_kind) { | 
|---|
| 914 | case CONTOUR_KIND_LINEAR:   /* No interpolation/approximation. */ | 
|---|
| 915 | put_contour_nothing(p_cntr); | 
|---|
| 916 | break; | 
|---|
| 917 | case CONTOUR_KIND_CUBIC_SPL: /* Cubic spline interpolation. */ | 
|---|
| 918 | put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, | 
|---|
| 919 | chk_contour_kind(p_cntr, contr_isclosed)); | 
|---|
| 920 |  | 
|---|
| 921 | break; | 
|---|
| 922 | case CONTOUR_KIND_BSPLINE:  /* Bspline approximation. */ | 
|---|
| 923 | put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, | 
|---|
| 924 | chk_contour_kind(p_cntr, contr_isclosed)); | 
|---|
| 925 | break; | 
|---|
| 926 | } | 
|---|
| 927 | free_contour(p_cntr); | 
|---|
| 928 | } | 
|---|
| 929 |  | 
|---|
| 930 | /* | 
|---|
| 931 | * Simply puts contour coordinates in order with no interpolation or | 
|---|
| 932 | * approximation. | 
|---|
| 933 | */ | 
|---|
| 934 | static void | 
|---|
| 935 | put_contour_nothing(p_cntr) | 
|---|
| 936 | struct cntr_struct *p_cntr; | 
|---|
| 937 | { | 
|---|
| 938 | while (p_cntr) { | 
|---|
| 939 | add_cntr_point(p_cntr->X, p_cntr->Y); | 
|---|
| 940 | p_cntr = p_cntr->next; | 
|---|
| 941 | } | 
|---|
| 942 | end_crnt_cntr(); | 
|---|
| 943 | } | 
|---|
| 944 |  | 
|---|
| 945 | /* | 
|---|
| 946 | * for some reason contours are never flagged as 'isclosed' | 
|---|
| 947 | * if first point == last point, set flag accordingly | 
|---|
| 948 | * | 
|---|
| 949 | */ | 
|---|
| 950 |  | 
|---|
| 951 | static int | 
|---|
| 952 | chk_contour_kind(p_cntr, contr_isclosed) | 
|---|
| 953 | struct cntr_struct *p_cntr; | 
|---|
| 954 | TBOOLEAN contr_isclosed; | 
|---|
| 955 | { | 
|---|
| 956 | struct cntr_struct *pc_tail = NULL; | 
|---|
| 957 | TBOOLEAN current_contr_isclosed; | 
|---|
| 958 |  | 
|---|
| 959 | /*fprintf(stderr, "check_contour_kind: current contour_kind value is %d\n", contour_kind);*/ | 
|---|
| 960 |  | 
|---|
| 961 | current_contr_isclosed = contr_isclosed; | 
|---|
| 962 |  | 
|---|
| 963 | if (! contr_isclosed) { | 
|---|
| 964 | pc_tail = p_cntr; | 
|---|
| 965 | while (pc_tail->next) | 
|---|
| 966 | pc_tail = pc_tail->next;    /* Find last point. */ | 
|---|
| 967 |  | 
|---|
| 968 | /* test if first and last point are equal */ | 
|---|
| 969 | if (fuzzy_equal(pc_tail, p_cntr)) { | 
|---|
| 970 | current_contr_isclosed = TRUE; | 
|---|
| 971 | fprintf(stderr, "check_contour_kind: contr_isclosed changed to %d\n", current_contr_isclosed); | 
|---|
| 972 | } | 
|---|
| 973 | } | 
|---|
| 974 | return (current_contr_isclosed); | 
|---|
| 975 | } | 
|---|
| 976 |  | 
|---|
| 977 | /* | 
|---|
| 978 | * Generate a cubic spline curve through the points (x_i,y_i) which are | 
|---|
| 979 | * stored in the linked list p_cntr. | 
|---|
| 980 | * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the | 
|---|
| 981 | * parameter t is the length of the linear stroke. | 
|---|
| 982 | */ | 
|---|
| 983 | static void | 
|---|
| 984 | put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed) | 
|---|
| 985 | struct cntr_struct *p_cntr; | 
|---|
| 986 | double z_level, xx_min, xx_max, yy_min, yy_max; | 
|---|
| 987 | TBOOLEAN contr_isclosed; | 
|---|
| 988 | { | 
|---|
| 989 | int num_pts, num_intpol; | 
|---|
| 990 | double unit_x, unit_y;      /* To define norm (x,y)-plane */ | 
|---|
| 991 | double *delta_t;            /* Interval length t_{i+1}-t_i */ | 
|---|
| 992 | double *d2x, *d2y;          /* Second derivatives x''(t_i), y''(t_i) */ | 
|---|
| 993 | struct cntr_struct *pc_tail; | 
|---|
| 994 |  | 
|---|
| 995 | num_pts = count_contour(p_cntr);    /* Number of points in contour. */ | 
|---|
| 996 |  | 
|---|
| 997 | pc_tail = p_cntr;           /* Find last point. */ | 
|---|
| 998 | while (pc_tail->next) | 
|---|
| 999 | pc_tail = pc_tail->next; | 
|---|
| 1000 |  | 
|---|
| 1001 | if (contr_isclosed) { | 
|---|
| 1002 | /* Test if first and last point are equal (should be) */ | 
|---|
| 1003 | if (!fuzzy_equal(pc_tail, p_cntr)) { | 
|---|
| 1004 | pc_tail->next = p_cntr;     /* Close contour list - make it circular. */ | 
|---|
| 1005 | num_pts++; | 
|---|
| 1006 | } | 
|---|
| 1007 | } | 
|---|
| 1008 | delta_t = (double *) gp_alloc(num_pts * sizeof(double), "contour delta_t"); | 
|---|
| 1009 | d2x = (double *) gp_alloc(num_pts * sizeof(double), "contour d2x"); | 
|---|
| 1010 | d2y = (double *) gp_alloc(num_pts * sizeof(double), "contour d2y"); | 
|---|
| 1011 |  | 
|---|
| 1012 | /* Width and height of the grid is used as a unit length (2d-norm) */ | 
|---|
| 1013 | unit_x = xx_max - x_min; | 
|---|
| 1014 | unit_y = yy_max - y_min; | 
|---|
| 1015 | /* FIXME HBB 20010121: 'zero' should not be used as an absolute | 
|---|
| 1016 | * figure to compare to data */ | 
|---|
| 1017 | unit_x = (unit_x > zero ? unit_x : zero);   /* should not be zero */ | 
|---|
| 1018 | unit_y = (unit_y > zero ? unit_y : zero); | 
|---|
| 1019 |  | 
|---|
| 1020 | if (num_pts > 2) { | 
|---|
| 1021 | /* | 
|---|
| 1022 | * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]: | 
|---|
| 1023 | */ | 
|---|
| 1024 | if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, | 
|---|
| 1025 | contr_isclosed, unit_x, unit_y)) { | 
|---|
| 1026 | free((char *) delta_t); | 
|---|
| 1027 | free((char *) d2x); | 
|---|
| 1028 | free((char *) d2y); | 
|---|
| 1029 | if (contr_isclosed) | 
|---|
| 1030 | pc_tail->next = NULL;   /* Un-circular list */ | 
|---|
| 1031 | return; | 
|---|
| 1032 | } | 
|---|
| 1033 | } | 
|---|
| 1034 | /* If following (num_pts > 1) is TRUE then exactly 2 points in contour.  */ | 
|---|
| 1035 | else if (num_pts > 1) { | 
|---|
| 1036 | /* set all second derivatives to zero, interval length to 1 */ | 
|---|
| 1037 | d2x[0] = 0.; | 
|---|
| 1038 | d2y[0] = 0.; | 
|---|
| 1039 | d2x[1] = 0.; | 
|---|
| 1040 | d2y[1] = 0.; | 
|---|
| 1041 | delta_t[0] = 1.; | 
|---|
| 1042 | } else {                    /* Only one point ( ?? ) - ignore it. */ | 
|---|
| 1043 | free((char *) delta_t); | 
|---|
| 1044 | free((char *) d2x); | 
|---|
| 1045 | free((char *) d2y); | 
|---|
| 1046 | if (contr_isclosed) | 
|---|
| 1047 | pc_tail->next = NULL;       /* Un-circular list */ | 
|---|
| 1048 | return; | 
|---|
| 1049 | } | 
|---|
| 1050 |  | 
|---|
| 1051 | /* Calculate "num_intpol" interpolated values */ | 
|---|
| 1052 | num_intpol = 1 + (num_pts - 1) * contour_pts;       /* global: contour_pts */ | 
|---|
| 1053 | intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol); | 
|---|
| 1054 |  | 
|---|
| 1055 | free((char *) delta_t); | 
|---|
| 1056 | free((char *) d2x); | 
|---|
| 1057 | free((char *) d2y); | 
|---|
| 1058 |  | 
|---|
| 1059 | if (contr_isclosed) | 
|---|
| 1060 | pc_tail->next = NULL;   /* Un-circular list */ | 
|---|
| 1061 |  | 
|---|
| 1062 | end_crnt_cntr(); | 
|---|
| 1063 | } | 
|---|
| 1064 |  | 
|---|
| 1065 |  | 
|---|
| 1066 | /* | 
|---|
| 1067 | * Find Bspline approximation for this data set. | 
|---|
| 1068 | * Uses global variable contour_pts to determine number of samples per | 
|---|
| 1069 | * interval, where the knot vector intervals are assumed to be uniform, and | 
|---|
| 1070 | * global variable contour_order for the order of Bspline to use. | 
|---|
| 1071 | */ | 
|---|
| 1072 | static void | 
|---|
| 1073 | put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_isclosed) | 
|---|
| 1074 | struct cntr_struct *p_cntr; | 
|---|
| 1075 | double z_level, xx_min, xx_max, yy_min, yy_max; | 
|---|
| 1076 | TBOOLEAN contr_isclosed; | 
|---|
| 1077 | { | 
|---|
| 1078 | int num_pts; | 
|---|
| 1079 | int order = contour_order - 1; | 
|---|
| 1080 |  | 
|---|
| 1081 | num_pts = count_contour(p_cntr);    /* Number of points in contour. */ | 
|---|
| 1082 | if (num_pts < 2) | 
|---|
| 1083 | return;                 /* Can't do nothing if empty or one points! */ | 
|---|
| 1084 | /* Order must be less than number of points in curve - fix it if needed. */ | 
|---|
| 1085 | if (order > num_pts - 1) | 
|---|
| 1086 | order = num_pts - 1; | 
|---|
| 1087 |  | 
|---|
| 1088 | gen_bspline_approx(p_cntr, num_pts, order, contr_isclosed); | 
|---|
| 1089 | end_crnt_cntr(); | 
|---|
| 1090 | } | 
|---|
| 1091 |  | 
|---|
| 1092 | /* | 
|---|
| 1093 | * Free all elements in the contour list. | 
|---|
| 1094 | */ | 
|---|
| 1095 | static void | 
|---|
| 1096 | free_contour(p_cntr) | 
|---|
| 1097 | struct cntr_struct *p_cntr; | 
|---|
| 1098 | { | 
|---|
| 1099 | struct cntr_struct *pc_temp; | 
|---|
| 1100 |  | 
|---|
| 1101 | while (p_cntr) { | 
|---|
| 1102 | pc_temp = p_cntr; | 
|---|
| 1103 | p_cntr = p_cntr->next; | 
|---|
| 1104 | free((char *) pc_temp); | 
|---|
| 1105 | } | 
|---|
| 1106 | } | 
|---|
| 1107 |  | 
|---|
| 1108 | /* | 
|---|
| 1109 | * Counts number of points in contour. | 
|---|
| 1110 | */ | 
|---|
| 1111 | static int | 
|---|
| 1112 | count_contour(p_cntr) | 
|---|
| 1113 | struct cntr_struct *p_cntr; | 
|---|
| 1114 | { | 
|---|
| 1115 | int count = 0; | 
|---|
| 1116 |  | 
|---|
| 1117 | while (p_cntr) { | 
|---|
| 1118 | count++; | 
|---|
| 1119 | p_cntr = p_cntr->next; | 
|---|
| 1120 | } | 
|---|
| 1121 | return count; | 
|---|
| 1122 | } | 
|---|
| 1123 |  | 
|---|
| 1124 | /* | 
|---|
| 1125 | * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation | 
|---|
| 1126 | * through list of points (x_i,y_i). The parameter t is calculated as the | 
|---|
| 1127 | * length of the linear stroke. The number of points must be at least 3. | 
|---|
| 1128 | * Note: For closed contours the first and last point must be equal. | 
|---|
| 1129 | */ | 
|---|
| 1130 | static int | 
|---|
| 1131 | gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_isclosed, unit_x, unit_y) | 
|---|
| 1132 | int num_pts;                    /* Number of points (num_pts>=3), input */ | 
|---|
| 1133 | struct cntr_struct *p_cntr;     /* List of points (x(t_i),y(t_i)), input */ | 
|---|
| 1134 | double d2x[], d2y[],            /* Second derivatives (x''(t_i),y''(t_i)), output */ | 
|---|
| 1135 | delta_t[];                     /* List of interval lengths t_{i+1}-t_{i}, output */ | 
|---|
| 1136 | TBOOLEAN contr_isclosed;        /* Closed or open contour?, input  */ | 
|---|
| 1137 | double unit_x, unit_y;          /* Unit length in x and y (norm=1), input */ | 
|---|
| 1138 | { | 
|---|
| 1139 | int n, i; | 
|---|
| 1140 | double norm; | 
|---|
| 1141 | tri_diag *m;                /* The tri-diagonal matrix is saved here. */ | 
|---|
| 1142 | struct cntr_struct *pc_temp; | 
|---|
| 1143 |  | 
|---|
| 1144 | m = (tri_diag *) gp_alloc(num_pts * sizeof(tri_diag), "contour tridiag m"); | 
|---|
| 1145 |  | 
|---|
| 1146 | /* | 
|---|
| 1147 | * Calculate first differences in (d2x[i], d2y[i]) and interval lengths | 
|---|
| 1148 | * in delta_t[i]: | 
|---|
| 1149 | */ | 
|---|
| 1150 | pc_temp = p_cntr; | 
|---|
| 1151 | for (i = 0; i < num_pts - 1; i++) { | 
|---|
| 1152 | d2x[i] = pc_temp->next->X - pc_temp->X; | 
|---|
| 1153 | d2y[i] = pc_temp->next->Y - pc_temp->Y; | 
|---|
| 1154 | /* | 
|---|
| 1155 | * The norm of a linear stroke is calculated in "normal coordinates" | 
|---|
| 1156 | * and used as interval length: | 
|---|
| 1157 | */ | 
|---|
| 1158 | delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)); | 
|---|
| 1159 |  | 
|---|
| 1160 | d2x[i] /= delta_t[i];   /* first difference, with unit norm: */ | 
|---|
| 1161 | d2y[i] /= delta_t[i];   /*   || (d2x[i], d2y[i]) || = 1      */ | 
|---|
| 1162 |  | 
|---|
| 1163 | pc_temp = pc_temp->next; | 
|---|
| 1164 | } | 
|---|
| 1165 |  | 
|---|
| 1166 | /* | 
|---|
| 1167 | * Setup linear system:  m * x = b | 
|---|
| 1168 | */ | 
|---|
| 1169 | n = num_pts - 2;            /* Without first and last point */ | 
|---|
| 1170 | if (contr_isclosed) { | 
|---|
| 1171 | /* First and last points must be equal for closed contours */ | 
|---|
| 1172 | delta_t[num_pts - 1] = delta_t[0]; | 
|---|
| 1173 | d2x[num_pts - 1] = d2x[0]; | 
|---|
| 1174 | d2y[num_pts - 1] = d2y[0]; | 
|---|
| 1175 | n++;                    /* Add last point (= first point) */ | 
|---|
| 1176 | } | 
|---|
| 1177 | for (i = 0; i < n; i++) { | 
|---|
| 1178 | /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */ | 
|---|
| 1179 | m[i][0] = delta_t[i];   /* Off-diagonal element M_{i,i-1} */ | 
|---|
| 1180 | m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]);   /* M_{i,i} */ | 
|---|
| 1181 | m[i][2] = delta_t[i + 1];       /* Off-diagonal element M_{i,i+1} */ | 
|---|
| 1182 |  | 
|---|
| 1183 | /* Right side b_x and b_y */ | 
|---|
| 1184 | d2x[i] = (d2x[i + 1] - d2x[i]) * 6.; | 
|---|
| 1185 | d2y[i] = (d2y[i + 1] - d2y[i]) * 6.; | 
|---|
| 1186 |  | 
|---|
| 1187 | /* | 
|---|
| 1188 | * If the linear stroke shows a cusps of more than 90 degree, the right | 
|---|
| 1189 | * side is reduced to avoid oscillations in the spline: | 
|---|
| 1190 | */ | 
|---|
| 1191 | norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5; | 
|---|
| 1192 |  | 
|---|
| 1193 | if (norm > 1.) { | 
|---|
| 1194 | d2x[i] /= norm; | 
|---|
| 1195 | d2y[i] /= norm; | 
|---|
| 1196 | /* The first derivative will not be continuous */ | 
|---|
| 1197 | } | 
|---|
| 1198 | } | 
|---|
| 1199 |  | 
|---|
| 1200 | if (!contr_isclosed) { | 
|---|
| 1201 | /* Third derivative is set to zero at both ends */ | 
|---|
| 1202 | m[0][1] += m[0][0];     /* M_{0,0}     */ | 
|---|
| 1203 | m[0][0] = 0.;           /* M_{0,n-1}   */ | 
|---|
| 1204 | m[n - 1][1] += m[n - 1][2];     /* M_{n-1,n-1} */ | 
|---|
| 1205 | m[n - 1][2] = 0.;       /* M_{n-1,0}   */ | 
|---|
| 1206 | } | 
|---|
| 1207 | /* Solve linear systems for d2x[] and d2y[] */ | 
|---|
| 1208 |  | 
|---|
| 1209 |  | 
|---|
| 1210 | if (solve_cubic_1(m, n)) {  /* Calculate Cholesky decomposition */ | 
|---|
| 1211 | solve_cubic_2(m, d2x, n);       /* solve M * d2x = b_x */ | 
|---|
| 1212 | solve_cubic_2(m, d2y, n);       /* solve M * d2y = b_y */ | 
|---|
| 1213 |  | 
|---|
| 1214 | } else {                    /* Should not happen, but who knows ... */ | 
|---|
| 1215 | free((char *) m); | 
|---|
| 1216 | return FALSE; | 
|---|
| 1217 | } | 
|---|
| 1218 |  | 
|---|
| 1219 | /* Shift all second derivatives one place right and abdate end points */ | 
|---|
| 1220 | for (i = n; i > 0; i--) { | 
|---|
| 1221 | d2x[i] = d2x[i - 1]; | 
|---|
| 1222 | d2y[i] = d2y[i - 1]; | 
|---|
| 1223 | } | 
|---|
| 1224 | if (contr_isclosed) { | 
|---|
| 1225 | d2x[0] = d2x[n]; | 
|---|
| 1226 | d2y[0] = d2y[n]; | 
|---|
| 1227 | } else { | 
|---|
| 1228 | d2x[0] = d2x[1];        /* Third derivative is zero in */ | 
|---|
| 1229 | d2y[0] = d2y[1];        /*     first and last interval */ | 
|---|
| 1230 | d2x[n + 1] = d2x[n]; | 
|---|
| 1231 | d2y[n + 1] = d2y[n]; | 
|---|
| 1232 | } | 
|---|
| 1233 |  | 
|---|
| 1234 | free((char *) m); | 
|---|
| 1235 | return TRUE; | 
|---|
| 1236 | } | 
|---|
| 1237 |  | 
|---|
| 1238 | /* | 
|---|
| 1239 | * Calculate interpolated values of the spline function (defined via p_cntr | 
|---|
| 1240 | * and the second derivatives d2x[] and d2y[]). The number of tabulated | 
|---|
| 1241 | * values is n. On an equidistant grid n_intpol values are calculated. | 
|---|
| 1242 | */ | 
|---|
| 1243 | static void | 
|---|
| 1244 | intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol) | 
|---|
| 1245 | int n; | 
|---|
| 1246 | struct cntr_struct *p_cntr; | 
|---|
| 1247 | double d2x[], d2y[], delta_t[]; | 
|---|
| 1248 | int n_intpol; | 
|---|
| 1249 | { | 
|---|
| 1250 | double t, t_skip, t_max; | 
|---|
| 1251 | double x0, x1, x, y0, y1, y; | 
|---|
| 1252 | double d, hx, dx0, dx01, hy, dy0, dy01; | 
|---|
| 1253 | int i; | 
|---|
| 1254 |  | 
|---|
| 1255 | /* The length of the total interval */ | 
|---|
| 1256 | t_max = 0.; | 
|---|
| 1257 | for (i = 0; i < n - 1; i++) | 
|---|
| 1258 | t_max += delta_t[i]; | 
|---|
| 1259 |  | 
|---|
| 1260 | /* The distance between interpolated points */ | 
|---|
| 1261 | t_skip = (1. - 1e-7) * t_max / (n_intpol - 1); | 
|---|
| 1262 |  | 
|---|
| 1263 | t = 0.;                     /* Parameter value */ | 
|---|
| 1264 | x1 = p_cntr->X; | 
|---|
| 1265 | y1 = p_cntr->Y; | 
|---|
| 1266 | add_cntr_point(x1, y1);     /* First point. */ | 
|---|
| 1267 | t += t_skip; | 
|---|
| 1268 |  | 
|---|
| 1269 | for (i = 0; i < n - 1; i++) { | 
|---|
| 1270 | p_cntr = p_cntr->next; | 
|---|
| 1271 |  | 
|---|
| 1272 | d = delta_t[i];         /* Interval length */ | 
|---|
| 1273 | x0 = x1; | 
|---|
| 1274 | y0 = y1; | 
|---|
| 1275 | x1 = p_cntr->X; | 
|---|
| 1276 | y1 = p_cntr->Y; | 
|---|
| 1277 | hx = (x1 - x0) / d; | 
|---|
| 1278 | hy = (y1 - y0) / d; | 
|---|
| 1279 | dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.; | 
|---|
| 1280 | dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.; | 
|---|
| 1281 | dx01 = (d2x[i + 1] - d2x[i]) / (6. * d); | 
|---|
| 1282 | dy01 = (d2y[i + 1] - d2y[i]) / (6. * d); | 
|---|
| 1283 | while (t <= delta_t[i]) {       /* t in current interval ? */ | 
|---|
| 1284 | x = x0 + t * (hx + (t - d) * (dx0 + t * dx01)); | 
|---|
| 1285 | y = y0 + t * (hy + (t - d) * (dy0 + t * dy01)); | 
|---|
| 1286 | add_cntr_point(x, y);       /* next point. */ | 
|---|
| 1287 | t += t_skip; | 
|---|
| 1288 | } | 
|---|
| 1289 | t -= delta_t[i];        /* Parameter t relative to start of next interval */ | 
|---|
| 1290 | } | 
|---|
| 1291 | } | 
|---|
| 1292 |  | 
|---|
| 1293 | /* | 
|---|
| 1294 | * The following two procedures solve the special linear system which arise | 
|---|
| 1295 | * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the | 
|---|
| 1296 | * equations can be written as (i=0,1,...,n-1): | 
|---|
| 1297 | *     m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] . | 
|---|
| 1298 | * In matrix notation one gets M * x = b, where the matrix M is tridiagonal | 
|---|
| 1299 | * with additional elements in the upper right and lower left position: | 
|---|
| 1300 | *   m[i][0] = M_{i,i-1}  for i=1,2,...,n-1    and    m[0][0] = M_{0,n-1} , | 
|---|
| 1301 | *   m[i][1] = M_{i, i }  for i=0,1,...,n-1 | 
|---|
| 1302 | *   m[i][2] = M_{i,i+1}  for i=0,1,...,n-2    and    m[n-1][2] = M_{n-1,0}. | 
|---|
| 1303 | * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite. | 
|---|
| 1304 | * The size of the system is given in n (n>=1). | 
|---|
| 1305 | * | 
|---|
| 1306 | * In the first procedure the Cholesky decomposition M = C^T * D * C | 
|---|
| 1307 | * (C is upper triangle with unit diagonal, D is diagonal) is calculated. | 
|---|
| 1308 | * Return TRUE if decomposition exist. | 
|---|
| 1309 | */ | 
|---|
| 1310 | static int | 
|---|
| 1311 | solve_cubic_1(m, n) | 
|---|
| 1312 | tri_diag m[]; | 
|---|
| 1313 | int n; | 
|---|
| 1314 | { | 
|---|
| 1315 | int i; | 
|---|
| 1316 | double m_ij, m_n, m_nn, d; | 
|---|
| 1317 |  | 
|---|
| 1318 | if (n < 1) | 
|---|
| 1319 | return FALSE;           /* Dimension should be at least 1 */ | 
|---|
| 1320 |  | 
|---|
| 1321 | d = m[0][1];                /* D_{0,0} = M_{0,0} */ | 
|---|
| 1322 | if (d <= 0.) | 
|---|
| 1323 | return FALSE;           /* M (or D) should be positiv definite */ | 
|---|
| 1324 | m_n = m[0][0];              /*  M_{0,n-1}  */ | 
|---|
| 1325 | m_nn = m[n - 1][1];         /* M_{n-1,n-1} */ | 
|---|
| 1326 | for (i = 0; i < n - 2; i++) { | 
|---|
| 1327 | m_ij = m[i][2];         /*  M_{i,1}  */ | 
|---|
| 1328 | m[i][2] = m_ij / d;     /* C_{i,i+1} */ | 
|---|
| 1329 | m[i][0] = m_n / d;      /* C_{i,n-1} */ | 
|---|
| 1330 | m_nn -= m[i][0] * m_n;  /* to get C_{n-1,n-1} */ | 
|---|
| 1331 | m_n = -m[i][2] * m_n;   /* to get C_{i+1,n-1} */ | 
|---|
| 1332 | d = m[i + 1][1] - m[i][2] * m_ij;       /* D_{i+1,i+1} */ | 
|---|
| 1333 | if (d <= 0.) | 
|---|
| 1334 | return FALSE;       /* Elements of D should be positiv */ | 
|---|
| 1335 | m[i + 1][1] = d; | 
|---|
| 1336 | } | 
|---|
| 1337 | if (n >= 2) {               /* Complete last column */ | 
|---|
| 1338 | m_n += m[n - 2][2];     /* add M_{n-2,n-1} */ | 
|---|
| 1339 | m[n - 2][0] = m_n / d;  /* C_{n-2,n-1} */ | 
|---|
| 1340 | m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n;     /* D_{n-1,n-1} */ | 
|---|
| 1341 | if (d <= 0.) | 
|---|
| 1342 | return FALSE; | 
|---|
| 1343 | } | 
|---|
| 1344 | return TRUE; | 
|---|
| 1345 | } | 
|---|
| 1346 |  | 
|---|
| 1347 | /* | 
|---|
| 1348 | * The second procedure solves the linear system, with the Choleky | 
|---|
| 1349 | * decomposition calculated above (in m[][]) and the right side b given | 
|---|
| 1350 | * in x[]. The solution x overwrites the right side in x[]. | 
|---|
| 1351 | */ | 
|---|
| 1352 | static void | 
|---|
| 1353 | solve_cubic_2(m, x, n) | 
|---|
| 1354 | tri_diag m[]; | 
|---|
| 1355 | double x[]; | 
|---|
| 1356 | int n; | 
|---|
| 1357 | { | 
|---|
| 1358 | int i; | 
|---|
| 1359 | double x_n; | 
|---|
| 1360 |  | 
|---|
| 1361 | /* Division by transpose of C : b = C^{-T} * b */ | 
|---|
| 1362 | x_n = x[n - 1]; | 
|---|
| 1363 | for (i = 0; i < n - 2; i++) { | 
|---|
| 1364 | x[i + 1] -= m[i][2] * x[i];     /* C_{i,i+1} * x_{i} */ | 
|---|
| 1365 | x_n -= m[i][0] * x[i];  /* C_{i,n-1} * x_{i} */ | 
|---|
| 1366 | } | 
|---|
| 1367 | if (n >= 2) | 
|---|
| 1368 | x[n - 1] = x_n - m[n - 2][0] * x[n - 2];        /* C_{n-2,n-1} * x_{n-1} */ | 
|---|
| 1369 |  | 
|---|
| 1370 | /* Division by D: b = D^{-1} * b */ | 
|---|
| 1371 | for (i = 0; i < n; i++) | 
|---|
| 1372 | x[i] /= m[i][1]; | 
|---|
| 1373 |  | 
|---|
| 1374 | /* Division by C: b = C^{-1} * b */ | 
|---|
| 1375 | x_n = x[n - 1]; | 
|---|
| 1376 | if (n >= 2) | 
|---|
| 1377 | x[n - 2] -= m[n - 2][0] * x_n;  /* C_{n-2,n-1} * x_{n-1} */ | 
|---|
| 1378 | for (i = n - 3; i >= 0; i--) { | 
|---|
| 1379 | /*      C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */ | 
|---|
| 1380 | x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n; | 
|---|
| 1381 | } | 
|---|
| 1382 | return; | 
|---|
| 1383 | } | 
|---|
| 1384 |  | 
|---|
| 1385 | /* | 
|---|
| 1386 | * Solve tri diagonal linear system equation. The tri diagonal matrix is | 
|---|
| 1387 | * defined via matrix M, right side is r, and solution X i.e. M * X = R. | 
|---|
| 1388 | * Size of system given in n. Return TRUE if solution exist. | 
|---|
| 1389 | */ | 
|---|
| 1390 | /* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */ | 
|---|
| 1391 |  | 
|---|
| 1392 | int | 
|---|
| 1393 | solve_tri_diag(m, r, x, n) | 
|---|
| 1394 | tri_diag m[]; | 
|---|
| 1395 | double r[], x[]; | 
|---|
| 1396 | int n; | 
|---|
| 1397 | { | 
|---|
| 1398 | int i; | 
|---|
| 1399 | double t; | 
|---|
| 1400 |  | 
|---|
| 1401 | for (i = 1; i < n; i++) {   /* Eliminate element m[i][i-1] (lower diagonal). */ | 
|---|
| 1402 | if (m[i - 1][1] == 0) | 
|---|
| 1403 | return FALSE; | 
|---|
| 1404 | t = m[i][0] / m[i - 1][1];      /* Find ratio between the two lines. */ | 
|---|
| 1405 | /*      m[i][0] = m[i][0] - m[i-1][1] * t; */ | 
|---|
| 1406 | /* m[i][0] is not used any more (and set to 0 in the above line) */ | 
|---|
| 1407 | m[i][1] = m[i][1] - m[i - 1][2] * t; | 
|---|
| 1408 | r[i] = r[i] - r[i - 1] * t; | 
|---|
| 1409 | } | 
|---|
| 1410 | /* Now do back subtitution - update the solution vector X: */ | 
|---|
| 1411 | if (m[n - 1][1] == 0) | 
|---|
| 1412 | return FALSE; | 
|---|
| 1413 | x[n - 1] = r[n - 1] / m[n - 1][1];  /* Find last element. */ | 
|---|
| 1414 | for (i = n - 2; i >= 0; i--) { | 
|---|
| 1415 | if (m[i][1] == 0) | 
|---|
| 1416 | return FALSE; | 
|---|
| 1417 | x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1]; | 
|---|
| 1418 | } | 
|---|
| 1419 | return TRUE; | 
|---|
| 1420 | } | 
|---|
| 1421 |  | 
|---|
| 1422 | /* | 
|---|
| 1423 | * Generate a Bspline curve defined by all the points given in linked list p: | 
|---|
| 1424 | * Algorithm: using deBoor algorithm | 
|---|
| 1425 | * Note: if Curvekind is open contour than Open end knot vector is assumed, | 
|---|
| 1426 | *       else (closed contour) Float end knot vector is assumed. | 
|---|
| 1427 | * It is assumed that num_of_points is at least 2, and order of Bspline is less | 
|---|
| 1428 | * than num_of_points! | 
|---|
| 1429 | */ | 
|---|
| 1430 | static void | 
|---|
| 1431 | gen_bspline_approx(p_cntr, num_of_points, order, contr_isclosed) | 
|---|
| 1432 | struct cntr_struct *p_cntr; | 
|---|
| 1433 | int num_of_points, order; | 
|---|
| 1434 | TBOOLEAN contr_isclosed; | 
|---|
| 1435 | { | 
|---|
| 1436 | int knot_index = 0, pts_count = 1; | 
|---|
| 1437 | double dt, t, next_t, t_min, t_max, x, y; | 
|---|
| 1438 | struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL; | 
|---|
| 1439 |  | 
|---|
| 1440 | /* If the contour is Closed one we must update few things: | 
|---|
| 1441 | * 1. Make the list temporary circular, so we can close the contour. | 
|---|
| 1442 | * 2. Update num_of_points - increase it by "order-1" so contour will be | 
|---|
| 1443 | *    closed. This will evaluate order more sections to close it! | 
|---|
| 1444 | */ | 
|---|
| 1445 | if (contr_isclosed) { | 
|---|
| 1446 | pc_tail = p_cntr; | 
|---|
| 1447 | while (pc_tail->next) | 
|---|
| 1448 | pc_tail = pc_tail->next;    /* Find last point. */ | 
|---|
| 1449 |  | 
|---|
| 1450 | /* test if first and last point are equal */ | 
|---|
| 1451 | if (fuzzy_equal(pc_tail, p_cntr)) { | 
|---|
| 1452 | /* Close contour list - make it circular. */ | 
|---|
| 1453 | pc_tail->next = p_cntr->next; | 
|---|
| 1454 | num_of_points += order - 1; | 
|---|
| 1455 | } else { | 
|---|
| 1456 | pc_tail->next = p_cntr; | 
|---|
| 1457 | num_of_points += order; | 
|---|
| 1458 | } | 
|---|
| 1459 | } | 
|---|
| 1460 | /* Find first (t_min) and last (t_max) t value to eval: */ | 
|---|
| 1461 | t = t_min = fetch_knot(contr_isclosed, num_of_points, order, order); | 
|---|
| 1462 | t_max = fetch_knot(contr_isclosed, num_of_points, order, num_of_points); | 
|---|
| 1463 | next_t = t_min + 1.0; | 
|---|
| 1464 | knot_index = order; | 
|---|
| 1465 | dt = 1.0 / contour_pts;     /* Number of points per one section. */ | 
|---|
| 1466 |  | 
|---|
| 1467 |  | 
|---|
| 1468 | while (t < t_max) { | 
|---|
| 1469 | if (t > next_t) { | 
|---|
| 1470 | pc_temp = pc_temp->next;    /* Next order ctrl. pt. to blend. */ | 
|---|
| 1471 | knot_index++; | 
|---|
| 1472 | next_t += 1.0; | 
|---|
| 1473 | } | 
|---|
| 1474 | eval_bspline(t, pc_temp, num_of_points, order, knot_index, | 
|---|
| 1475 | contr_isclosed, &x, &y);   /* Next pt. */ | 
|---|
| 1476 | add_cntr_point(x, y); | 
|---|
| 1477 | pts_count++; | 
|---|
| 1478 | /* As we might have some real number round off problems we do      */ | 
|---|
| 1479 | /* the last point outside the loop                                 */ | 
|---|
| 1480 | if (pts_count == contour_pts * (num_of_points - order) + 1) | 
|---|
| 1481 | break; | 
|---|
| 1482 | t += dt; | 
|---|
| 1483 | } | 
|---|
| 1484 |  | 
|---|
| 1485 | /* Now do the last point */ | 
|---|
| 1486 | eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index, | 
|---|
| 1487 | contr_isclosed, &x, &y); | 
|---|
| 1488 | add_cntr_point(x, y);       /* Complete the contour. */ | 
|---|
| 1489 |  | 
|---|
| 1490 | if (contr_isclosed) /* Update list - un-circular it. */ | 
|---|
| 1491 | pc_tail->next = NULL; | 
|---|
| 1492 | } | 
|---|
| 1493 |  | 
|---|
| 1494 | /* | 
|---|
| 1495 | * The routine to evaluate the B-spline value at point t using knot vector | 
|---|
| 1496 | * from function fetch_knot(), and the control points p_cntr. | 
|---|
| 1497 | * Returns (x, y) of approximated B-spline. Note that p_cntr points on the | 
|---|
| 1498 | * first control point to blend with. The B-spline is of order order. | 
|---|
| 1499 | */ | 
|---|
| 1500 | static void | 
|---|
| 1501 | eval_bspline(t, p_cntr, num_of_points, order, j, contr_isclosed, x, y) | 
|---|
| 1502 | double t; | 
|---|
| 1503 | struct cntr_struct *p_cntr; | 
|---|
| 1504 | int num_of_points, order, j; | 
|---|
| 1505 | TBOOLEAN contr_isclosed; | 
|---|
| 1506 | double *x, *y; | 
|---|
| 1507 | { | 
|---|
| 1508 | int i, p; | 
|---|
| 1509 | double ti, tikp, *dx, *dy;  /* Copy p_cntr into it to make it faster. */ | 
|---|
| 1510 |  | 
|---|
| 1511 | dx = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline"); | 
|---|
| 1512 | dy = (double *) gp_alloc((order + j) * sizeof(double), "contour b_spline"); | 
|---|
| 1513 |  | 
|---|
| 1514 | /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */ | 
|---|
| 1515 | for (i = j - order; i <= j; i++) { | 
|---|
| 1516 | dx[i] = p_cntr->X; | 
|---|
| 1517 | dy[i] = p_cntr->Y; | 
|---|
| 1518 | p_cntr = p_cntr->next; | 
|---|
| 1519 | } | 
|---|
| 1520 |  | 
|---|
| 1521 | for (p = 1; p <= order; p++) {      /* Iteration (b-spline level) counter. */ | 
|---|
| 1522 | for (i = j; i >= j - order + p; i--) {  /* Control points indexing. */ | 
|---|
| 1523 | ti = fetch_knot(contr_isclosed, num_of_points, order, i); | 
|---|
| 1524 | tikp = fetch_knot(contr_isclosed, num_of_points, order, i + order + 1 - p); | 
|---|
| 1525 | if (ti == tikp) {   /* Should not be a problems but how knows... */ | 
|---|
| 1526 | } else { | 
|---|
| 1527 | dx[i] = dx[i] * (t - ti) / (tikp - ti) +        /* Calculate x. */ | 
|---|
| 1528 | dx[i - 1] * (tikp - t) / (tikp - ti); | 
|---|
| 1529 | dy[i] = dy[i] * (t - ti) / (tikp - ti) +        /* Calculate y. */ | 
|---|
| 1530 | dy[i - 1] * (tikp - t) / (tikp - ti); | 
|---|
| 1531 | } | 
|---|
| 1532 | } | 
|---|
| 1533 | } | 
|---|
| 1534 | *x = dx[j]; | 
|---|
| 1535 | *y = dy[j]; | 
|---|
| 1536 | free((char *) dx); | 
|---|
| 1537 | free((char *) dy); | 
|---|
| 1538 | } | 
|---|
| 1539 |  | 
|---|
| 1540 | /* | 
|---|
| 1541 | * Routine to get the i knot from uniform knot vector. The knot vector | 
|---|
| 1542 | * might be float (Knot(i) = i) or open (where the first and last "order" | 
|---|
| 1543 | * knots are equal). contr_isclosed determines knot kind - open contour means | 
|---|
| 1544 | * open knot vector, and closed contour selects float knot vector. | 
|---|
| 1545 | * Note the knot vector is not exist and this routine simulates it existance | 
|---|
| 1546 | * Also note the indexes for the knot vector starts from 0. | 
|---|
| 1547 | */ | 
|---|
| 1548 | static double | 
|---|
| 1549 | fetch_knot(contr_isclosed, num_of_points, order, i) | 
|---|
| 1550 | TBOOLEAN contr_isclosed; | 
|---|
| 1551 | int num_of_points, order, i; | 
|---|
| 1552 | { | 
|---|
| 1553 | if(! contr_isclosed) { | 
|---|
| 1554 | if (i <= order) | 
|---|
| 1555 | return 0.0; | 
|---|
| 1556 | else if (i <= num_of_points) | 
|---|
| 1557 | return (double) (i - order); | 
|---|
| 1558 | else | 
|---|
| 1559 | return (double) (num_of_points - order); | 
|---|
| 1560 | } else { | 
|---|
| 1561 | return (double) i; | 
|---|
| 1562 | } | 
|---|
| 1563 | } | 
|---|
| 1564 |  | 
|---|
| 1565 |  | 
|---|
| 1566 | /* setting et getting de variables */ | 
|---|
| 1567 | /*        OP 01/2002               */ | 
|---|
| 1568 |  | 
|---|
| 1569 | void set_contour_kind(t_contour_kind in){ | 
|---|
| 1570 | contour_kind = in; | 
|---|
| 1571 | } | 
|---|
| 1572 |  | 
|---|
| 1573 | t_contour_kind get_contour_kind(){ | 
|---|
| 1574 | return (contour_kind); | 
|---|
| 1575 | } | 
|---|
| 1576 |  | 
|---|
| 1577 | void set_contour_levels_kind(t_contour_levels_kind in){ | 
|---|
| 1578 | contour_levels_kind = in; | 
|---|
| 1579 |  | 
|---|
| 1580 | } | 
|---|
| 1581 |  | 
|---|
| 1582 | t_contour_levels_kind get_contour_levels_kind(){ | 
|---|
| 1583 |  | 
|---|
| 1584 | return(contour_levels_kind); | 
|---|
| 1585 | } | 
|---|
| 1586 |  | 
|---|
| 1587 | void set_contour_levels(int num){ | 
|---|
| 1588 | contour_levels = num; | 
|---|
| 1589 | } | 
|---|
| 1590 |  | 
|---|
| 1591 | int get_contour_levels(){ | 
|---|
| 1592 | return(contour_levels); | 
|---|
| 1593 | } | 
|---|
| 1594 | void set_contour_levels_list(double *vec){ | 
|---|
| 1595 |  | 
|---|
| 1596 | contour_levels_list=vec; | 
|---|
| 1597 | } | 
|---|
| 1598 |  | 
|---|
| 1599 | /******* | 
|---|
| 1600 | void set_contour_levels_list(double *vec,int sz){ | 
|---|
| 1601 | int i; | 
|---|
| 1602 | printf(" <set_contour_levels_list> sz %d \n",sz); | 
|---|
| 1603 | contour_levels_list = (double *)  malloc(sz*sizeof(double)); | 
|---|
| 1604 | for (i=0 ; i<sz ; i++){ | 
|---|
| 1605 | printf(" <set_contour_levels_list> i %d vec %g\n",i,vec[i]); | 
|---|
| 1606 | contour_levels_list[i] = vec[i]; | 
|---|
| 1607 |  | 
|---|
| 1608 | } | 
|---|
| 1609 | } | 
|---|
| 1610 | void free_contour_levels_list(){ | 
|---|
| 1611 | if(contour_levels_list != NULL){ | 
|---|
| 1612 | free(contour_levels_list); | 
|---|
| 1613 | contour_levels_list = NULL; | 
|---|
| 1614 | } | 
|---|
| 1615 | } | 
|---|
| 1616 | *****/ | 
|---|
| 1617 | double * get_contour_levels_list(){ | 
|---|
| 1618 |  | 
|---|
| 1619 | return(contour_levels_list); | 
|---|
| 1620 | } | 
|---|
| 1621 |  | 
|---|