[1634] | 1 | /* --------------- apcxx_cstyle.icc -----------------
|
---|
| 2 |
|
---|
| 3 | Example illustrating C++ scientific programming
|
---|
| 4 | using SOPHYA library arrays and FFT computation
|
---|
| 5 | through FFTServerInterface.
|
---|
| 6 | This example, performs the same operations as in
|
---|
| 7 | apcxx.icc, through C-style programming with
|
---|
| 8 | explicit loops. This C_style should be avoided when
|
---|
| 9 | programming in C++.
|
---|
| 10 |
|
---|
| 11 | R. Ansari 08/2001
|
---|
| 12 |
|
---|
| 13 | ---- Computation steps :
|
---|
| 14 | > Create a matrix (NL x NC ) (mtx)
|
---|
| 15 | > fill it with a gaussian distributed random values
|
---|
| 16 | > make a copy of the matrix (mtxs)
|
---|
| 17 | > create a 1D filter in Fourier space
|
---|
| 18 | > Loop over matrix rows k
|
---|
| 19 | >> Extract row k (fline)
|
---|
| 20 | >> compute 1D Fourier transform FFTForward (fline)
|
---|
| 21 | >> apply filter in Fourier space
|
---|
| 22 | >> compute backward 1D FFT
|
---|
| 23 | >> Replace matrix row with the filtered values
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | this example code can be
|
---|
| 27 | - included in a main program
|
---|
| 28 | - executed using runcxx
|
---|
| 29 | csh> runcxx -tmpdir /tmp -f apcxx_cstyle.icc
|
---|
| 30 | - executed within spiapp
|
---|
| 31 | Cmd> c++execfrf apcxx_cstyle.icc
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | // Select computation on float or double (r_4 r_8)
|
---|
| 35 | #define FTYP r_4
|
---|
| 36 |
|
---|
| 37 | // Number of matrix lines and colums
|
---|
| 38 | int NL = 1024;
|
---|
| 39 | int NC = 4096;
|
---|
| 40 | int i, j;
|
---|
| 41 | cout << " apc_cstyle : NL= " << NL << " NC= " << NC << endl;
|
---|
| 42 | PrtTim("apc_cstyle_Start");
|
---|
| 43 |
|
---|
| 44 | //BaseArray::SetDefaultMemoryMapping(BaseArray::CMemoryMapping);
|
---|
| 45 | //BaseArray::SetMaxPrint(10, 3);
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | // Creation of the initial matrix
|
---|
| 49 | TMatrix< FTYP > mtx(NL, NC);
|
---|
| 50 | // Filling matrix with gaussian random values
|
---|
| 51 | // mtx = RandomSequence(RandomSequence::Gaussian, 15., 3.);
|
---|
| 52 | for(i=0; i<NL; i++)
|
---|
| 53 | for(j=0; j<NC; j++) mtx(i, j) = 15.+NorRand()*3.;
|
---|
| 54 |
|
---|
| 55 | // Making a copy of the original matrix
|
---|
| 56 | //mtxs = mtx;
|
---|
| 57 | TMatrix< FTYP > mtxs(NL, NC);
|
---|
| 58 | for(i=0; i<NL; i++)
|
---|
| 59 | for(j=0; j<NC; j++) mtxs(i, j) = mtx(i, j);
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 | // Creation and initialization of the Fourier filter filt(nu) = 1/(1+0.3*nu)
|
---|
| 63 | int LFFT = NC/2+1;
|
---|
| 64 | TVector< complex< FTYP > > filt(LFFT, BaseArray::RowVector);
|
---|
| 65 | filt(0) = 1.;
|
---|
| 66 | for(int i=1; i<filt.Size(); i++)
|
---|
| 67 | filt(i) = 1./(1+0.3*(double)i);
|
---|
| 68 |
|
---|
| 69 | // Creation of the FFTServer
|
---|
| 70 | FFTPackServer ffts;
|
---|
| 71 | ffts.setNormalize(true);
|
---|
| 72 |
|
---|
| 73 | PrtTim("apc_cstyle_AfterInit");
|
---|
| 74 |
|
---|
| 75 | // Vectors for FFT operations
|
---|
| 76 | TVector< FTYP > fline(NC, BaseArray::RowVector);
|
---|
| 77 | TVector< complex< FTYP > > vfft;
|
---|
| 78 |
|
---|
| 79 | for(int k=0; k<NL; k++) {
|
---|
| 80 | // fline = mtx.Row(k); Matrix row extraction
|
---|
| 81 | for(j=0; j<NC; j++) fline(j) = mtx(k, j);
|
---|
| 82 | ffts.FFTForward(fline, vfft); // Compute 1D forward FFT
|
---|
| 83 | // Applying filter in Fourier space f(nu) = f(nu)*filter(nu)
|
---|
| 84 | // vfft.MulElt(filt);
|
---|
| 85 | for(j=0; j<LFFT; j++) vfft(j) *= filt(j);
|
---|
| 86 | ffts.FFTBackward(vfft, fline); // backward FFT
|
---|
| 87 | // mtx.Row(k) = fline; // replace matrix row with filtered values
|
---|
| 88 | for(j=0; j<NC; j++) mtx(k, j) = fline(j);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | PrtTim("apc_cstyle_AfterFFTLoop");
|
---|
| 92 |
|
---|
| 93 | // Macro KeepObj can be used with runcxx or within (s)piapp
|
---|
| 94 | // KeepObj(mtx);
|
---|
| 95 | // KeepObj(mtxs);
|
---|
| 96 |
|
---|