source: Sophya/trunk/SophyaProg/Tests/tsttminv.cc@ 2555

Last change on this file since 2555 was 2555, checked in by cmv, 21 years ago
  • Nouveau tests inversion matrices (cas des symetriques avec Lapack)
  • Nouveau tests decompositions eigenvalues (gene+sym+hermit)
  • refonte du programme pour + de convivialite ! (cmv 21/07/04)
File size: 17.6 KB
Line 
1// Test de l'inversion de matrices et valeurs propres (avec Lapack) (cmv 21/07/04)
2// cmvtminv -a 1234 -l 0 -s 1 -b 25,10000 -n 50 -S
3
4///////////////////////////////////////////////////
5///////////////////////////////////////////////////
6// PARTIE POUVANT ETRE CHANGEE PAR L'UTILISATEUR //
7///////////////////////////////////////////////////
8///////////////////////////////////////////////////
9
10// --- Choix de travailler avec des matrices complexes ?
11//#define COMPLEX
12
13//////////////////////////////////////////////////
14// --- Choix de travailler en simple precision ?
15//#define PRECIS32
16
17//////////////////////////////////////////////////
18// --- Choix GausPiv + Lapack ?
19#define USE_GAUSPIV
20#define USE_LAPACK
21
22// --- Choix de ce que doit faire Lapack
23#ifdef USE_LAPACK
24#define ALSO_LAPACK_INV
25#define ALSO_LAPACK_INV_SYM
26#define ALSO_LAPACK_INV_LSS
27#define ALSO_LAPACK_EV
28#define ALSO_LAPACK_EV_SYM
29#endif
30
31//////////////////////////////////////////////////
32//////////////////////////////////////////////////
33// NE RIEN CHANGER CI-APRES //
34//////////////////////////////////////////////////
35//////////////////////////////////////////////////
36
37//////////////////////////////////////////////////
38#include "machdefs.h"
39#include <iostream>
40#include <stdlib.h>
41#include <stdio.h>
42#include <string.h>
43#include <math.h>
44#include <unistd.h>
45#include "timing.h"
46#include "ntoolsinit.h"
47#include "pexceptions.h"
48#include "array.h"
49#include "srandgen.h"
50#if defined(USE_LAPACK)
51#include "intflapack.h"
52#endif
53
54//////////////////////////////////////////////////
55#if defined(COMPLEX)
56 #if defined(PRECIS32)
57 #define TYPE complex<r_4>
58 #define TYPER r_4
59 #else
60 #define TYPE complex<r_8>
61 #define TYPER r_8
62 #endif
63 #define REAL_PART(_x_) (TYPE((_x_).real(),0.))
64 #define CONJ_VAL(_x_) (TYPE((_x_).real(),-(_x_).imag()))
65 #define ABS_VAL(_x_) sqrt((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
66#else
67 #if defined(PRECIS32)
68 #define TYPE r_4
69 #define TYPER r_4
70 #else
71 #define TYPE r_8
72 #define TYPER r_8
73 #endif
74 #define REAL_PART(_x_) (_x_)
75 #define CONJ_VAL(_x_) (_x_)
76 #define ABS_VAL(_x_) fabs((double)_x_)
77#endif
78
79//////////////////////////////////////////////////
80void Symetrize(TMatrix< TYPE >& A);
81void Hermitian(TMatrix< TYPE >& A);
82r_8 Check_Mat_Ident(TMatrix< TYPE >& A);
83r_8 Check_Mat_VecCol_0(TMatrix< TYPE >& A);
84void Check_Mat_VecCol_2(TMatrix< complex<TYPER> >& A);
85#if defined(USE_LAPACK)
86/*
87-- Pour faire ce test il faut passer la methode ilaenv_en_C()
88 de LapackServer en methode "public" (dans intflapack.h)
89 et recompiler la librairie externe sophya
90*/
91// void TestIlaEnv(int_4 n);
92#endif
93
94
95//////////////////////////////////////////////////
96int main(int narg,char *arg[])
97{
98//--------------------------------------------------------
99//-- Initialisation
100//--------------------------------------------------------
101// number of lines/columns
102uint_4 N = 5;
103// scale of the value (if =1 values between -1 and 1)
104r_8 scale = 1.;
105// number of values change by +/- vbig
106uint_4 nbig = N;
107r_8 vbig = 100.;
108// Nombre de lignes de matrice a imprimer
109uint_4 nprline = N;
110// Initialisation du pauvre de l'aleatoire
111uint_4 nalea = 0;
112// data scaling for gauss pivoting and determinant
113int tscal = 1;
114bool detok=false;
115// Please symetrize the input matrice
116bool symetok=false;
117// Please symetrize the input matrice
118bool gaussok=false;
119
120//--------------------------------------------------------
121//-- Decodage arguments
122//--------------------------------------------------------
123char c;
124while((c = getopt(narg,arg,"Sdgn:s:b:l:a:t:h")) != -1) {
125 switch (c) {
126 case 'S' :
127 symetok = true;
128 break;
129 case 'd' :
130 detok = true;
131 break;
132 case 'g' :
133 gaussok = true;
134 break;
135 case 'n' :
136 sscanf(optarg,"%d",&N);
137 break;
138 case 's' :
139 sscanf(optarg,"%lf",&scale);
140 break;
141 case 'b' :
142 sscanf(optarg,"%d,%lf",&nbig,&vbig);
143 break;
144 case 'l' :
145 sscanf(optarg,"%d",&nprline);
146 break;
147 case 'a' :
148 sscanf(optarg,"%d",&nalea);
149 break;
150 case 't' :
151 sscanf(optarg,"%d",&tscal);
152 break;
153 case 'h' :
154 cout<<"tsttminv [-h] [-n N] [-S] [-s scale] [-b nbig,vbig] [-g]"<<endl
155 <<" [-l nprline] [-a nalea] [-t tscal] [-d]"<<endl
156 <<"-- matrix A(N,N) filled with {[-1,1] +/- vbig(nbig time)}*scale --"<<endl
157 <<"-g : instead of flat [-1,1] use normal gaussian distribution for A(i,j)"<<endl
158 <<"-S : symetrize the input matrix"<<endl
159 <<"-l : print nprline of input and test matrices"<<endl
160 <<"-a : for random (pseudo) changing"<<endl
161 <<"-- Only GausPiv --"<<endl
162 <<"-t 0/1/2 : data scaling 0=no, 1=global (def), 2=row-by-row"<<endl
163 <<"-d : also compute determinant"<<endl;
164 return(-1);
165 }
166}
167if(N<=1) N = 1;
168cout<<"Taille matrice NxN, N = "<<N<<endl;
169if(gaussok) cout<<"Elements gaussian normal * scale = "<<scale<<endl;
170 else cout<<"Elements entre +/- 1 * scale = "<<scale<<endl;
171cout<<"Nombre de valeurs hors standard nbig = "<<nbig<<endl;
172cout<<"Valeurs hors standard (+/- vbig = "<<vbig<<" ) * scale = "<<vbig*scale<<endl;
173cout<<"Nombre de lignes de matrice a imprimer "<<nprline<<endl;
174cout<<"Initialisation de l aleatoire par "<<nalea<<" tirages"<<endl;
175cout<<"Data scaling "<<tscal<<" determinant="<<detok<<endl;
176if(symetok) cout<<"Input matrix has been symetrized "<<symetok<<endl;
177cout<<endl;
178
179//--------------------------------------------------------
180// TestIlaEnv(N); return -41;
181//--------------------------------------------------------
182
183//--------------------------------------------------------
184//-- Initialization arrays
185//--------------------------------------------------------
186SophyaInit();
187InitTim();
188#if defined(USE_LAPACK)
189 BaseArray::SetDefaultMemoryMapping(BaseArray::FortranMemoryMapping);
190#endif
191if(nalea>0) for(int i=0;i<nalea;i++) drand01();
192BaseArray::SetMaxPrint(nprline*N,0);
193
194//--------------------------------------------------------
195//-- Definition global arrays
196//--------------------------------------------------------
197TMatrix< TYPE > Ainput(N,N); Ainput = (TYPE) 0;
198TMatrix< TYPE > A(N,N); A = (TYPE) 0;
199Ainput.Show();
200
201//--------------------------------------------------------
202//-- Fill matrices with flat random
203//--------------------------------------------------------
204if(gaussok) Ainput = RandomSequence(RandomSequence::Gaussian,0.,1.);
205 else Ainput = RandomSequence(RandomSequence::Flat,0.,1.);
206#if defined(COMPLEX)
207if(gaussok) A = RandomSequence(RandomSequence::Gaussian,0.,1.);
208 else A = RandomSequence(RandomSequence::Flat,0.,1.);
209Ainput += TYPE(0.,1.)*A;
210#endif
211
212//--------------------------------------------------------
213//-- Fill matrices with big values
214//--------------------------------------------------------
215if(nbig>0) {
216#if defined(COMPLEX)
217 nbig = (nbig+1)/2;
218#endif
219 TMatrix< uint_2 > Vind(N,N); Vind = 0;
220 // for real part
221 uint_4 nbr=0;
222 for(int k=0;k<nbig;k++) {
223 int i = (int) (drand01()*N); int j = (int) (drand01()*N);
224 double s=(drand01()>0.5)?1.:-1.;
225 if(Vind(i,j)==0) {Ainput(i,j) += (TYPER) s*vbig; Vind(i,j)+=1; nbr++;}
226 }
227 cout<<"Nombre de valeurs BIG reelles = "<<nbr<<endl;
228#if defined(COMPLEX)
229 // for imaginary part
230 uint_4 nbi=0;
231 for(int k=0;k<nbig;k++) {
232 int i = (int) (drand01()*N); int j = (int) (drand01()*N);
233 double s=(drand01()>0.5)?1.:-1.;
234 if(Vind(i,j)<=1) {Ainput(i,j) += TYPE(0.,(TYPER)s*vbig); Vind(i,j)+=2; nbi++;}
235 }
236 cout<<"Nombre de valeurs BIG imaginaires = "<<nbi<<endl;
237 cout<<"Nombre de valeurs BIG = "<<nbr+nbi<<endl;
238#endif
239}
240
241//--------------------------------------------------------
242//-- Scale matrix for machine precision tests
243//--------------------------------------------------------
244Ainput *= (TYPE) scale;
245
246//--------------------------------------------------------
247//-- Create symetric matrix for all A if requested
248//--------------------------------------------------------
249if(symetok) Symetrize(Ainput);
250
251//--------------------------------------------------------
252//-- Print matrice Ainput
253//--------------------------------------------------------
254cout<<"------------ TMatrix Ainput :"<<endl;
255if(nprline>0) {cout<<Ainput; cout<<endl;}
256PrtTim("--- End of Matrix filling ---");
257
258
259#ifdef ALSO_LAPACK_INV
260////////////////////////////////////
261///////// Test avec Lapack /////////
262////////////////////////////////////
263{
264cout<<"\n=========================================="<<endl;
265cout<<"------------ Inversion LAPACK"<<endl;
266A = Ainput;
267//-- Inversion
268TMatrix< TYPE > InvA(N,N); InvA = IdentityMatrix(1.,N);
269int_4 info = LapackLinSolve(A,InvA);
270cout<<"info="<<info<<endl;
271PrtTim("--- End of LapackLinSolve Inversion ---");
272//-- AiA = A * InvA
273cout<<"Compute AiA = A * InvA"<<endl;
274TMatrix< TYPE > AiA(N,N); AiA = Ainput * InvA;
275cout<<"------------ TMatrix AiA = A * InvA:"<<endl;
276if(nprline>0) {cout<<AiA; cout<<endl;}
277//-- Check
278Check_Mat_Ident(AiA);
279PrtTim("--- End of LapackLinSolve Test ---");
280}
281#endif
282
283
284#ifdef ALSO_LAPACK_INV_SYM
285////////////////////////////////////////
286///////// Test avec Lapack sym /////////
287////////////////////////////////////////
288{
289cout<<"\n=========================================="<<endl;
290cout<<"------------ Inversion LAPACK sym"<<endl;
291TMatrix< TYPE > Asym(N,N); Asym=Ainput; Symetrize(Asym); A=Asym;
292//-- Inversion
293TMatrix< TYPE > InvA(N,N); InvA = IdentityMatrix(1.,N);
294int_4 info = LapackLinSolveSym(A,InvA);
295cout<<"info="<<info<<endl;
296PrtTim("--- End of LapackLinSolveSym Inversion ---");
297//-- AiA = A * InvA
298cout<<"Compute AiA = A * InvA"<<endl;
299TMatrix< TYPE > AiA(N,N); AiA = Asym * InvA;
300cout<<"------------ TMatrix AiA = A * InvA:"<<endl;
301if(nprline>0) {cout<<AiA; cout<<endl;}
302//-- Check
303Check_Mat_Ident(AiA);
304PrtTim("--- End of LapackLinSolveSym Test ---");
305}
306#endif
307
308
309#ifdef ALSO_LAPACK_INV_LSS
310////////////////////////////////////////////////
311///////// Test avec Lapack LeastSquare /////////
312////////////////////////////////////////////////
313{
314cout<<"\n=========================================="<<endl;
315cout<<"------------ Inversion LAPACK LeastSquare"<<endl;
316A = Ainput;
317//-- Inversion
318TMatrix< TYPE > InvA(N,N); InvA = IdentityMatrix(1.,N);
319int_4 info = LapackLeastSquareSolve(A,InvA);
320cout<<"info="<<info<<endl;
321PrtTim("--- End of LapackLeastSquareSolve Inversion ---");
322//-- AiA = A * InvA
323cout<<"Compute AiA = A * InvA"<<endl;
324TMatrix< TYPE > AiA(N,N); AiA = Ainput * InvA;
325cout<<"------------ TMatrix AiA = A * InvA:"<<endl;
326if(nprline>0) {cout<<AiA; cout<<endl;}
327//-- Check
328Check_Mat_Ident(AiA);
329PrtTim("--- End of LapackLeastSquareSolve Test ---");
330}
331#endif
332
333
334#ifdef ALSO_LAPACK_EV
335////////////////////////////////////////////////
336///////// Test avec Lapack pour EV /////////
337////////////////////////////////////////////////
338{
339cout<<"\n=========================================="<<endl;
340cout<<"------------ Eigen decompositon LapackEigen "<<endl;
341A=Ainput;
342TMatrix< TYPE > Evec(N,N); Evec = (TYPE) 0;
343TVector< complex<r_8> > Eval(N); Eval = complex<r_8>(0,0);
344//-- Decompositon
345int_4 info = LapackEigen(A,Eval,Evec,true);
346cout<<"info="<<info<<endl;
347PrtTim("--- End of LapackEigen decompositon ---");
348if(nprline>0) {cout<<Eval; cout<<endl; cout<<Evec; cout<<endl;}
349#ifndef COMPLEX
350//-- Find the complex conjugate pairs
351TVector< uint_2 > Evalconj(N); Evalconj = 0;
352int_4 nconj=0;
353for(int i=0;i<N-1;i++) {
354 if(Evalconj(i)!=0) continue; // deja traite
355 if(Eval(i).imag()==0.) continue; // real eigenvalue
356 if(fabs(Eval(i).imag()+Eval(i+1).imag())>1e-150) continue; // les 2 consecutives ne sont pas conjuguees
357 if(Eval(i).imag()<0.) continue; // first conjugate have positive imaginary part
358 if(Eval(i+1).imag()>0.) continue;
359 Evalconj(i) = 1; Evalconj(i+1) = 2; nconj++;
360}
361//cout<<Evalconj<<endl;
362cout<<"Number of conjugate eigen values: "<<nconj<<" *2 = "<<2*nconj<<" / "<<N<<endl;
363#endif
364//-- Azmlz = A*z(l) - l*z(l)
365cout<<"Compute Azmlz(l) = A*z(l) - l*z(l)"<<endl;
366TMatrix< complex<TYPER> > Azmlz(N,N); Azmlz = (complex<TYPER>) 0;
367for(int l=0;l<N;l++) { // eigen value
368 complex<TYPER> Eval_l = complex<TYPER>(Eval(l).real(),Eval(l).imag());
369 for(int i=0;i<N;i++) {
370 complex<TYPER> Evec_il;
371 #ifdef COMPLEX
372 Evec_il = Evec(i,l);
373 #else
374 Evec_il = complex<TYPER>(Evec(i,l),0.);
375 if(Evalconj(l)==1) Evec_il = complex<TYPER>(Evec(i,l),Evec(i,l+1));
376 else if(Evalconj(l)==2) Evec_il = complex<TYPER>(Evec(i,l-1),-Evec(i,l));
377 #endif
378 for(int j=0;j<N;j++) {
379 complex<TYPER> Evec_jl;
380 #ifdef COMPLEX
381 Evec_jl = Evec(j,l);
382 #else
383 Evec_jl = complex<TYPER>(Evec(j,l),0.);
384 if(Evalconj(l)==1) Evec_jl = complex<TYPER>(Evec(j,l),Evec(j,l+1));
385 else if(Evalconj(l)==2) Evec_jl = complex<TYPER>(Evec(j,l-1),-Evec(j,l));
386 #endif
387 Azmlz(i,l) += Ainput(i,j) * Evec_jl;
388 }
389 Azmlz(i,l) -= Eval_l*Evec_il;
390 }
391}
392if(nprline>0) {cout<<Azmlz; cout<<endl;}
393//-- Check
394Check_Mat_VecCol_2(Azmlz);
395PrtTim("--- End of LapackEigen Test ---");
396}
397#endif
398
399
400#ifdef ALSO_LAPACK_EV_SYM
401////////////////////////////////////////////////
402///////// Test avec Lapack sym pour EV /////////
403////////////////////////////////////////////////
404{
405cout<<"\n=========================================="<<endl;
406cout<<"------------ Eigen decompositon LapackEigenSym "<<endl;
407TMatrix< TYPE > Aher(N,N); Aher=Ainput; Hermitian(Aher); A=Aher;
408TVector<r_8> Eval;
409//-- Decompositon
410int_4 info = LapackEigenSym(A,Eval,true);
411cout<<"info="<<info<<endl;
412PrtTim("--- End of LapackEigenSym decompositon ---");
413if(nprline>0) {cout<<Eval; cout<<endl; cout<<A; cout<<endl;}
414//-- Azmlz = A*z(l) - l*z(l)
415// le vecteur propre z pour la l-ieme valeur propre est dans A(.,l):
416// z_i = A(i,l) ou "l" est la l-ieme valeur propre
417cout<<"Compute Azmlz(l) = A*z(l) - l*z(l)"<<endl;
418TMatrix< TYPE > Azmlz(N,N); Azmlz = (TYPE) 0;
419for(int l=0;l<N;l++) // eigen value
420 for(int i=0;i<N;i++)
421 {for(int j=0;j<N;j++) Azmlz(i,l)+=Aher(i,j)*A(j,l); Azmlz(i,l)-=(TYPER)Eval(l)*A(i,l);}
422if(nprline>0) {cout<<Azmlz; cout<<endl;}
423//-- Check
424Check_Mat_VecCol_0(Azmlz);
425PrtTim("--- End of LapackEigenSym Test ---");
426}
427#endif
428
429
430#ifdef USE_GAUSPIV
431////////////////////////////////////
432///////// Test avec GausPiv /////////
433////////////////////////////////////
434{
435cout<<"\n==========================================\n"
436 <<"------------ Inversion GausPiv"<<endl;
437SimpleMatrixOperation< TYPE >::SetGausPivScal(tscal);
438A = Ainput;
439//-- Inversion
440TMatrix< TYPE > InvA(N,N); InvA = IdentityMatrix(1.,N);
441TYPE det = GausPiv(A,InvA,detok);
442PrtTim("--- End of GausPiv Inversion ---");
443cout<<"Det = "<<det<<endl;
444cout<<"------------ TMatrix InvA = A^(-1):"<<endl;
445//-- AiA = A * InvA
446cout<<"Compute AiA = A * InvA"<<endl;
447TMatrix< TYPE > AiA(N,N); AiA = Ainput * InvA;
448cout<<"------------ TMatrix AiA = A * InvA:"<<endl;
449if(nprline>0) {cout<<AiA; cout<<endl;}
450//-- Check
451Check_Mat_Ident(AiA);
452PrtTim("--- End of GausPiv Test ---");
453}
454#endif
455
456
457PrtTim("--- End of Job ---");
458exit(0);
459}
460
461
462
463////////////////////////////////////////////////////////////
464////-------------------------------------------------------
465void Symetrize(TMatrix< TYPE >& A)
466// Symetrize A
467{
468 int_4 N = A.NRows();
469 for(int i=0;i<N-1;i++) for(int j=i+1;j<N;j++) A(j,i) = A(i,j);
470}
471
472////-------------------------------------------------------
473void Hermitian(TMatrix< TYPE >& A)
474// Put A hermitian
475{
476 int_4 N = A.NRows();
477 for(int i=0;i<N-1;i++) for(int j=i+1;j<N;j++) A(j,i) = CONJ_VAL(A(i,j));
478 for(int i=0;i<N;i++) A(i,i) = REAL_PART(A(i,i));
479}
480
481////-------------------------------------------------------
482r_8 Check_Mat_Ident(TMatrix< TYPE >& A)
483// Compute the biggest difference element by element of A / Identity
484{
485 int_4 N = A.NRows();
486 r_8 vmaxd=-1.;
487 for(int i=0;i<N;i++)
488 if( ABS_VAL((TYPER)1.-A(i,i)) > vmaxd ) vmaxd = ABS_VAL((TYPER)1.-A(i,i));
489 cout<<"Ecart maximum par rapport a 1 sur diagonale = "<<vmaxd<<endl;
490 r_8 vmaxh = -1.;
491 for(int i=0;i<N;i++) for(int j=0;j<N;j++) {
492 if(i==j) continue;
493 if( ABS_VAL(A(i,j)) > vmaxh ) vmaxh = ABS_VAL(A(i,j));
494 }
495 cout<<"Ecart maximum par rapport a 0 hors diagonale = "<<vmaxh<<endl;
496 return (vmaxd>vmaxh)? vmaxd: vmaxh;
497}
498
499////-------------------------------------------------------
500r_8 Check_Mat_VecCol_0(TMatrix< TYPE >& A)
501// Return the biggest norm of the N vectors column of matrix
502{
503 int_4 N = A.NRows();
504 r_8 vmax=-1.;
505 for(int l=0;l<N;l++) {
506 r_8 absv = 0.;
507 for(int i=0;i<N;i++) absv += ABS_VAL(A(i,l)) * ABS_VAL(A(i,l));
508 if( absv > vmax ) vmax = absv;
509 }
510 vmax = sqrt(vmax);
511 cout<<"Longueur max de ||A*z-l*z|| pour tous l = "<<vmax<<endl;
512 return vmax;
513}
514
515////-------------------------------------------------------
516void Check_Mat_VecCol_2(TMatrix< complex<TYPER> >& A)
517// Return the biggest norm of :
518// - the real part of the N vectors column of matrix
519// - the imaginary part of the N vectors column of matrix
520// - the module of the N vectors column of matrix
521{
522 int_4 N = A.NRows();
523 r_8 vmaxr=-1., vmaxi=-1., vmaxn=-1.;
524 for(int l=0;l<N;l++) {
525 double absvr = 0., absvi = 0., absvn = 0.;
526 for(int i=0;i<N;i++) {
527 absvr += A(i,l).real()*A(i,l).real();
528 absvi += A(i,l).imag()*A(i,l).imag();
529 absvn += A(i,l).real()*A(i,l).real() + A(i,l).imag()*A(i,l).imag();
530 }
531 if( absvr > vmaxr ) vmaxr = absvr;
532 if( absvi > vmaxi ) vmaxi = absvi;
533 if( absvn > vmaxn ) vmaxn = absvn;
534 }
535 vmaxr=sqrt(vmaxr); vmaxi=sqrt(vmaxi); vmaxn=sqrt(vmaxn);
536 cout<<"Longueur max de ||A*z-l*z|| pour tous l, reel = "<<vmaxr
537 <<", imag = "<<vmaxi<<", module = "<<vmaxn<<endl;
538}
539
540
541/*
542void TestIlaEnv(int_4 n)
543{
544LapackServer<TYPE> lps;
545cout<<"TestIlaEnv n="<<n<<endl;
546cout<<lps.ilaenv_en_C(1,"SSYTRF","U",n,-1,-1,-1)<<endl;
547cout<<lps.ilaenv_en_C(1,"DSYTRF","U",n,-1,-1,-1)<<endl;
548cout<<lps.ilaenv_en_C(1,"CSYTRF","U",n,-1,-1,-1)<<endl;
549cout<<lps.ilaenv_en_C(1,"ZSYTRF","U",n,-1,-1,-1)<<endl;
550cout<<lps.ilaenv_en_C(1,"SSYTRF","L",n,-1,-1,-1)<<endl;
551cout<<lps.ilaenv_en_C(1,"DSYTRF","L",n,-1,-1,-1)<<endl;
552cout<<lps.ilaenv_en_C(1,"CSYTRF","L",n,-1,-1,-1)<<endl;
553cout<<lps.ilaenv_en_C(1,"ZSYTRF","L",n,-1,-1,-1)<<endl;
554}
555*/
Note: See TracBrowser for help on using the repository browser.