Changeset 1172 in Sophya
- Timestamp:
- Sep 1, 2000, 3:20:13 PM (25 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/DocHFI_L2/wbsl2.tex
r1168 r1172 24 24 25 25 % Symboles en bold 26 \newcommand{\bnu}{ \boldsymbol{\nu}}27 \newcommand{\bbold}{\boldsymbol{b} }26 \newcommand{\bnu}{ {\boldsymbol{\nu}} } 27 \newcommand{\bbold}{\boldsymbol{b} } 28 28 \newcommand{\dbold}{\boldsymbol{d}} 29 29 … … 47 47 } 48 48 49 \titlepfd{PL-HFI-LAL-PW-L200 2}{1.2}49 \titlepfd{PL-HFI-LAL-PW-L2003}{1.2} 50 50 51 51 \end{titlepage} … … 58 58 \item Version 1.1 (April 2000 - CVS version 1.2) \\ 59 59 Draft updated using the document prepared at ISCTM and IfA (Edinburgh) 60 \item Version 1.2 (August 2000 - CVS version 1. 6) \\60 \item Version 1.2 (August 2000 - CVS version 1.7) \\ 61 61 Inclusion of a section describing notation and conventions, 62 62 flow charts. A more detailed description of deliverables is also included. … … 104 104 \end{itemize} 105 105 106 The package \gph{424} should provide a re sonably fast and simple107 method for reconstructing 2-D maps from cleaned TOI's ( from106 The package \gph{424} should provide a reasonably fast and simple 107 method for reconstructing 2-D maps from cleaned TOI's (output of 108 108 \gph{422} and \gph{423}), removing systematic effects (destriping) 109 109 and deconvolving the antenna beam pattern. An iterative method … … 112 112 complementary functionalities needed for reconstructing 113 113 polarisation maps, using data from polarised channels. 114 The optimal 2-D map reconstruction packages(\gph{426})114 The optimal 2-D map reconstruction and analysis package (\gph{426}) 115 115 will implement the best feasible method for analysing the whole 116 116 data set from the HFI instrument and building the full sky frequency … … 145 145 \ngph{423} & 5 & \ngph{428} & 30 \\ 146 146 % 147 \ngph{424} & 15& \ngph{429} & 10 \\147 \ngph{424} & 20 & \ngph{429} & 10 \\ 148 148 % 149 \ngph{425} & 1 5& & \\149 \ngph{425} & 10 & & \\ 150 150 % & & & \\ 151 151 % … … 162 162 \end{table} 163 163 164 \section{HFI data processing steps} 164 \newpage 165 166 \section{HFI data sets and processing steps} 165 167 The major steps for processing Planck-HFI data are briefly described here. 166 168 For the sake of clarity, we define here the notation and conventions used … … 174 176 axis $\overrightarrow{\Omega}$ direction $(\theta, \phi)$ and the 175 177 roll angle $\psi$. The beam direction and orientation can be computed from 176 the spacecraft attitude ($\overrightarrow{\Omega}, \psi$ using178 the spacecraft attitude ($\overrightarrow{\Omega}, \psi$) using 177 179 the focal plane geometry. 178 The spin velocity would bedenoted $\omega_z$ or $\omega_{\psi}$. \\180 The spin velocity is denoted $\omega_z$ or $\omega_{\psi}$. \\ 179 181 A given sky direction is denoted $(\alpha,\delta)$ in equatorial coordinates, 180 182 $(l,b)$ in Galactic coordinates or $(\lambda,\beta)$ in ecliptic coordinate. … … 202 204 \subsection{Processing steps} 203 205 204 The level 2 uses the instrument and spacecraft data obtained 205 from level 1 {\bf DS1} and the instrument calibration data 206 base {\bf DSCal}. calibration data base contains the 207 focal plane geometry, detector response and readout 208 characteristics, beam patterns, filters and polariser 209 response. The main processing steps for HFI-L2 are 206 The level 2 uses input data from three different sources: 207 \begin{itemize} 208 \item {\bf DS1:} Instrument and spacecraft data obtained 209 from level 1. 210 \item {\bf DSCal:} HFI calibration data base: 211 \begin{itemize} 212 \item Spacecraft and focal plane geometry 213 \item beam patterns 214 \item filters and polariser frequency response 215 \item detector and readout electronic characteristics. 216 \end{itemize} 217 \item {\bf DSExt:} Prior knowlegde of microwave and infrared 218 sky and sources: 219 \begin{itemize} 220 \item Known microwave and infrared source catalogue 221 \item Partial sky maps in different HFI frequency bands 222 (low resolution and/or incomplete sky coverage) 223 \end{itemize} 224 \end{itemize} 225 226 The main processing steps for HFI-L2 are 210 227 briefly described here: 211 228 … … 230 247 sampling frequency for each component 231 248 \begin{itemize} 232 \item Raw Time Ordered bolometer signals : $ b_{raw}^j(t1)$233 \item Time Ordered House-keeping data : $HSK(t 2)$249 \item Raw Time Ordered bolometer signals : $\bbold_{raw}^j(t_1)$ 250 \item Time Ordered House-keeping data : $HSK(t_2)$ 234 251 \item Associated orbit and attitude data : Space craft 235 position $ \boldmath{P}_{xyz}(t3) $, spin axis direction 236 $\overrightarrow{\Omega}(t3) - (\theta, \phi)(t3)$ and the 237 roll angle $\psi(t3)$. 252 position $ \boldmath{P}_{xyz}(t_3) $, spin axis direction and 253 spin velocity 254 $\overrightarrow{\Omega}(t_3) \equiv (\theta, \phi, \omega_z)(t_3)$ 255 and the roll angle $\psi(t_3)$. 238 256 \end{itemize} 239 257 … … 244 262 \begin{center} 245 263 \framebox{ 246 $ \boldmath{L2-2} : \text{DS1} \oplus \text{DSCal} \longrightarrow \text{DS2-2} $ 247 } (non polarised channels) \\ 264 $ \boldmath{L2-2} : \text{DS1} \oplus \text{DSCal} \oplus \text{DSExt} 265 \longrightarrow \text{DS2-2} $ 266 \makebox[3cm]{(non polarised)} } \\[2 mm] 248 267 \framebox{ 249 $ \boldmath{L2-3} : \text{DS1} \oplus \text{DSCal} \longrightarrow \text{DS2-3} $ 250 } (polarised channels) 268 $ \boldmath{L2-3} : \text{DS1} \oplus \text{DSCal} \oplus \text{DSExt} 269 \longrightarrow \text{DS2-3} $ 270 \makebox[3cm]{(polarised)} } 251 271 \end{center} 252 272 In addition to cleaned and calibrated bolometer signals … … 257 277 \begin{itemize} 258 278 \item Cleaned and calibrated Time Ordered bolometer signals : $\bbold_{c}^j(t_1)$ 259 \item Data quality flag : $ qf_{c}^j(t_1)$279 \item Data quality flag : $\boldsymbol{qf}_{c}^j(t_1)$ 260 280 \item Reconstructed astrometric calibration parameters \\ 261 The pointing direction and beam orientation $(\alpha , \delta)^j(t1) \gamma(t1)$ 281 The pointing direction and beam orientation 282 $(\alpha , \delta)^j(t_1) , \gamma^j(t_1)$ 262 283 for each detector at any given time can be computed using these parameters. 263 284 \item Detector response and photometric calibration parameters 264 285 \item Low frequency drifts and noise statistics 265 286 \item Reconstructed lobe 266 \item Size reduced TOI's through appropriate processings such as phase 267 binning 287 \item Phase-binned or co-added rings 268 288 \item Time Ordered House-keeping data : $HSK(t_2)$ 269 \item Associated orbit and attitude data :270 $\{ \boldmath{P}_{xyz}(t 3) , \overrightarrow{\Omega}(t3) , \psi(t3) \} $289 \item Orbit and attitude data : 290 $\{ \boldmath{P}_{xyz}(t_3) , \overrightarrow{\Omega}(t_3) , \psi(t_3) \} $ 271 291 \end{itemize} 272 292 … … 278 298 noise, main lobe and far side lobe effects, \ldots). 279 299 An iterative, sub-optimal processing method is foreseen for 280 L2-4 and L2-5 (\gph 424 and \gph425).300 L2-4 and L2-5 (\gph{424} and \gph{425}). 281 301 \begin{center} 282 302 \framebox{ 283 $ \boldmath{L2-2} : \text{DS2-2} \oplus \text{DSCal} \longrightarrow \text{DS2-4} $ 284 } \\ 303 $ \boldmath{L2-2} : \text{DS2-2} \oplus \text{DSCal} \oplus \text{DSExt} 304 \longrightarrow \text{DS2-4} \makebox[3cm]{(non polarised)} $ 305 } \\[2mm] 285 306 \framebox{ 286 $ \boldmath{L2-5} : \text{DS2-3} \oplus \text{DSCal} \longrightarrow \text{DS2-5} $ 307 $ \boldmath{L2-5} : \text{DS2-3} \oplus \text{DSCal} \oplus \text{DSExt} 308 \longrightarrow \text{DS2-5} \makebox[3cm]{(polarised)} $ 287 309 } 288 310 \end{center} … … 290 312 maps are the main outputs of {\bf L2-4} and {\bf L2-5}: 291 313 \begin{itemize} 292 \item Reprocessed, calibrated Time Ordered bolometer signals : $\bbold_{rc}^j(t_1)$ 293 \item Full sky maps , temperature and polarisation maps (\gph425) 294 $\boldsymbol{I}\bnu (\alpha,\delta)$, $\boldsymbol{Q}\bnu (\alpha,\delta)$, 295 $\boldsymbol{U}\bnu (\alpha,\delta)$. 314 \item Reprocessed, calibrated Time Ordered bolometer signals : 315 $\bbold_{rc}^j(t_1)$ 316 \item Full sky maps , temperature and polarisation maps (\gph{425}) 317 $\boldsymbol{I}^\bnu (\alpha,\delta)$, $\boldsymbol{Q}^\bnu (\alpha,\delta)$, 318 $\boldsymbol{U}^\bnu (\alpha,\delta)$. 296 319 \end{itemize} 297 320 298 321 \item {\bf L2-6} More complex methods for 2-D map reconstruction and 299 data analysis are performed at the next step ( \bf L2-6 , \gph426)322 data analysis are performed at the next step ({\bf L2-6} , \gph{426}) 300 323 \begin{center} 301 324 \framebox{ 302 $ \boldmath{L2-6} : \text{DS2-2} \oplus \text{DS2-3} \oplus \text{DSCal} \longrightarrow \text{DS2-6} $ 325 $ \boldmath{L2-6} : \text{DS2-2} \oplus \text{DS2-3} \oplus \text{DSCal} 326 \oplus \text{DSExt} \longrightarrow \text{DS2-6} $ 303 327 } 304 328 \end{center} … … 308 332 \begin{center} 309 333 \framebox{ 310 $ \boldmath{L2-7} : \text{DS2-2} \oplus \text{DS2-3} \oplus \text{DSCal} \longrightarrow \text{DS2-7} $ (ECSC) 334 $ \boldmath{L2-7} : \text{DS2-2} \oplus \text{DS2-3} \oplus \text{DSCal} 335 \oplus \text{DSExt} \longrightarrow \text{DS2-7} $ \makebox[2cm]{(ECSC)} 311 336 } 312 337 \end{center} 313 338 314 The \bf{DS2-2} and \bf{DS2-3} are used to produce the source catalogue339 The {\bf DS2-2} and {\bf DS2-3} are used to produce the source catalogue 315 340 containing the source positions, brightness and local 316 sky maps in each frequency bands \bf{DS2-7} :341 sky maps in each frequency bands {\bf DS2-7} : 317 342 \begin{itemize} 318 343 \item Source catalogue: $\{ (\alpha,\delta)_i , F_i^{\bnu 1} , 319 344 F_i^{\bnu 2} , \ldots \}$ 320 \item local sky maps: $\{ lm_i(x,y)^{\bnu 1}, lm_i(x,y)^{\bnu 2}, ldots \}$ 321 \end{itemize} 322 323 \end{itemize} 345 \item local sky maps: $\{ lm_i(x,y)^{\bnu 1}, lm_i(x,y)^{\bnu 2}, \ldots \}$ 346 \end{itemize} 347 348 \end{itemize} 349 350 \newpage 324 351 325 352 \section{GPH421: RTA/QLA Real Time Assesment, Quick Look Analysis} … … 341 368 steps for GPH422 is given in figure \ref{fig422}. 342 369 343 \begin{figure}[h tbp]370 \begin{figure}[h] 344 371 \mbox{\hspace*{1cm} \includegraphics[width=7cm]{gph422_1.eps} 345 372 \includegraphics[width=7cm]{gph422_2.eps} } … … 377 404 \end{itemize} 378 405 379 \item[]\gph{422.4} Astrometric calibration \\ 380 Astrometric calibration using known point sources, 381 bright sources from the ECSC and galaxy crossing in TOI. 406 \item[]\gph{422.4} Astrometric calibration 407 \begin{itemize} 408 \item[]422.4.1 Reconstruction of beam direction and orientaion 409 for each detector using auxiliary spacecraft data 410 \item[]422.4.2 Astrometric calibration using galaxy crossing in TOI 411 \item[]422.4.3 Astrometric calibration using known point sources, 412 and bright sources from the ECSC. 413 \end{itemize} 382 414 383 415 \item[]\gph{422.5} Photometric calibration … … 394 426 and galaxy crossing \gph{422.3.3} 395 427 396 \item[]\gph{422.7} Production of single pointing co-added rings397 or428 \item[]\gph{422.7} Production of single pointing size reduced TOI's 429 through coadding or phase binning (co-added or phase-binned rings) 398 430 399 \item[]\gph{422.9} Deliverables: Cleaned, calibrated TOI's : 400 \begin{itemize} 401 \item $(\alpha, \delta)$, roll angle, calibrated signal 402 \item Noise statistics 403 \item Offset/drifts 404 \item Co-added rings 431 \item[]\gph{422.9} Deliverables: {\bf DS2-2} Cleaned, calibrated TOI's : 432 \begin{itemize} 433 \item Cleaned and calibrated Time Ordered bolometer signals : $\bbold_{c}^j(t_1)$ 434 \item Data quality flag : $\boldsymbol{qf}_{c}^j(t_1)$ 435 \item Reconstructed astrometric calibration parameters \\ 436 The pointing direction and beam orientation 437 $(\alpha , \delta)^j(t_1) , \gamma^j(t_1)$ 438 for each detector at any given time can be computed using these parameters. 439 \item Detector response and photometric calibration parameters 440 \item Low frequency drifts and noise statistics 441 \item Reconstructed lobe 442 \item Phase-binned or co-added rings 443 \item Time Ordered House-keeping data : $HSK(t_2)$ 444 \item Orbit and attitude data : 445 $\{ \boldmath{P}_{xyz}(t_3) , \overrightarrow{\Omega}(t_3) , \psi(t_3) \} $ 405 446 \end{itemize} 406 447 … … 409 450 \section{GPH423: Polarised TOI processing} 410 451 411 \gph{423.1} Additional TOI processing, as required to 412 reconstruct Stokes I,Q,U parameters from detector signals 413 in polarised channels. 452 \gph{423.1} Additional TOI processing or adapted versions of \gph{422} 453 package modules, as required to reconstruct Stokes I,Q,U parameters 454 from detector signals in polarised channels. 455 \begin{itemize} 456 \item[]\gph{423.4} Astrometric calibration 457 \item[]\gph{423.5} Photometric calibration 458 \item[]\gph{422.6} Reconstruction of beam pattern seen by each detector 459 \item[]\gph{423.7} Production of single pointing size reduced TOI's 460 through coadding or phase binning (co-added or phase-binned rings) 461 \item[]\gph{422.9} Deliverables: {\bf DS2-3} Cleaned, calibrated TOI's : 462 Reconstructed stokes parameters $\boldsymbol{I}(t_1)$ , 463 $\boldsymbol{Q}(t_1)$ , $\boldsymbol{U}(t_1)$ in addition to the 464 already listed {\bf DS2-2} data components. 465 \end{itemize} 414 466 415 467 \section{GPH424: 2-D map reconstruction} … … 417 469 This package contains all the necessary modules for 418 470 single frequency 2-D map reconstruction using the cleaned 419 TOI's from \gph{422} and \gph{423}. However \gph{424} 420 should only implement simple versions of 2-D map making 421 and systematic removal algorithms, as opposed to 422 \gph{424} which must provide a global, optimal 2-D map 423 reconstruction with systematic effects assessment. 471 TOI's from \gph{422} and \gph{423}. It is not intended to implement 472 the optimal 2-D map reconstruction and data analysis method 473 in this package, which is the task of \gph{426}. 474 An iterative processing method is foreseen for estimating 475 and removing the different systematic effects (low frequency 476 drift, noise, main lobe effect and contamination due to side 477 lobes, using redundancies from the scan strategy and the detectors 478 in a given frequency channel, as well as prior knowledge of microwave 479 and infrared sky. 480 A very simplified representaion of data flow and processing 481 steps for GPH424 is given in figure \ref{fig424}. 482 \begin{figure}[h] 483 \mbox{\hspace*{2cm} \includegraphics[height=11cm]{gph424_1.eps} } 484 \caption{Data flow and processing steps for GPH424} 485 \label{fig424} 486 \end{figure} 487 424 488 425 489 \begin{itemize} 426 \item[]\gph{424.1} 1D $\rightarrow$ 2D Projector 427 \item[]\gph{424.2} Estimation and subtraction of systematic effects 428 \begin{itemize} 429 \item[]424.2.1 Low frequency noise estimation 430 \item[]424.2.2 far side determination using moon/earth during 431 commissioning phases. 432 \item[]424.2.3 far side lobe subtraction 433 \item[]424.2.4 use of redundancy to produce independent maps for 434 assessment of noise contributions 435 \end{itemize} 436 437 \item[]\gph{424.3} Main lobe 438 \begin{itemize} 439 \item[]424.3.1 supplementing source extraction from TOI with 490 491 \item[]\gph{424.1} Estimation and subtraction of low frequency drifts 492 \begin{itemize} 493 \item[] 424.1.1 Estimation of low frequency drifts using sky scan 494 redundancies (crossings) 495 \item[] 424.1.2 Estimation of low frequency drifts using different 496 detectors in a frequency channel 497 \item[] 424.1.3 Low frequency drift estimation and removal using 498 prior knowledge of microwave and infrared sky (CMB dipole, galaxy, \ldots) 499 \item[] 424.1.4 Iterative low frequency drift estimation and removal 500 using reconstructed sky maps 501 \end{itemize} 502 503 \item[]\gph{424.2} Side lobe effects 504 \begin{itemize} 505 \item[] 424.2.1 side determination using moon/earth during 506 commissioning phases 507 \item[] 424.2.2 Iterative side determination using reconstructed 508 sky maps 509 \item[] 424.2.3 Side lobe effect subtraction 510 \end{itemize} 511 512 \item[]\gph{424.3} Main lobe 513 \begin{itemize} 514 \item[]424.3.1 reconstruction of beam pattern from maps using 515 known point and bright ECSC sources. 516 \item[]424.3.2 supplementing source extraction from TOI with 440 517 use of sources selected from frequency maps 441 \item[]424.3.2 reconstruction of beam pattern from maps using 442 known point and bright ECSC sources. 443 \end{itemize} 444 445 446 \item[]\gph{424.4} Astrometric calibration using known and 518 \end{itemize} 519 520 \item[]\gph{424.4} 2-D map reconstruction 521 \begin{itemize} 522 \item[]424.4.1 Local (postage stamp) maps reconstruction 523 \item[]424.4.2 Ring shaped sky strips map reconstruction, using 524 a set of cleaned TOI's from neighbour scans 525 \item[]424.4.3 Full sky map reconstruction by combining the 526 ring shaped sky maps from GPH424.4.2 527 \end{itemize} 528 529 \item[]\gph{424.5} Astrometric and geometric calibration 530 \begin{itemize} 531 \item[] 424.5.1 Refinement of astrometric calibration using known and 447 532 bright ECSC sources. 448 \item[]\gph{424.5} Photometric calibration 449 \item[]\gph{424.6} Postage stamp maps for compact sources 450 451 \item[]\gph{424.9} Deliverables: Full sky maps \\ 452 \begin{itemize} 453 \item Sky maps per frequency channels $map_\nu (\alpha, \delta) $ 454 \item Reprocessed TOI's 533 \item[] 424.5.2 Reconstruction of focal plane geometry and 534 comparison with calibration data base 535 \item[] 424.5.3 Reconstruction of spacecraft attitude and comparison 536 with corresponding data from {\bf DS1} and {\bf DS2-2}. 537 \end{itemize} 538 539 \item[]\gph{424.6} Photometric calibration 540 541 \item[]\gph{424.7} Estimation of systematic effect and noise 542 characteristics on reconstructed maps. One way to achieve this is the 543 reconstruction of frequency maps using subsets of detectors in a 544 frequency channel. 545 546 \item[]\gph{424.9} Deliverables: {\bf DS2-4} Full sky frequency channel 547 maps and reprocessed TOI's 548 \begin{itemize} 549 \item Full sky maps per frequency channels: 550 $\boldsymbol{I}^\bnu (\alpha,\delta)$ 551 \item Beam patterns per detector and per frequency channel 552 \item Noise covariance matrix 553 \item Reprocessed, calibrated Time Ordered bolometer signals : 554 $\bbold_{rc}^j(t_1)$ 455 555 \end{itemize} 456 556 … … 461 561 for processing polarised TOI's for producing polarisation 462 562 sky maps are grouped in this package. 463 Compared with \gph424 , 464 \begin{itemize} 465 \item[]\gph{425.9} Deliverables: Full sky polarisation maps \\ 466 \begin{itemize} 467 \item Sky maps per frequency channels $map_\nu (\alpha, \delta) $ 468 \item Reprocessed TOI's 563 The reconstructed sky maps from \gph{424} can be used 564 to assess systematic effects in polarised channel TOI's 565 by combining signal from multiple detectors. 566 567 \begin{itemize} 568 \item[]\gph{425.1} Estimation and subtraction of low frequency drifts 569 \item[]\gph{425.2} Side lobe effects 570 \item[]\gph{425.3} Main lobe 571 \item[]\gph{425.6} Photometric calibration 572 \item[]\gph{425.8} Reconstruction of stokes (I,Q,U) parameter along the scan 573 \item[]\gph{425.9} Deliverables: {\bf DS2-5} Full sky polarisation maps 574 and reprocessed TOI's 575 \begin{itemize} 576 \item Sky maps per frequency channels: \\ 577 $\boldsymbol{I}^\bnu (\alpha,\delta), \boldsymbol{Q}^\bnu (\alpha,\delta), 578 \boldsymbol{U}^\bnu (\alpha,\delta)$ 579 \item Beam patterns per detector and per frequency channel 580 \item Noise covariance matrix 581 \item Reprocessed, calibrated Time Ordered bolometer signals : 582 $\bbold_{rc}^j(t_1)$ 469 583 \end{itemize} 470 584 … … 478 592 breakdown structure can only be refined at a later stage, 479 593 after preliminary studies of applicable methods. 480 481 \begin{itemize} 482 \item[]\gph{425.1} Optimal 2-D map reconstruction and analysis 594 One such promising method consist of 595 computing the $a_l^m$ coefficients of the 596 spherical harmonic decomposition of the signal, using 597 the Fourier coefficients of 1-D rings reconstructed from 598 cleaned TOI's. The estimation and removal of low frequency 599 drifts and lobe effects can be incorporated in the 600 processing. 601 602 \begin{itemize} 603 \item[]\gph{426.1} Optimal 2-D map reconstruction and analysis 483 604 for non polarised channels 484 \item[]\gph{42 5.2} Optimal 2-D map reconstruction and analysis605 \item[]\gph{426.2} Optimal 2-D map reconstruction and analysis 485 606 for polarised channels 486 607 487 \item[]\gph{425.9} Deliverables: Full sky maps \\ 488 \begin{itemize} 489 \item Full sky maps for each frequency channels $map_\nu (\alpha, \delta) $ 490 \item Reprocessed, cleanead TOI's 491 \item Beam patterns per detector and per frequency channel 492 \item Estimation of systematics 493 \end{itemize} 494 495 \end{itemize} 496 497 \section{GPH426: Global polarised 2-D map reconstruction} 498 499 This module, a extended version of \gph{425} has to take 500 into account specific constraints related to polarised TOI's 501 and sky map reconstruction 502 503 \begin{itemize} 504 505 \item[]\gph{426.9} Deliverables: full sky maps for each 506 polarisation component (I,Q,U) \\ 507 \begin{itemize} 508 \item Full sky maps for each frequency channels $map_\nu (\alpha, \delta) $ 509 for each component (I,Q,U) 608 \item[]\gph{426.9} Deliverables: {\bf DS2-6} Full sky intensity 609 and polarisation maps 610 \begin{itemize} 611 \item Full sky maps for each frequency channels 612 \\ $\boldsymbol{I}^\bnu (\alpha,\delta), \boldsymbol{Q}^\bnu (\alpha,\delta), 613 \boldsymbol{U}^\bnu (\alpha,\delta)$ 614 \item Noise and systematic effect maps and characteristics 510 615 \item Reprocessed, cleanead TOI's for I,Q,U 511 \item Noise and systematic effect maps and characteristics512 616 \end{itemize} 513 617 … … 518 622 519 623 \begin{itemize} 520 521 \item[]\gph{427.9} Deliverables: Source catalogue \\ 624 \item[]\gph{427.1} Source extraction, using the data from \gph{422} 625 and \gph{423} 626 \item[]\gph{427.2} Astrometric calibration 627 \item[]\gph{427.3} Photometric calibration 628 \item[]\gph{427.4} Production of local frequency maps 629 \item[]\gph{427.9} Deliverables: {\bf DS2-7} Early Compact Source Catalogue 630 (ECSC) 522 631 \begin{itemize} 523 632 \item Astrometrically calibrated source positions and 524 photometrically calibrated flux in each frequency band \\ 525 $$(\alpha, \delta)_i , F_i^\nu, i=1,..,N$$ 526 \item Llocal sky maps in each frequency bands for areas 527 around all source positions. 633 photometrically calibrated flux in each frequency band: \\ 634 $\{ (\alpha,\delta)_i , F_i^{\bnu 1} , 635 F_i^{\bnu 2} , \ldots \}$ 636 \item Local sky maps in each frequency bands for areas 637 around all source positions: \\ 638 $\{ lm_i(x,y)^{\bnu 1}, lm_i(x,y)^{\bnu 2}, \ldots \}$ 528 639 \item Related software and documentation 529 640 \end{itemize} … … 601 712 \item[]\gph{429.4} Comparison of TOI data and maps between 602 713 HFI and LFI for common 100GHz channel 603 \item[]\gph{429.9} Deliverables: Full sky maps for each 604 polarisation component (I,Q,U) \\ 605 \begin{itemize} 606 \item Sky maps per frequency channels $map_\nu (\alpha, \delta) $ 607 for each component (I,Q,U) 714 \item[]\gph{429.9} Deliverables: ({\bf DS2}) The complete set of deliverables 715 from each L2 package: \\ 716 {\bf DS2} = {\bf DS2-2} $\oplus$ {\bf DS2-3} $\oplus$ {\bf DS2-4} 717 $\oplus$ {\bf DS2-5} $\oplus$ {\bf DS2-6} 718 719 \begin{itemize} 720 \item Sky maps per frequency channels for each component (I,Q,U) : \\ 721 $\boldsymbol{I}^\bnu (\alpha,\delta), \boldsymbol{Q}^\bnu (\alpha,\delta), 722 \boldsymbol{U}^\bnu (\alpha,\delta)$ 608 723 \item Reprocessed, cleanead TOI's for I,Q,U 609 724 \item Noise and systematic effect maps and characteristics 610 725 \item Photometric and Astrometric calibration 726 \item Beam patterns for each detector and for each frequency channel 611 727 \item Associated software and documentation 612 728 \end{itemize}
Note:
See TracChangeset
for help on using the changeset viewer.