Changeset 3976 in Sophya for trunk/Cosmo/RadioBeam


Ignore:
Timestamp:
Apr 29, 2011, 7:30:37 PM (14 years ago)
Author:
ansari
Message:

Papier 21cm avec ecriture partielle de la partie soustraction avant-plans, Reza 29/04/2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r3949 r3976  
    174174
    175175Ongoing or future surveys plan to measure precisely the BAO scale in the redshift range
    176 $0 \lesssim z \lesssim 3$, using either optical observation of galaxies or through 3D mapping
    177 Lyman $\alpha$ absorption lines toward distant quasars \citep{baorss} \cite{baolya}.
     176$0 \lesssim z \lesssim 3$, using either optical observation of galaxies \citep{baorss}     %  CHECK/FIND baorss baolya references
     177or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars \cite{baolya}.
    178178Mapping matter distribution using 21 cm emission of neutral hydrogen appears as
    179179a very promising technique to map matter distribution up to redshift $z \sim 3$,
     
    227227the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
    228228However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
    229 The sensitivity (or detection threshold) limit $S_{lim}$ for a radio instrument
    230 characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
    231 \begin{equation}
    232 S_{lim} = \frac{ 2 \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
     229The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the of two polarisations
     230of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
     231\begin{equation}
     232S_{lim} = \frac{ \sqrt{2} \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
    233233\end{equation}
    234234where $t_{int}$ is the total integration time $\delta \nu$ is the detection frequency band. In table
     
    281281\begin{tabular}{|c|c|c|}
    282282\hline
    283 $A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \mathrm{\mu Jy} $ \\
     283$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
    284284\hline
    2852855000 & 50 & 66 \\
    2862865000 & 25 & 33 \\
    287 100 000 & 50 & 3.5 \\
    288 100 000 & 25 & 1.7 \\
     287100 000 & 50 & 3.3 \\
     288100 000 & 25 & 1.66 \\
    289289500 000 & 50 & 0.66 \\
    290290500 000 & 25 & 0.33 \\
     
    494494bandwidth $\delta \nu$, with an integration time $t_{int}$, characterized by a system temperature
    495495$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
    496 $\sigma_{noise}^2 = \frac{4 \Tsys^2}{t_{int} \, \delta \nu}$. This term
     496$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
    497497corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
    498 noise. If the receiver has an effective area $A \simeq \pi D^2$ or $A \simeq 4 D_x D_y$, the measurement
     498noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
    499499corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
    500500The sky temperature measurement can thus be characterized by the noise spectral power density in
     
    503503\begin{eqnarray}
    504504P_{noise}^{(u,v)} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 }  \\
    505 P_{noise}^{(u,v)} & \simeq & \frac{ \Tsys^2 }{t_{int}  \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
     505P_{noise}^{(u,v)} & \simeq & \frac{2 \, \Tsys^2 }{t_{int}  \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
    506506\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \\
    507507\end{eqnarray}
     
    523523The three dimensional projected noise spectral density can then be written as:
    524524\begin{equation}
    525 P_{noise}(k) = \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     525P_{noise}(k) = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
    526526\end{equation}
    527527
     
    560560The noise power spectral density  could then be written as:
    561561\begin{equation}
    562 P_{noise}^{survey}(k) = \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
     562P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
    563563\end{equation}
    564564For a single dish instrument equipped with a multi-feed or phase array receiver system,
     
    704704\mbox{
    705705\hspace*{-10mm}
    706 \includegraphics[width=\textwidth]{Figs/pnoisea2g.pdf}
     706\includegraphics[width=\textwidth]{Figs/pkna2h.pdf}
    707707}
    708708\vspace*{-10mm}
     
    714714
    715715\section{ Foregrounds and Component separation }
    716 
     716Reaching the required sensitivities is not the only difficulty of observing the large
     717scale structures in 21 cm. Indeed, the synchrotron emission of the
     718Milky Way and the extra galactic radio sources is a thousand time brighter than the
     719emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
     720using Intensity Mapping, without identifying the \HI point sources is the main challenge
     721for this novel observation method. Although this task might seem impossible at first,
     722it has been suggested that the smooth frequency dependence of the synchrotron
     723emissions can be used to separate the faint LSS signal from the Galactic and radio source
     724emissions. However, any real radio instrument has a beam shape which changes with
     725frequency which significantly increases the difficulty and complexity of this component separation
     726technique. The effect of frequency dependent beam shape is often referred to as {\em
     727mode mixing} \citep{morales.09}.
     728
     729In this section, we present a short description of the foreground emissions and
     730the simple models we have used for computing the sky radio emissions in the GHz frequency
     731range. We present also a simple component separation method to extract the LSS signal and
     732its performance. We show in particular the effect of the instrument response and possible
     733way of getting around this difficulty. The results presented in this section concern the
     734total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
     735corresponding to the central frequency $\nu \sim 884$ MHz. 
     736 
    717737\subsection{ Synchrotron and radio sources }
    718 % {\color{red}  \large \it  Reza (+  J.M. Martin ?) + CMV   } \\[1mm]
    719 
    720 Description of the radio foregrounds for LSS@21cm and the sky models used
    721 \begin{itemize}
    722 \item Galactic synchrotron
    723 \item Radio sources : spectral behavior and brightness distribution
    724 \item GSM global sky model (Angelica)
    725 \item simple sky model : Synchrotron (HASLAM/WMAP) + sources (North20 / NVSS catalogue )
    726 \end{itemize}
     738We have modeled the radio in the form of three dimensional maps (data cubes) of sky temperature
     739brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
     740and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
     741$90 \times 30 \simeq 2500 \mathrm{deg^2}$ of the sky, centered on $\alpha= 10:00 \mathrm{h} , \delta=+10 \mathrm{deg.}$,
     742and  covering 128 MHz in frequency. The sky cube characteristics (coordinate range, size, resolution)
     743used in the simulations is given in the table below:
     744\begin{center}
     745\begin{tabular}{|c|c|c|}
     746\hline
     747 & range & center  \\
     748\hline
     749Right ascension & 105 $ < \alpha < $ 195 deg. &  150 deg.\\
     750Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
     751Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
     752Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
     753Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
     754\hline
     755\hline
     756& resolution & N-cells \\
     757\hline
     758Right ascension & 3 arcmin & 1800 \\
     759Declination & 3 arcmin & 600 \\
     760Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
     761\hline
     762\end{tabular} \\
     763Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$   \\
     764$ 1800 \times 600 \times 256 \simeq 123 \, 10^6$ cells
     765\end{center}
     766
     767Two different methods have been used to compute the sky temperature data cubes.
     768We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
     769maps of the emission temperature at different frequencies, from which we have
     770extracted the brightness temperature cube for the region defined above
     771(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
     772As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
     773difficult to have reliable results for the effect of point sources on the reconstructed
     774LSS power spectrum.
     775
     776We have thus also created a simple sky model using the Haslam Galactic synchrotron map
     777at 408 Mhz \citep{haslam.08} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
     778catalog \cite{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
     779has been computed through the following steps:
     780
     781\begin{enumerate}
     782\item The Galactic synchrotron emission is modeled as a sum of two power law.
     783We assign a power law index $\beta = -2.8  \pm 0.15$ to each sky direction.
     784$\beta$ has a gaussian distribution centered at -2.8 and with standard
     785deviation $\sigma_\beta = 0.15$.
     786The synchrotron contribution to the sky temperature for each cell is then
     787obtained  through the formula:
     788$$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 MHz}\right)^\beta $$
     789%%
     790\item A two dimensional $T_{nvss}(\alpha,\delta)$sky brightness temperature at 1.4 GHz is computed
     791by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
     792the sky cubes is computed. The source brightness in Jansky is converted to temperature taking the
     793pixel angular size into account ($ \sim 21 \mathrm{mK / mJansky}$ at 1.4 Ghz and $3' \times 3'$ pixels). 
     794A sepctral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
     795map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
     796contribution of the radiosources to the sky temperature is computed as follow:
     797$$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 MHz}\right)^{\beta_{src}} $$
     798%%
     799\item The sky brightness temperature data cube is obtained through the sum of
     800the two contributions, Galactic synchrotron and resolved radio sources:
     801$$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{sync}(\alpha, \delta, \nu) $$
     802\end{enumerate}
     803
     804 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
     805$T_{lss}(\alpha, \delta, \nu)$  has been computed using the SimLSS software package
     806\footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} }. 
     807{\color{red}: CMV, please add few line description of SimLSS}.
     808We have generated the mass fluctuations $\delta \rho/rho$ at $z=0.6$, in cells of size
     809$1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
     810sky cube angular and frequency resolution defined above.  The mass fluctuations has been
     811converted into temperature through a factor $0.13 mK$, corresponding to a hydrogen
     812fraction $0.008x(1+0.6)$.  The total sky brightness temperature is then computed as the sum
     813of foregrounds and the LSS 21 cm emission:
     814$$  T_{sky} = T_{sync}+T_{radsrc}+T_{lss}   \hspace{5mm} OR \hspace{5mm}
     815T_{sky} = T_{gsm}+T_{lss} $$
     816
     817Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
     818temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
     819Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
     820with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
     821Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
     822for Model-I/GSM and Model-II. There is good agreement between the two models, although
     823the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
     824
     825\begin{table}
     826\begin{tabular}{|c|c|c|}
     827\hline
     828 & mean (K) & std.dev (K) \\
     829\hline
     830Haslam & 2.17 & 0.6 \\
     831NVSS & 0.13 & 7.73 \\
     832Haslam+NVSS & 2.3 & 7.75 \\
     833(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
     834GSM & 2.1 & 0.8 \\
     835\hline
     836\end{tabular}
     837\caption{ Mean temperature and standard deviation for the different sky brightness
     838data cubes computed for this study}
     839\label{sigtsky}
     840\end{table}
     841
     842we have computed the power spectrum on the 21cm-LSS sky temperature cube, as well
     843as on the radio foreground temperature cubes computed using our two foreground
     844models. We have also computed the power spectrum on sky brightness temperature
     845cubes, as measured by a perfect instrument having a 25 arcmin gaussian beam.
     846The resulting computed power spectrum are shown on figure \ref{pkgsmlss}.
     847The GSM model has more large scale power compared to our simple model, while
     848it lacks power at higher spatial frequencies. The mode mixing due to
     849frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
     850case. It can also be seen that the radio foreground power spectrum is more than
     851$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
     852to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
     853compared to the mK LSS signal. 
     854
     855\begin{figure}
     856\centering
     857\mbox{
     858\hspace*{-10mm}
     859\includegraphics[width=0.5\textwidth]{Figs/comptempgsm.pdf}
     860}
     861\caption{Comparison of GSM (black) Model-II (red) sky cube temperature distribution.
     862The Model-II (Haslam+NVSS),
     863has been smoothed with a 35 arcmin gaussian beam. }
     864\label{compgsmhtemp}
     865\end{figure}
     866
     867\begin{figure*}
     868\centering
     869\mbox{
     870\hspace*{-10mm}
     871\includegraphics[width=\textwidth]{Figs/compmapgsm.pdf}
     872}
     873\caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
     874The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin gaussian beam.}
     875\label{compgsmmap}
     876\end{figure*}
     877
     878\begin{figure}
     879\centering
     880\vspace*{-20mm}
     881\mbox{
     882\hspace*{-20mm}
     883\includegraphics[width=0.7\textwidth]{Figs/pk_gsm_lss.pdf}
     884}
     885\vspace*{-30mm}
     886\caption{Comparison of the 21cm LSS power spectrum (red, orange) with the radio foreground power spectrum.
     887The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
     888model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
     889as observed by a perfect instrument with a 25 arcmin beam.}
     890\label{pkgsmlss}
     891\end{figure}
     892
     893
    727894
    728895\subsection{ LSS signal extraction }
    729 {\color{red} \large \it  CMV + Reza  +  J.M. Martin  } \\[1mm]
     896% {\color{red} \large \it  CMV + Reza  +  J.M. Martin  } \\[1mm]
    730897Description of the component separation method and the results
    731898\begin{itemize}
     
    741908
    742909\section{ BAO scale determination and constrain on dark energy parameters}
    743 {\color{red} \large \it  CY ( + JR  )  } \\[1mm]
     910% {\color{red} \large \it  CY ( + JR  )  } \\[1mm]
    744911We compute  reconstructed LSS-P(k) (after component separation) at different z's
    745912and determine BAO scale as a function of redshifts.
     
    757924
    758925
    759 \begin{figure*}
    760 \centering
    761 \includegraphics[width=0.85\textwidth]{Figs/compexlss.png}
    762 \caption{Comparison of the original simulated LSS (frequency plane) and the recovered LSS.
    763 Color scale in mK }
    764 \label{figcompexlss}
    765 \end{figure*}
    766 
    767 \begin{figure*}
    768 \centering
    769 \includegraphics[width=0.85\textwidth]{Figs/compexfg.png}
    770 \caption{Comparison of the original simulated foreground  (frequency plane) and
    771 the recovered foreground map. Color scale in Kelvin }
    772 \label{figcompexfg}
    773 \end{figure*}
    774 
    775 \begin{figure*}
    776 \centering
    777 \includegraphics[width=0.7\textwidth]{Figs/pklssfg.pdf}
    778 \caption{Comparison of the LSS power spectrum at 21 cm at 900 MHz ($z \sim 0.6$)
    779 and the synchrotron/radio sources - GSM (Global Sky Model) foreground sky cube}
    780 \label{figcompexfg}
    781 \end{figure*}
    782 
    783 
    784 \begin{figure*}
    785 \centering
    786 \includegraphics[width=0.7\textwidth]{Figs/exlsspk.pdf}
    787 \caption{Recovered LSS power spectrum, after component separation - - GSM (Global Sky Model) foreground sky cube}
    788 \label{figexlsspk}
    789 \end{figure*}
     926% \caption{Comparison of the original simulated LSS (frequency plane) and the recovered LSS.
     927% Color scale in mK }  \label{figcompexlss}
     928
     929% \caption{Comparison of the original simulated foreground  (frequency plane) and
     930% the recovered foreground map. Color scale in Kelvin }  \label{figcompexfg}
     931
     932% \caption{Comparison of the LSS power spectrum at 21 cm at 900 MHz ($z \sim 0.6$)
     933% and the synchrotron/radio sources - GSM (Global Sky Model) foreground sky cube}
     934% \label{figcompexfg}
     935
     936
     937% \caption{Recovered LSS power spectrum, after component separation - - GSM (Global Sky Model) foreground sky cube}
     938% \label{figexlsspk}
    790939
    791940\bibliographystyle{aa}
     
    806955\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A.  {\it et al.} (the 2dFGRS Team) 2005,  \mnras, 362, 505
    807956
     957% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
     958\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
     959Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
     960
    808961%  Parametrisation P(k)
    809962\bibitem[Eisentein \& Hu  (1998)]{eisenhu.98}  Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112)
    810963
    811 % :SDSS first BAO observation
     964% SDSS first BAO observation
    812965\bibitem[Eisentein et al. (2005)]{eisenstein.05}  Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005,  \apj, 633, 560
    813966
     
    815968\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \&  Briggs, F. 2006, \physrep, 433, 181-301
    816969
     970% Haslam 400 MHz synchrotron map
     971\bibitem[Haslam et al. (1982)]{haslam.82} Haslam  C. G. T.,  Salter C. J., Stoffel H., Wilson W. E., 1982,
     972Astron. \& Astrophys.  Supp.  Vol 47, {\tt (http://lambda.gsfc.nasa.gov/product/foreground/haslam\_408.cfm)}
     973
    817974%  WMAP CMB anisotropies 2008
    818975\bibitem[Hinshaw et al. (2008)]{hinshaw.08}  Hinshaw, G., Weiland, J.L., Hill, R.S.  {\it et al.} 2008, arXiv:0803.0732)
    819976
    820977% HI mass in galaxies
    821 \bibitem[Lah et al. (2009)]{lah.09}  Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al.
    822 MNRAS  2009,  ( astro-ph/0907.1416)
     978\bibitem[Lah et al. (2009)]{lah.09}  Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al.  2009,  \mnras
     979( astro-ph/0907.1416)
    823980
    824981%  Boomerang 2000, Acoustic pics
    825982\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.}  2000, \apjl, 536,59
     983
     984%  Papier sur le traitement des obseravtions radio / mode mixing - REFERENCE A CHERCHER
     985\bibitem[Morales et al. (2009)]{morales.09} Morales, M and other 2009, arXiv:0999.XXXX
     986
     987%  Global Sky Model Paper
     988\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M.  {\it et al.} 2008,
     989\mnras, 388, 247-260
    826990
    827991% Original CRT HSHS paper
Note: See TracChangeset for help on using the changeset viewer.