Changeset 4032 in Sophya for trunk/Cosmo


Ignore:
Timestamp:
Nov 3, 2011, 6:50:50 PM (14 years ago)
Author:
ansari
Message:

Version V2 soumise a A&A, Reza 3/11/2011

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Cosmo/RadioBeam/sensfgnd21cm.tex

    r4031 r4032  
    6767% Commande pour marquer les changements du papiers pour le referee
    6868\def\changemark{\bf }
     69% \def\changemark{ }
    6970
    7071%%% Definition pour la section sur les param DE par C.Y
     
    140141instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
    141142  % methods heading (mandatory)
    142  { For each configuration, we determine instrument response by computing the (u,v) or Fourier angular frequency
    143 plane  coverage using visibilities. The (u,v) plane response is the noise power spectrum,
     143 { For each configuration, we determine instrument response by computing the $(\uv)$ or Fourier angular frequency
     144plane  coverage using visibilities. The $(\uv)$ plane response is the noise power spectrum,
    144145hence the instrument sensitivity for LSS P(k) measurement. We describe also   a simple foreground subtraction method to
    145146separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
     
    287288Intensity mapping has been suggested as an alternative and economic method to map the
    2882893D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} \citep{seo.10}.
    289 {\changemark There have even tentatives to detect the 21 cm LSS signal at GBT
     290{\changemark There have been attempts to detect the 21 cm LSS signal at GBT
    290291\citep{chang.10} and at GMRT \citep{ghosh.11}}.
    291292In this approach, sky brightness map with angular resolution $\sim 10-30 \, \mathrm{arc.min}$ is made for a
     
    348349\subsection{ \HI power spectrum and BAO}
    349350In the absence of any foreground or background radiation
    350 {\changemark and assuming high spin temperature $\kb T_{spin} \gg h \nu_{21}$},
     351{\changemark and assuming high spin temperature, $\kb T_{spin} \gg h \nu_{21}$},
    351352the brightness temperature for a given direction and wavelength $\TTlam$ would be proportional to
    352353the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
     
    541542${\cal R}_b(\uv,\lambda)$.
    542543For an interferometer, we can compute a raw instrument response
    543 ${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(u,v)$ plane coverage by all
     544${\cal R}_{raw}(\uv,\lambda)$ which corresponds to $(\uv)$ plane coverage by all
    544545receiver pairs  with uniform weighting.
    545546Obviously, different weighting schemes can be used, changing
     
    556557in particular in section \ref{recsec}. 
    557558
    558 {\changemark Detection of the reionisation at 21 cm band has been an active field
     559{\changemark Detection of the reionisation at 21 cm has been an active field
    559560in the last decade and different groups have built
    560561instruments to detect reionisation signal around 100 MHz: LOFAR
     
    636637P_{noise}(k_x,k_y, z)  & = & P_{noise}(\uv)
    637638 \frac{ 8 \pi^3 \delta \uvu \times \delta \uvv }{\delta k_x \times \delta k_y \times \delta k_z} \\
    638 P_{noise}(k_x,k_y, z) & = &   \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \right)
     639                      & = &   \left( 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2}  \right)
    639640   \, \frac{1}{{\cal R}_{raw}} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4 
    640641\label{eq:pnoisekxkz}
    641642\end{eqnarray}
    642643
    643 It is worthwhile to notice that the cosmological 3D noise power spectrum does not depend anymore on the
    644 individual measurement bandwidth.
     644It is worthwhile to note that the ``cosmological'' 3D noise power spectrum does not depend
     645anymore on the individual measurement bandwidth.
    645646In the following paragraph, we will first consider an ideal instrument
    646647with uniform $(\uv)$ coverage
     
    683684
    684685It is important to note that any real instrument do not have a flat
    685 response in the $(u,v)$ plane, and the observations provide no information above
     686response in the $(\uv)$ plane, and the observations provide no information above
    686687a certain maximum angular frequency $u_{max},v_{max}$.
    687688One has to take into account either a damping of the observed sky power
     
    738739as a function of redshift (top), for a one year survey of a quarter of the sky. Bottom:
    739740maximum $k$ value for 21 cm LSS power spectrum measurement by  a 100 meter diameter
    740 primary antenna (bottom) }
     741primary antenna. }
    741742\label{pnkmaxfz}
    742743\end{figure}
     
    758759This correspond to an angular wedge $\sim 25^\circ \times 25^\circ \times (\Delta z \simeq 0.3)$. Given
    759760the small angular extent, we have neglected the curvature of redshift shells.
    760 \item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization. $(k_x,k_y)$ is
    761 converted to the $(\uv)$ angular frequency coordinates using the equation \ref{eq:uvkxky}, and the
     761\item For each redshift shell $z(\nu)$, we compute a Gaussian noise realization.
     762The coordinates $(k_x,k_y)$ are converted to the $(\uv)$ angular frequency coordinates
     763using equation (\ref{eq:uvkxky}), and the
    762764angular diameter distance $\dang(z)$ for \LCDM model with standard WMAP parameters \citep{komatsu.11}.
    763765The noise variance is taken proportional to $P_{noise}$ :
     
    766768\end{equation}
    767769\item an FFT is then performed in the frequency or redshift direction to obtain the noise Fourier
    768 complex coefficients $n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
    769 \begin{equation}
    770 \tilde{P}_{noise}(k) = < | n(k_x,k_y,k_z) |^2 >  \hspace{2mm}  \mathrm{for} \hspace{2mm}
     770complex coefficients ${\cal F}_n(k_x,k_y,k_z)$ and the power spectrum is estimated as :
     771\begin{equation}
     772\tilde{P}_{noise}(k) = < | {\cal F}_n(k_x,k_y,k_z) |^2 >  \hspace{2mm}  \mathrm{for} \hspace{2mm}
    771773  \sqrt{k_x^2+k_y^2+k_z^2} = k
    772774\end{equation}
    773775Noise samples corresponding to small instrument response, typically less than 1\% of the
    774776maximum instrument response are ignored when calculating  $\tilde{P}_{noise}(k)$.
    775 However, we require to have a significant fraction, typically 20\% to 50\% of the possible modes
     777However, we require to have a significant fraction, typically 20\% to 50\% of all possible modes
    776778$(k_x,k_y,k_z)$ measured for a given $k$ value.
    777779\item the above steps are repeated $\sim$ 50 times to decrease the statistical fluctuations
     
    783785power spectrum shape, neglecting the redshift or frequency dependence of the
    784786instrument response function and $\dang(z)$ for a small redshift interval around $z_0$,
    785 using a fixed  instrument response ${\cal R}(u,v,\lambda(z_0))$ and
     787using a fixed  instrument response ${\cal R}(\uv,\lambda(z_0))$ and
    786788a constant the radial distance $\dang(z_0)*(1+z_0)$.
    787789\begin{equation}
    788 \tilde{P}_{noise}(k) = < | n(k_x,k_y,k_z) |^2 > \simeq < P_{noise}(u,v, k_z) >
     790\tilde{P}_{noise}(k) = < |  {\cal F}_n (k_x,k_y,k_z) |^2 > \simeq < P_{noise}(\uv, k_z) >
    789791\end{equation}
    790 The approximate power spectrum obtain through this simplified and much faster
     792The approximate power spectrum obtained through this simplified and much faster
    791793method is shown as dashed curves on figure \ref{figpnoisea2g} for few instrument
    792794configurations.
     
    850852However, we have introduced a filling factor or illumination efficiency
    851853$\eta$, relating the effective dish diameter $D_{ill}$ to the
    852 mechanical dish size $D^{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
     854mechanical dish size $D_{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
    853855as $\eta^2$ or $\eta_x \eta_y$.
    854856\begin{eqnarray}
    855 {\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm  D^{ill}/ \lambda]}(\sqrt{u^2+v^2})  \\
     857{\cal L}_\circ (\uv,\lambda) & = & \bigwedge_{[\pm  \eta D_{dish}/ \lambda]}(\sqrt{u^2+v^2})  \\
    856858 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
    857859\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
     
    861863
    862864For the receivers along the focal line of cylinders, we have assumed that the
    863 individual receiver response in the $(u,v)$ plane corresponds to one from a
     865individual receiver response in the $(\uv)$ plane corresponds to one from a
    864866rectangular shaped antenna. The illumination efficiency factor has been taken
    865867equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
     
    879881is the case for a transit type telescope.
    880882
    881 Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(u,v,\lambda)$
     883Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(\uv,\lambda)$
    882884for the four configurations (a,b,c,d) with $\sim 100$ receivers per
    883885polarisation.
     
    899901\includegraphics[width=\textwidth]{Figs/uvcovabcd.pdf}
    900902}
    901 \caption{$(\uv)$ plane coverage (raw instrument response ${\cal R}(\uv,\lambda)$
    902 for four configurations.
     903\caption{Raw instrument response ${\cal R}(\uv,\lambda)$ or the $(\uv)$ plane coverage
     904at 710 MHz (redshift $z=1$) for four configurations.
    903905(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
    904906of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each (fig. \ref{figconfbc}),
     
    916918}
    917919\vspace*{-20mm}
    918 \caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ and noise power spectrum for several interferometer
    919 configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
     920\caption{P(k) 21 cm LSS power spectrum at redshift $z=1$ with $\gHI=2\%$
     921and the noise power spectrum for several interferometer configurations
     922 ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers. The noise power spectrum has been
    920923computed for all configurations assuming a survey of a quarter of the sky over one year,
    921924with a system temperature $\Tsys = 50 \mathrm{K}$. }
     
    941944frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
    942945technique. The effect of frequency dependent beam shape is some time referred to as {\em
    943 mode mixing}.  {\changemark Effect of the frequency dependent beam shape on foreground subtraction
     946mode mixing}.  {\changemark The effect of the frequency dependent beam shape on foreground subtraction
    944947has been discussed for example in \cite{morales.06}.}
    945948
     
    947950the simple models we have used for computing the sky radio emissions in the GHz frequency
    948951range. We present also a simple component separation method to extract the LSS signal and
    949 its performance. {\changemark The analysis presented here follow a similar path to
     952its performance. {\changemark The analysis presented here follows a similar path to
    950953a detailed foreground subtraction study carried for MWA at $\sim$ 150 MHz by \cite{bowman.09}. }
    951954We compute in particular the effect of the instrument response on the recovered
     
    10111014deviation $\sigma_\beta = 0.15$. {\changemark The
    10121015diffuse radio background spectral index has been measured  for example by
    1013 \citep{platania.98} or \cite{rogers.08}.}
     1016\cite{platania.98} or \cite{rogers.08}.}
    10141017The synchrotron contribution to the sky temperature for each cell is then
    10151018obtained  through the formula:
     
    11041107The GSM model lacks the angular resolution needed to compute
    11051108correctly the effect of bright compact sources for 21 cm LSS observations and
    1106 the mode mixing due to frequency dependent instrument, while Model-II
    1107 provides a reasonable description of these compact sources. Our simulated
     1109the mode mixing due to the frequency dependence of the instrumental response,
     1110while Model-II provides a reasonable description of these compact sources. Our simulated
    11081111sky cubes have an angular resolution $3'\times3'$, well below the typical
    11091112$15'$ resolution of the instrument configuration considered here.
     
    11131116in their power spectra shown in figure \ref{pkgsmlss}. The smoothing or convolution with
    11141117a 25' beam has negligible effect of the GSM power spectrum, as it originally lacks
    1115 structures below 0.5 degree. We hope that by using
     1118structures below 0.5 degree. By using
    11161119these two models, we have explored some of the systematic uncertainties
    11171120related to foreground subtraction.}
     
    11331136}
    11341137\vspace*{-10mm}
    1135 \caption{Comparison of GSM (black) Model-II (red) sky cube temperature distribution.
     1138\caption{Comparison of GSM (black) and Model-II (red) sky cube temperature distribution.
    11361139The Model-II (Haslam+NVSS),
    11371140has been smoothed with a 35 arcmin gaussian beam. }
     
    11451148\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
    11461149}
    1147 \caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
     1150\caption{Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz.
    11481151The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
    11491152\label{compgsmmap}
     
    11521155\begin{figure}
    11531156\centering
    1154 \vspace*{-25mm}
     1157% \vspace*{-25mm}
    11551158\mbox{
    1156 \hspace*{-15mm}
    1157 \includegraphics[width=0.65\textwidth]{Figs/pk_gsm_lss.pdf}
     1159\hspace*{-6mm}
     1160\includegraphics[width=0.52\textwidth]{Figs/pk_gsm_lss.pdf}
    11581161}
    1159 \vspace*{-40mm}
    1160 \caption{Comparison of the 21cm LSS power spectrum (red, orange) with the radio foreground power spectrum.
     1162\vspace*{-5mm}
     1163\caption{Comparison of the 21cm LSS power spectrum at $z=0.6$ with $\gHI=1\%$ (red, orange)
     1164with the radio foreground power spectrum.
    11611165The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
    11621166model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
    1163 as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.}
     1167as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam. This beam has
     1168negligible effect on the GSM/Model-I power spectrum, as GSM has no structures below $\sim 0.5^\circ$.
     1169}
    11641170\label{pkgsmlss}
    11651171\end{figure}
     
    11801186\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
    11811187$ {\cal R}(\uv,\lambda_k)  \lesssim 1$.
    1182 $$  {\cal T}_{sky}(\uv, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda_k) $$
     1188$$  {\cal T}_{sky}(\uv, \lambda_k)  \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(\uv,\lambda_k) $$
    11831189\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
    11841190without instrumental (electronic/$\Tsys$) white noise:
     
    11871193\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
    11881194the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
    1189 {\changemark The white noise hypothesis is reasonable at this level, as $(\uv)$
    1190 dependent instrument response has already been applied.}
     1195{\changemark The white noise hypothesis is reasonable at this level, since $(\uv)$
     1196dependent instrumental response has already been applied.}
    11911197We have also considered that the system temperature and thus the
    11921198additive white noise level was independent of the frequency or wavelength.   
     
    12111217{\changemark
    12121218The virtual target beam ${\cal R}_f(\uv)$  has a lower resolution than the worst real instrument beam,
    1213 i.e at the lowest observed frequency.  We assume that the intrinsic instrument response is known up to a threshold
    1214 numerical level of about $ \gtrsim 1 \%$ for  ${\cal R}(u,v,\lambda)$. We recall that this is the normalized instrument response,
    1215 ${\cal R}(\uv\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$  has also a numerical upper
    1216 bound around $\sim$100. }
     1219i.e at the lowest observed frequency.
     1220No correction has been  applied for modes with ${\cal R}(\uv,\lambda) \lesssim 1\%$, as a first
     1221attempt to represent imperfect knowledge of the instrument response.
     1222We recall that this is the normalized instrument response,
     1223${\cal R}(\uv,\lambda) \lesssim 1$. The correction factor ${\cal R}_f(\uv) / {\cal R}(\uv,\lambda)$  has also a numerical upper bound $\sim 100$. }
    12171224\item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
    12181225 is fitted to the beam-corrected brightness temperature. The fit is done through a linear $\chi^2$ fit in
     
    12521259present in the original map have been correctly recovered, although the amplitude of the temperature
    12531260fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map.
    1254 {\changemark This is mostly due to the damping of the large scale ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
     1261{\changemark This is mostly due to the damping of the large scale power ($k \lesssim 0.1 h \mathrm{Mpc^{-1}} $)
    12551262due to the foreground subtraction procedure (see figure \ref{extlssratio}).}
    12561263
     
    12661273with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
    12671274such a smooth beam, compared to the more complex instrument response
    1268 ${\cal R}(u,v,\lambda)$ used for the results shown in figure \ref{extlsspk}.
     1275${\cal R}(\uv,\lambda)$ used for the results shown in figure \ref{extlsspk}.
    12691276
    12701277\begin{figure*}
    12711278\centering
    1272 \vspace*{-25mm}
     1279% \vspace*{-25mm}
    12731280\mbox{
    1274 \hspace*{-20mm}
    1275 \includegraphics[width=1.15\textwidth]{Figs/extlsspk.pdf}
     1281% \hspace*{-20mm}
     1282\includegraphics[width=\textwidth]{Figs/extlsspk.pdf}
    12761283}
    1277 \vspace*{-35mm}
     1284% \vspace*{-10mm}
    12781285\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
    1279 continuum radio emissions at $z \sim 0.6$, for the instrument configuration (a), $11\times11$
     1286continuum radio emissions at $z \sim 0.6, \gHI=1\%$, for the instrument configuration (a), $11\times11$
    12801287packed array interferometer.
    1281 Left: GSM/Model-I , right: Haslam+NVSS/Model-II. black curve shows the residual after foreground subtraction,
    1282 corresponding to the 21 cm signal, WITHOUT applying the beam correction. Red curve shows the recovered 21 cm
    1283 signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange/yellow curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
     1288Left: GSM/Model-I , right: Haslam+NVSS/Model-II. The black curve shows the residual after foreground subtraction,
     1289corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red curve shows the recovered 21 cm
     1290signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
    12841291\label{extlsspk}
    12851292\end{figure*}
     
    13511358becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
    13521359
    1353 We have determined the transfer function parameters of eq. \ref{eq:tfanalytique} $k_A, k_B, k_C$
     1360We have determined the transfer function parameters of equation (\ref{eq:tfanalytique}) $k_A, k_B, k_C$
    13541361for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
    13551362for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
     
    13761383\begin{figure}
    13771384\centering
    1378 \vspace*{-25mm}
     1385% \vspace*{-25mm}
    13791386\mbox{
    1380 \hspace*{-10mm}
    1381 \includegraphics[width=0.6\textwidth]{Figs/extlssratio.pdf}
     1387% \hspace*{-10mm}
     1388\includegraphics[width=0.5\textwidth]{Figs/extlssratio.pdf}
    13821389}
    1383 \vspace*{-30mm}
    1384 \caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$.  for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of perfect gaussian beam of $\sim 30'$ is shown in black.
     1390% \vspace*{-30mm}
     1391\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $ (transfer function), at $z \sim 0.6$.  for the instrument configuration (a), $11\times11$ packed array interferometer. The effect of a frequency independent
     1392gaussian beam of $\sim 30'$ is shown in black.
    13851393The transfer function $\TrF(k)$  for the instrument configuration (a), $11\times11$ packed array interferometer,
    13861394for the GSM/Model-I is shown in red, and in orange for Haslam+NVSS/Model-II. The transfer function
     
    13921400\begin{figure}
    13931401\centering
    1394 \vspace*{-25mm}
     1402% \vspace*{-25mm}
    13951403\mbox{
    1396 \hspace*{-10mm}
    1397 \includegraphics[width=0.6\textwidth]{Figs/tfpkz0525.pdf}
     1404% \hspace*{-10mm}
     1405\includegraphics[width=0.5\textwidth]{Figs/tfpkz0525.pdf}
    13981406}
    1399 \vspace*{-30mm}
     1407%\vspace*{-30mm}
    14001408\caption{Fitted/smoothed  transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
    14011409$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
     
    17181726matrix with the Fisher matrix obtained for Planck mission, allows us to
    17191727compute the errors on dark energy parameters.
    1720 The Planck Fisher matrix is
    1721 obtained for the 8 parameters (assuming a flat universe):
     1728{\changemark We have used the Planck Fisher matrix, computed for the
     1729Euclid proposal \citep{laureijs.09}, for the 8 parameters:
    17221730$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
    17231731$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
    1724 $\tau$  (optical depth to the last-scatter surface).
    1725 
     1732$\tau$  (optical depth to the last-scatter surface),
     1733assuming a flat universe. }
    17261734
    17271735For an optimized project over a redshift range, $0.25<z<2.75$, with a total
     
    17301738The  Figure of Merit, the inverse of the area in the 95\% confidence level
    17311739contours  is 38.
    1732  Finally, Fig.~\ref{fig:Compw0wa}
     1740Finally, Fig.~\ref{fig:Compw0wa}
    17331741shows a comparison of different BAO projects, with a set of priors on
    17341742$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
    1735 these parameters in early 2010's. This BAO project based on \HI intensity
     1743these parameters in early 2010's. {\changemark The confidence contour
     1744level in the plane $(w_0,w_a)$  have been obtained by marginalizing
     1745over all the other parameters.} This BAO project based on \HI intensity
    17361746mapping is clearly competitive with the current generation of optical
    17371747surveys such as SDSS-III \citep{sdss3}.
     
    17421752\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
    17431753\caption{$1\sigma$ and $2\sigma$ confidence level contours  in the
    1744 parameter plane $(w_0,w_a)$ for two BAO projects:   SDSS-III (LRG) project
     1754parameter plane $(w_0,w_a)$, marginalized over all the other parameters,
     1755for two BAO projects:   SDSS-III (LRG) project
    17451756(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
    17461757\label{fig:Compw0wa}
     
    18701881{\it LSST Science book}, LSST Science Collaborations, 2009, arXiv:0912.0201 
    18711882
     1883% Planck Fischer matrix, computed for EUCLID
     1884\bibitem[Laureijs (2009)]{laureijs.09} Laureijs, R. 2009, ArXiv:0912.0914
     1885
    18721886% Temperature du 21 cm
    18731887\bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
Note: See TracChangeset for help on using the changeset viewer.