Table of content

- 1. Introduction
- 2. The ATLAS Detector, the Insertable B-layer (IBL) and the super LHC project
 - a. The Inner detector
 - b. Other Systems
 - c. The Insertable B-Layer (IBL)
 - d. The super-LHC project

3. Principles of Silicon Sensors

- a. Silicon sensors in HEP
- b. Planar Pixel Sensor Technology
- c. Other detectors
- d. Cutting edge
- e. Fabrication of pixel sensors

4. Technology Computer-Assisted Design as a tool for Silicon Sensor simulation and optimization

- a. Principles of TCAD Simulation
- b. Boundary conditions
- c. The physics models
- d. Process Simulation
- e. DC Simulation
- f. Transient Simulation

5. Radiation Damage in Silicon sensors

- a. Microscopic effects of Radiation Damage
 - i. Bulk
 - ii. Surface
- b. From Microscopic effects to measurable quantities
- c. The Charge Amplification phenomenon

6. The Multi-Guard Ring Structure and its application to High Energy Physics detectors

- a. The principles of Guard Ring Structures
- b. Optimization on Guard Ring structure for Radiation Hardness

7. Experimental validation of TCAD Simulation models

- a. Doping Profile Measurements
 - i. SIMS
 - ii. SRP
 - iii. AFM
- b. Assembling a Clean-Room for high precision Silicon sensor Characterization
 - i. The Probe Station Experimental Station
 - 1. IV
 - 2. CV
 - 3. VV
 - ii. The Transient Experimental Station
 - 1. TCT
 - 2. Source
- c. Experimental Validation of TCAD Simulation
 - i. Guard Ring measurements
 - ii. Current
 - iii. Depletion Potential
 - iv. Charge Amplification
- d. Test Beam Validation of TCAD Simulation

8. From TCAD and experimental data to Digitization

- a. Principle of Monte-Carlo Charge Transport Simulation
- b. Principle of Silicon Sensor digitization
- c. Implementation of Digitization in Test Beam Simulation
 - i. FEI3
 - ii. FEI4

9. Higgs -> TauTau benchmark with the Insertable B-Layer (IBL)

- a. The Higgs -> TauTau phenomenology used in simulation
- b. IBL Simulation
 - i. Thin vs. thick sensor
 - ii. Slim edges

10. Perspective for future Radiation-Hard Silicon Planar Pixel sensors

- a. 3D Electronics front-end read-out for a smarter detector
- b. Charge-Amplification Pixel Structure: The Avalanche Pixel Particle Detector (APPD)

11. Conclusion