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This library allows for the computation of normal form procedure on the ray 
representation of the map or on a single Lie exponent map (i.e. "pseudo-Hamiltonian). Of course, 
all these objects must be represented as Taylor series. The library links with the old DA-library of 
Berz. 

The code can perform two types of normal form:

1) On symplectic maps using the Poisson bracket operator :f: defined through a function f as 
follows:

:f:g=[f,g]
The implementation covers the case of stable or unstable tunes as described in reference 

1. 

2) On non-symplectic maps using Lie operator Fi  ∂ i . Clearly, 1) is a special case of 2. This is useful 

in electron rings where the particle undergoes classical radiation. The map must have N eigenvalues 
of the form 
exp(-ai± 2  Qπ i) where N is the dimension of the flow. The present document does not describe 

these routines.

Glossary

Ndim2 = maximum phase space dimension allowed = 6
Ndim = Ndim2/2
Nd2    = phase space dimension used
Nd      = Nd2/2 number of degrees of freedom
No      = Degree of the differential algebra calculations
Nv ...... = Number of variables:  Nv   Nd2 ≥
Ndpt = Position of the energy in a coasting beam analysis: Nd2 or Nd2-1. If all the planes 
are oscillating then Ndpt=0

DA-map =: A collection of Nd2 polynomials 



   Description of the Routines  

Initialization

      SUBROUTINE LIEINIT(NO1,NV1,ND1,NDPT1,IREF1,NIS)
Initialize lielib and the DA package by calling DAINI.
NO1=No
NV1=Nv
ND1=Nd
NDPT1=Ndpt
IREF1=IREF files where resonances are written, 

format: number of resonances
nx1 ny1
nx2 ny2

...
nxk nyk

0 if no resonance to be left in the map.
-1 no resonance and -p<tunes<p 

NIS= Number of scratch IS(N) to be allocated

Taylor Series Routine

      SUBROUTINE ETALL(X,N)
Allocates X(N) 

      SUBROUTINE ETCCT(X,Y,Z)
Performs composition of two da-maps.
Z = X °  Y 

      SUBROUTINE ETINI(X)
Creates the identity da-map.
X=E 

      SUBROUTINE ETINV(X,Y)
Creates the inverse da-map.

Y= X-1

      SUBROUTINE SIMIL(X,A,AI,Y)
Does a double composition of da-maps: hence a similarity transformation if the inverse of 

A is AI.
Y= A °  X °  AI

      SUBROUTINE DALIND(H,RH,HT,RT,HR)
Does a linear combinations of da-maps.
HR=RH H + RT HT ;   RH and RT are real numbers.

      SUBROUTINE DACOPD(H,HT)
HT=H ; H and HT are da-maps.

      SUBROUTINE DACOND(H,R)



H(i)= DACON(H(i),R) ; i=1,nd2. 
      SUBROUTINE DACMUD(H,SCA,HT)

 DACMU(H(i),SCA,HT(I)) ; i=1,nd2. 
      SUBROUTINE TAKED(H,M,HT)

Projects the Mth degree part H into HT. Both are da-maps.
      SUBROUTINE TAKE(H,M,HT) 

Projects the Mth degree part H into HT. Both are single polynomials.
      SUBROUTINE TRX(H,RH,Y)

RH=H °  Y;   RH is a polynomial and Y is a da-map.

      SUBROUTINE DAREAD(H,ND1,MFILE,IPO)
Reads H(i), i=1,ND1 from mfile. 
If IPO=0 it zeroes the zeroth order part of H(i).

      SUBROUTINE DAPRID(H,N1,N2,MFILE)
Prints H(i), i=N1,N2 into mfile. 

Manipulation Routine of the Symplectic Case

      SUBROUTINE LIEFACT(XY,X,H)
Produces the Dragt-Finn factorization of the da-map XY
XY= X exp(:H3:) ...exp(:Hno:)

      SUBROUTINE FEXPO(H,X,W,NRMIN,NRMAX,SCA,IFAC)
Produces a da-map W by acting on the da-map X with the following definitions of 

the Lie operators H. (H=H3+ ...+Hno) 

IFAC=1  Dragt-Finn map exp(:SCA H3:) ...exp(:SCA Hno:)

IFAC=-1 Reversed Dragt-Finn map exp(:SCA Hno:) ...exp(:SCAH3:)

IFAC=100 A single exponent map exp(:H:).

      SUBROUTINE EXPND2(H,X,W,EPS,NRMAX)
Calls EXP1D until accuracy EPS is reached or until NRMAX Poisson 
brackets.
Computes W= EXP(: H :) X as 

W= 1
n!


n=0

NRMAX

 : H:n  X ; W and X are da-maps.

      SUBROUTINE EXP1D(H,X,Y,EPS,M,NON)
Computes Y= EXP(: H :) X ; X and Y are single polynomials.
IF M>2
It will expand the exponential as above to an order NRMAX given by
NRMAX=(NON-2)/(M-2) 
NON = order of Taylor series + 1
M lowest degree of any monomial in H. 
IF M  2≤
Computes enough Poisson brackets to reach an accuracy of EPS

      SUBROUTINE LIE(H,X,Y,M,NON)



Computes Y= EXP(: H :) X ; X and Y are single polynomials by calling EXP1D.
It will expand the exponential as above to an order NRMAX given by
NRMAX=(NON-2)/(M-2) 
NON = order of Taylor series + 1
M lowest degree of any monomial in H. 

Manipulation Routine of the Symplectic Case of the Irwin 
Representation

      SUBROUTINE IRWIN(H,X,NRMU,SEED,SCA,iq,iton1,iton2)
Computes the Irwin factorization. 
H is the Dragt-Finn polynomial.
X is the linear part of the map (a rotation).
NRMU is the number of Irwin polynomial
SCA is a scale (usually 1)
iq is the file where X and the Irwin polynomials are printed in DA format.
iton1 and iton2 are the files for the angles and the Irwin polynomials in a format used 

by KICKMP.FOR, the tracking program.
iton1 can also contain the linear transformation into Floquet variables.

      SUBROUTINE IRWINFAC(V,REL,NRMU,IFAC,NON,MFILE) 
Reads NRMU Irwin polynomials from MFILE. 
IFAC=1 ----> V= EXP(:KI1:) ... EXP(:KINRMU:) REL

IFAC=-1 ----> V= EXP(:-KINRMU:) ... EXP(:-KI1:) REL

NON is the highest degree of any Irwin monomial.
      SUBROUTINE EXPO(KI,REL,V,IFAC,NON,NRMU) 

Same as above , in fact IRWINFAC calls EXPO

Normal Form Routines in the Symplectic Case

      SUBROUTINE GOFIX(XY,A1,A1I,NORD)
Finds the parameter dependent translation which brings XY to its fixed point
to order NORD.

X = A1I °  XY °  A1 ;  X(0)=0 .

      SUBROUTINE MAPNORM(X,FT,A2,A1,XY,H,NORD,KPMAX)
Puts a map into normal form to order KPMAX.

X = { exp(:FTKPMAX:) ...exp(:FT3:) A2 A1} -1 exp(:H2:) ...exp(:HNO:)  

      exp(:FTKPMAX:) ...exp(:FT3:) A2 A1 +Order(KPMAX+1)

XY = exp(:FTKPMAX:) ...exp(:FT3:) A2 A1 X 

{ exp(:FTKPMAX:) ...exp(:FT3:) A2 A1} -1+ ...Order(No+1)

Nord : see subroutine GOFIX.
      SUBROUTINE HAMNORM(X,FT,A2,A1,H,NORD,KPMAX)

Normalizes the map exp(:X:) using the pseudo-hamiltonian X. 



      SUBROUTINE DHDJ(H,T)
Computes the tunes of the map exp(:H(J):). 
T(i) proportional to  H/  J∂ ∂ i       i=1,nd in the cartesian basis.

T(i+nd) proportional to  H/  J∂ ∂ i       i=nd+1,nd2 in the resonance basis

If Ndpt not zero then Jnd = energy and the nd entry above must be the path in 

Floquet space (i.e. momemtum compaction and its nonlinear parts)

Manipulation Routines of the Symplectic Normal Form

 If no analysis of the map has been performed, stability in all planes is assumed.
      SUBROUTINE CTOR(C1,R2,I2)

The cartesian to resonance change of basis
C1 = R2 + i I2 ;         i=  -1√
R2---> cosine terms
I2---> sine terms

      SUBROUTINE RTOC(R1,I1,C2)
The resonance to cartesian change of basis
R1 + i I1 = C2         i=  -1√
R1---> cosine terms
I1---> sine terms

      SUBROUTINE H2PLUG(H,ANG,IPO)
Changes or reads the H2 part of H(J) 

IPO=-1 Reads ang(i) ; i=1,nd. 
IPO=0 Plugs ang(i) into H2
IPO=1 Adds ang(i) to  H2.

st(i) = 1 if ith plane is stable, 0 otherwise.

Non Symplecitic Case

      SUBROUTINE DIFD(H,V)
Takes a symplectic Lie operator :H: and creates the equivalent flow operator
:H: = V(i)  ∂ i i=1,nd2

      SUBROUTINE DAFLO(H,X,Y,N)
                Takes a flow operator H(i)  ∂ i i=1,N and acts on the polynomial X:

 Y=H(i)  ∂ i Y

      SUBROUTINE FLOFACT(XY,X,H)
      SUBROUTINE FEXFLO(H,X,W,NRMIN,NRMAX,SCA,IFAC)
      SUBROUTINE EXPF1D(H,X,Y,EPS,M,NON)
      SUBROUTINE EXPFND2(H,X,W,EPS,NRMAX)
      SUBROUTINE LIEFLO(H,X,Y,M,NON)

Normal Form Routines in the Non Symplectic Case

      SUBROUTINE MAPNORMF(X,FT,A2,A1,XY,H,NORD,KPMAX,ISI)



Manipulation Routines of the Non Symplectic Normal Form
      SUBROUTINE CTORFLO(C1,R2,I2)
      SUBROUTINE RTOCFLO(R1,I1,C2)
      SUBROUTINE H2PLUFLO(H,ANG,RA,IPO)



X-RATED subroutines performing the operations described in reference 1. 

      SUBROUTINE INITPERT(ST,IH,ANG,RA)
Creates the arrays of eq. 14c

ST(i) = 1 => stable ith plane 
Ang(k) contains the mk of eq. 15a.

RA(k) contains the damping term for the nonsymplectic case
IH=0 => map normalization and IH=1 pseudo-Hamiltonian normalization.
Reads from file 3 the resonances to be left untouched. 

      SUBROUTINE CPART(H,CH)
CH= fp H as in eq. 22. uses function REXT.for p.

      DOUBLE PRECISION FUNCTION REXT(J)
See above subroutine

      SUBROUTINE ROT(RO,ANG)
RO= exp(:f2:) where f2 is given by 15c.

Ang(k) contains the mk of eq. 15a.

      SUBROUTINE ROTI(ROI,ANG)
The inverse of the above routine: ROI= exp(:-f2:)

      SUBROUTINE HYPER(A,CH,SH)
Computes Cosh(A) and Sinh(A).Used in ROT and ROTI.

      SUBROUTINE ETCTR(X)
X= ¬ r of eq. 27a.

      SUBROUTINE ETRTC(X)

X= ¬ r
-1 of eq. 27c

      SUBROUTINE ETCJG(X)
X= ¡  of eq. 27b

      SUBROUTINE CTOI(F1,F2)
Going from the cartesian into the Irwin representation.

F1--> F2= fp F1 °  ¬ r

      SUBROUTINE ITOC(F1,F2)
The inverse of the above: 

F1-->F2=fp (F1 °  ¬ r
-1)

      DOUBLE PRECISION FUNCTION GAM(J)
a(j) of eq.24a (or appendix B-5)

      DOUBLE PRECISION FUNCTION GBM(J)
b(j) of eq.24b (or appendix B-5)

      DOUBLE PRECISION FUNCTION TUER(J)

Creates the Kernel of T-1; see below.
      SUBROUTINE INTD(V,H)

Computes the Lie polynomial H such that:
[H,x]= V ; See eqs. 34 through 37.

      DOUBLE PRECISION FUNCTION DLIE(J)
Computes s(j) of eq. 36.

      SUBROUTINE TINV(H,FT)
Input H= HRange + HKernel 



Output FT = T-1 HRange and H = HKernel ; the Kernel is selected in subroutine INITPERT. 

The function TUER is used with DACFU of Berz' Package to create HKernel .

This calculation is done in the Irwin representation.
      SUBROUTINE ORDERMAP(H,FT,X,ANG,KPMAX)

Recursive loop of section 6.
X= R N0 of eq. (39)

NW of eq. 40c is given by H and A of 40b by FT.

      SUBROUTINE ORDERHAM(H,T,FT,KPMAX)
Recursive loop of appendix B.
Use in HAMNORM.

      SUBROUTINE MIDBLOCK(C,A2,A2I,Q,ST)
Translate the linear da-maps C,A2 and A2i into regular FORTRAN arrays. Then it 

calls the next routine MAPNORML
A1I °  C °  A1 = a rotation of angles q(i) i=1,nd

ST(i)=0,1 => unstable , stable.
      SUBROUTINE MAPNORML(SA,SAI,CR,CM,P,ST)

The matrix relation  CR= SAI CM SA is established, where CR is a rotation of 
angles P(i). (ST(i) as above)
      SUBROUTINE MULND2(rt,r)

Multiplies matrices in MAPNORML
      SUBROUTINE ANALIE(H,FT)

Called in ORDERMAP or ORDERHAM to transform the Lie polynomial H 
and FT into the Irwin basis. It then calls TINV and reconverts the results into the 

Cartesian basis.
Same input-output structure as in TINV.



Modified Eispac routines by Filippo Neri also used in LIELIB.FOR

      subroutine eig6(fm,reval,aieval,revec,aievec)
This routine computes the eigenvalues of the matrix fm and the eigenvectors. 

It calls the following routines:

      subroutine ety(nm,n,low,igh,a,ort)
      subroutine etyt(nm,n,low,igh,a,ort,z)
      subroutine ety2(nm,n,low,igh,h,wr,wi,z,ierr)
      subroutine etdiv(a,b,c,d,e,f)
      subroutine sympl3(m)
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