Tracy-2 User's Manual

J. Bengtsson

## Acknowlegdement

This code has its origin in an idea initially realized by H. Nishimura, i.e. to use a standard programming language as the command language for a tracking code. In particular, startingfrom N. Wirth's Pascal-S compiler/interpreter (a strict subsetof Pascal), in collaboration with E. Forest, the standard proceduresand functions of Pascal were enhanced to include routines forbeam dynamics. However, the initial code was developed for theshort terms needs in the lattice design of the Advanced LightSource (ALS) at LBL. The code therefore finally reached a statewhere it could hardly be maintained or modified. The currentcode is a compromize (e.g. Pascal is still used rather than e.g.C or $\mathrm{C}++$ ) that empasizes generality and flexibility in the userinterface, and is built from the ideas and experiences gainedfrom the earlier codes. One working constraint has been to keepbackwards compability. However, this has been sacrificed in caseswhere generality or flexibility would have to be compromized. It grew out from an initial effort for an online model for theAdvanced Light Source (ALS) but finally found little use due toan overall lack of systematic approach in the commissioning process. I would like to thank E. Forest for continued guidance concerningthe single particle dynamics and I am also very grateful to S.Chattopadhyay head of the Center of Beam Physics for his continuedsupport during this work.

A clean and straightforward implementation of a magnet. It isdefined by the coefficients in the multipole expansion. Mis-alignmentsare implemented by applying a Euclidian transformation at theentrance and exit of each element. All quantities (length, multipolecomponents, mis-alignments and linear lattice functions) for amagnet can be accessed and modified from the input file.

Choice of integrator: matrix style and 2:nd or 4:th order symplecticintegrator.

Magnets can be referenced induvidually or as families.
Non-linear optimizer (downhill simplex) and singular value decomposition.

Extensions: text files, include files, passing of arrays and recordsto physics routines (on the Pascal-S stack), access to all latticeparameters through the record structure of a magnet, matrix calculations, line numbers.

Linear DA library compatible to simplify possible relinking toM. Berz general DA library.

Compiled input files.
Correction of a few Pascal-S bugs.

Emphasis has been put on implementing generic routines at thePascal-S level and high level routines as include files.

Emphasize on structured and generic compact code.
Graphics: subset of GKS.

The Hamiltonian describing the motion of a charged particlearound a reference trajectory in an external magnetic field isgiven by

$$
H_{1} \equiv-p_{s}=-\left(1+h_{\text {ref }} x\right)\left[\frac{q}{p_{0}} A_{s}+\sqrt{1-\frac{2}{\beta} p_{t}+p_{t}^{2}-\left(p_{x}-\frac{q}{p_{0}} A_{x}\right)^{2}-\left(p_{y}-\frac{q}{p_{0}} A_{y}\right)^{2}}\right]-\frac{1}{\beta} p_{t}
$$

where

$$
\mathrm{p}_{\mathrm{t}} \equiv-\frac{\mathrm{E}-\mathrm{E}_{0}}{\mathrm{p}_{0} \mathrm{c}}, \quad \mathrm{~h}_{\mathrm{ref}}=\frac{1}{\rho_{\mathrm{ref}}}
$$

and

$$
\overline{\mathrm{B}}=\nabla \times \overline{\mathrm{A}}
$$

$\beta$ is the relativistic factor and we are using the phase space coordinates
$\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}, \mathrm{y}, \mathrm{p}_{\mathrm{y}}, \mathrm{ct}, \mathrm{p}_{\mathrm{t}}\right)$.These are deviations from a particle following the referencetrajectory with the local curvature $h_{\text {ref }}$ and energy $\mathrm{E}_{0}$. In this curvilinear system[Bengtsson]

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{x}}=\frac{1}{1+\mathrm{h}_{\text {ref }} \mathrm{x}} \frac{\check{\mathrm{Z} \mathrm{~A}_{\mathrm{y}}}}{\check{\mathrm{Zs}}}-\frac{\check{\mathrm{Z} A_{\mathrm{s}}}}{\check{Z} \mathrm{Zy}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{s}}=\frac{\check{\mathrm{Z} A_{x}}}{\check{\mathrm{Zy}}}-\frac{Z \mathrm{ZA}_{\mathrm{y}}}{\check{Z} \mathrm{x}}
\end{aligned}
$$

Introducing the canonical transformation

$$
\begin{aligned}
& \mathrm{F}_{2}=\frac{1}{\beta}\left[1-\sqrt{1+\beta^{2}\left(2 \delta+\delta^{2}\right)}\right]\left(\mathrm{ct}+\frac{\mathrm{s}}{\beta}\right)+\delta \mathrm{s}, \quad \mathrm{H}_{2}=\mathrm{H}_{1}+\frac{\dot{\mathrm{Z}} \mathrm{~F}_{2}}{\overline{\mathrm{Z}}}, \\
& -\mathrm{c} \mathrm{~T}=\frac{\check{\mathrm{Z}} 2_{2}}{\check{Z} \delta}=-\frac{\beta(1+\delta)}{\sqrt{1+\beta^{2}\left(2 \delta+\delta^{2}\right)}}\left(\mathrm{ct}+\frac{\mathrm{s}}{\beta}\right)+\mathrm{s}, \quad \mathrm{p}_{\mathrm{t}}=\frac{\check{\mathrm{Z}} \mathrm{~F}_{2}}{\check{Z}(\mathrm{ct})}=\frac{1}{\beta}\left[1-\sqrt{1+\beta^{2}\left(2 \delta+\delta^{2}\right)}\right]
\end{aligned}
$$

and

$$
\delta \equiv \frac{\mathrm{p}-\mathrm{p}_{0}}{\mathrm{p}_{0}}
$$

where $p_{0}$ is the momentum of the referenceparticle. We obtain

$$
H_{2}=-\left(1+h_{r e f} x\right)\left[\frac{q}{p_{0}} A_{s}+\sqrt{(1+\delta)^{2}-\left(p_{x}-\frac{q}{p_{0}} A_{x}\right)^{2}-\left(p_{y}-\frac{q}{p_{0}} A_{y}\right)^{2}}\right]+\delta
$$

using the phase space coordinates $\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}, \mathrm{y}, \mathrm{p}_{\mathrm{y}},-\mathrm{cT}, \boldsymbol{\delta}\right)$. Note that T is not the time of flight $t$ which is given by

$$
\mathrm{ct}=\frac{1}{\beta}\left[\frac{\sqrt{1+\beta^{2}\left(2 \delta+\delta^{2}\right)}}{1+\delta}(\mathrm{c} T+\mathrm{s})-\mathrm{s}\right]
$$

We will only consider the ultra-relativistic limit for which

$$
\mathrm{p}_{\mathrm{t}} \rightarrow-\delta, \quad \mathrm{ct} \rightarrow \mathrm{c} \mathrm{~T} \quad \text { when } \quad \beta \rightarrow 1
$$

It is straightforward to generalize if this approximation is notvalid.

In the case of a sectorbend we have

$$
\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}}=-\frac{1}{2}\left(1+\mathrm{h}_{\mathrm{B}} \mathrm{x}\right)
$$

We linearize the equations of motion by expanding the Hamiltoniansto second order

$$
\mathrm{H}_{3}=\frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}{2(1+\delta)}-\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}}+\frac{1}{2}\left(\mathrm{~h}_{\mathrm{B}} \mathrm{x}\right)^{2}-\mathrm{h}_{\mathrm{B}} \mathrm{x} \delta+\mathrm{O}(3)
$$

where we have subtracted the dipole field from $\mathrm{A}_{\mathrm{s}}$

$$
\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}} \rightarrow \frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}}+\frac{1}{2}\left(1+\mathrm{h}_{\mathrm{B}} \mathrm{x}\right)
$$

with $h_{\text {ref }}$ has been chosen equal to $h_{B}$ and by assuming the curvature $h_{\text {ref }}$ to be small ("large ring"). Using the multipole expansion

$$
\left(B_{y}+i B_{x}\right)=\left(B \rho_{\text {ref }}\right) \stackrel{N}{n=1} \mid\left(i a_{n}+b_{n}\right)(x+i y)^{n-1}
$$

neglecting end-fields. It is clear that

$$
\frac{q}{p}=-\frac{1}{\left(B \rho_{B}\right)}
$$

which is known as the "magnetic rigidity". It follows that

$$
\mathrm{h}_{\mathrm{B}}=\mathrm{b}_{1}
$$

With a suitable choice of gauge we find the corresponding vectorpotential to be

$$
\begin{aligned}
& \frac{\mathrm{q}}{\mathrm{p}_{0}} A_{x}=0 \\
& \frac{\mathrm{q}}{\mathrm{p}_{0}} A_{y}=0 \\
& \frac{\mathrm{q}}{\mathrm{p}_{0}} A_{s}=-\operatorname{Re}_{\mathrm{n}=1}^{\sim} \frac{N}{n}\left(i a_{n}+b_{n}\right)(x+i y)^{n}
\end{aligned}
$$

where $\mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}_{\mathrm{n}}$ are the skew- and normal multipolecoefficients.

Hamiliton's equations are

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\frac{\check{Z} \mathrm{Z} H}{\mathrm{pp}_{\mathrm{x}}}=\frac{\mathrm{p}_{\mathrm{x}}}{1+\delta}+\mathrm{O}(2), \\
& \mathrm{p}_{\mathrm{x}}^{\prime}=-\frac{\check{Z} \mathrm{Z} H}{\check{Z x}}=\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~B}_{\mathrm{y}}+\mathrm{h}_{\mathrm{B}} \delta-\mathrm{h}_{\mathrm{B}}^{2} \mathrm{x}+\mathrm{O}(2), \\
& \mathrm{y}^{\prime}=\frac{\check{Z} H}{Z \mathrm{Z}} \mathrm{p}_{\mathrm{y}} \\
& \mathrm{p}_{\mathrm{y}}^{\prime}=\frac{\mathrm{p}_{\mathrm{y}}}{1+\delta}+\mathrm{Z}(2), \\
&-\mathrm{cT}^{\prime}=\frac{\check{Z} H}{\check{Z} \mathrm{Zy}}=-\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~B}_{\mathrm{x}}+\mathrm{O}(2), \\
& \mathrm{h}_{\mathrm{B}} \mathrm{x}+\mathrm{O}(2)
\end{aligned}
$$

Matrix style codes computes the solutions of Hamilton'sequations as Taylor expansion around a reference curve $\mathrm{x}_{\text {ref }}$

$$
x_{j}^{f}=\underset{k}{\underset{k}{|l|} \mid M_{j k} x_{k}^{i}}+\underset{k l}{\perp \mid} T_{j k l} x_{k}^{i} x_{l}^{i}+
$$

where $\overline{\mathrm{x}}=\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}, \mathrm{y}, \mathrm{p}_{\mathrm{y}}, \delta\right)$ and $\mathrm{M}_{\mathrm{jk}}$ is the Jacobian

$$
\mathrm{M}=\left.\frac{\check{\mathrm{Z}}\left(\mathrm{x}^{\mathrm{f}}, \mathrm{p}_{\mathrm{x}}^{\mathrm{f}}, \mathrm{y}^{\mathrm{f}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{f}}, \delta\right)}{\check{\mathrm{Z}}\left(\mathrm{x}^{\mathrm{i}}, \mathrm{p}_{\mathrm{x}}^{\mathrm{i}}, \mathrm{y}^{\mathrm{i}}, \mathrm{p}_{\mathrm{y}}^{\mathrm{i}}, \delta\right)}\right|_{{\overline{\mathrm{x}}=\bar{x}_{\mathrm{ref}}}}
$$

In other words, M is the $4 \times 5$ linear transport matrixacting on the phase space vector $\overline{\mathrm{x}}=\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}, \mathrm{y}, \mathrm{p}_{\mathrm{y}}, \delta\right)$. It is customary to choose the closed orbit as the referencecurve for circular accelerators. Note that,,${ }_{k}^{i}$ is a contraviant vector, $x_{k}^{i} x_{1}^{i}$ a contravariant second rank tensor etc.

If only linear terms are kept

$$
\overline{\mathrm{x}}^{\mathrm{f}}=\mathrm{M} \overline{\mathrm{x}}^{\mathrm{i}}+\mathrm{O}\left(\overline{\mathrm{x}}^{2}\right)
$$

The motion is symplectic since the equation of motions are derivedfrom a Hamiltonian . It follows that

$$
\operatorname{det} \mathrm{M}=1
$$

Since the higher order terms violates the symplectic condition, thin kicks are used for the higher order multipoles. The magnetmodel used for $4 \times 5$ matrix style calculations isshown in Fig. 1. Each magnet is broken up into two halves, representedby a linear matrix, and a thin kick at the center, containingthe higher order multipoles.


Fig. 1: The Magnet Model

The $4 \times 5$ matrix formalism

$$
\overline{\mathrm{x}}^{\mathrm{f}}=\mathrm{M} \overline{\mathrm{x}}^{\mathrm{i}}
$$

can be extended to include dipole kicks

$$
\overline{\mathrm{x}}^{\mathrm{f}}=\left(\begin{array}{c}
0 \\
-b_{1} L \\
0 \\
a_{1} L \\
0
\end{array}\right)+M \overline{\mathrm{x}}^{\mathrm{i}}
$$

by superposition. The column vector describing the dipole kickcan therefore be implemented by adding this as a 6:th column anda 6:th row with $(0,0,0,0,0,0,1)$ to the matrix. The normalrule for matrix multiplication is then applied and it is possibleto concatenate all linear elements, including dipole kicks andmis-alignments.

In the focusing plane []

$$
\left(\begin{array}{ccc}
\cos \phi & \frac{1}{\sqrt{|\mathrm{~K}|}} \sin \phi \frac{\mathrm{h}_{\mathrm{B}}}{|\mathrm{~K}|}(1-\cos \phi) \\
-\sqrt{|\mathrm{K}|} \sin \phi & \cos \phi & \frac{\mathrm{h}_{\mathrm{B}}}{\sqrt{|\mathrm{~K}|}} \sin \phi \\
0 & 0 & 1
\end{array}\right)
$$

and the defocusing plane

$$
\left(\begin{array}{ccc}
\cosh \phi & \frac{1}{\sqrt{|\mathrm{~K}|}} \sinh \phi & \frac{\mathrm{h}_{\mathrm{B}}}{|\mathrm{~K}|}(\cosh \phi-1) \\
\sqrt{|\mathrm{K}|} \sinh \phi & \cosh \phi & \frac{\mathrm{h}_{\mathrm{B}}}{\sqrt{|\mathrm{~K}|}} \sinh \phi \\
0 & 0 & 1
\end{array}\right)
$$

where

$$
\phi \equiv \mathrm{L} \sqrt{|\mathrm{~K}|}, \quad \mathrm{K} \equiv \begin{cases}\mathrm{~b}_{2}+\mathrm{h}_{\mathrm{B}}^{2}, & \text { horizontal plane } \\ \mathrm{b}_{2}, & \text { vertical plane }\end{cases}
$$

## Edge Focusing

Leading order edge focusing is described by

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\mathrm{~h}_{\mathrm{B}} \tan (\psi) & 1 & 0 & 0 & 0 \\
0 & 0 & -\mathrm{h}_{\mathrm{B}} \tan \left(\psi-\psi_{\mathrm{c}}\right) & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $\psi$ is the edge angle and $\psi_{c}$ the leading order correction for a finite magnet gap, givenby

$$
\psi_{\mathrm{c}}=\mathrm{K}_{1} \mathrm{~h}_{\mathrm{B}} \mathrm{~g} \frac{1+\sin ^{2} \psi}{\cos \psi}\left(1-\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~h}_{\mathrm{B}} \mathrm{~g} \tan \psi\right)
$$

where g is the total magnet gap, $\mathrm{K}_{1}=0.5$ and $\mathrm{K}_{2}=0$. Note that this implementationdoes not give the correct momentum dependence.

## The Undulator

In the horizontal plane []

$$
\left(\begin{array}{ccc}
\cos \phi & \frac{1}{\sqrt{|\mathrm{~K}|}} \sin \phi \frac{\mathrm{h}_{\mathrm{B}}}{|\mathrm{~K}|}(1-\cos \phi) \\
-\sqrt{|\mathrm{K}|} \sin \phi & \cos \phi & \frac{\mathrm{h}_{\mathrm{B}}}{\sqrt{|\mathrm{~K}|}} \sin \phi \\
0 & 0 & 1
\end{array}\right)
$$

and the vertical plane

$$
\left(\begin{array}{ccc}
\cosh \phi & \frac{1}{\sqrt{|\mathrm{~K}|}} \sinh \phi & \frac{\mathrm{h}_{\mathrm{B}}}{|\mathrm{~K}|}(\cosh \phi-1) \\
\sqrt{|\mathrm{K}|} \sinh \phi & \cosh \phi & \frac{\mathrm{h}_{\mathrm{B}}}{\sqrt{|\mathrm{~K}|}} \sinh \phi \\
0 & 0 & 1
\end{array}\right)
$$

## The Thin Lens Approximation

Non-linear multipoles are modelled by thin kicks taking thelimit

$$
\mathrm{L} \rightarrow 0, \quad \mathrm{~kL}=\text { const }
$$

where kL is the integrated strength. The kick is obtained by integratingHamilton's equations using delta functions for the multipolesand replacing the strength by integrated strength. We find

$$
\begin{aligned}
& p_{x}^{f}=p_{x}^{i}-L\left(\frac{q}{p_{0}} B_{y}-h_{B} \delta+h_{B}^{2} x^{i}\right) \\
& p_{y}^{f}=p_{y}^{i}+\frac{q L}{p_{0}} B_{x} \\
& c^{f}=c^{i}+h_{B} L x^{i}
\end{aligned}
$$

assuming $h_{B}$ to be small, where $L$ is the length of the element. It is clearthat this model is symplectic. The corresponding linear matrixis given by
where the field derivatives are computed from the multipole expansion.

## The Cavity Model

If we neglect radial fields in the cavity it can be representedby a thin longitudinal kick

$$
\delta^{\mathrm{f}}=\delta^{\mathrm{i}}-\frac{\mathrm{q} \hat{\mathrm{~V}}_{\mathrm{RF}}}{\mathrm{E}_{0}} \sin \left(\frac{2 \pi \mathrm{f}_{\mathrm{RF}}}{\mathrm{c}} \mathrm{c} \mathrm{~T}\right)
$$

where $\mathrm{E}_{0}$ is the beam energy, $\widehat{\mathrm{V}}_{\mathrm{RF}}$ the cavity voltage and $\mathrm{f}_{\mathrm{RF}}$ the RF frequency.Note that cT is the deviation of pathlength relative to a referenceparticle. To obtain absolute pathlength. the length of each magnetis added to the relative pathlength cT for each element and, atthe cavity, we subtract

$$
\mathrm{c}^{\mathrm{f}}=\mathrm{c} \mathrm{~T}^{\mathrm{i}}-\frac{\mathrm{hc}}{\mathrm{f}_{\mathrm{RF}}}
$$

where h is the harmonic number, to avoid numerical overflow forcT.

It is possible to extend the $4 \times 5$ matrixformalism to the $6 \times 6$ case, as well as include higherorder effects, by using a (non-symplectic), e.g. second ordermatrix formalism [Brown]. However, this leads to a rather cumbersomeformulation. The elegant way, which also has the advantage ofbeing exact in the transverse coordinates, is to use a symplecticintegrator []. The importance of symplectic tracking for the studylong term stability is obvious.

The Hamiltonian is separated into two exactly solvable parts

$$
\mathrm{H}_{1}=\mathrm{H}_{4}+\mathrm{H}_{5}
$$

where, neglecting fringe fields

$$
\mathrm{H}_{4}=-\left(1+\mathrm{h}_{\mathrm{ref}} \mathrm{x}\right) \sqrt{(1+\delta)^{2}-\mathrm{p}_{\mathrm{x}}^{2}-\mathrm{p}_{\mathrm{y}}^{2}}+\delta, \quad \mathrm{H}_{5}=-\left(1+\mathrm{h}_{\mathrm{ref}} \mathrm{x}\right) \frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}}
$$

For efficiency we will use the expanded Hamiltonian

$$
\mathrm{H}_{4}=\frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}{2(1+\delta)}+\mathrm{O}(3), \quad \mathrm{H}_{5}=-\frac{\mathrm{q}}{\mathrm{p}_{0}} \mathrm{~A}_{\mathrm{s}}+\frac{1}{2}\left(\mathrm{~h}_{\mathrm{B}} \mathrm{x}\right)^{2}-\mathrm{h}_{\mathrm{B}} \mathrm{x} \delta+\mathrm{O}(3)
$$

The map generated by $\mathrm{H}_{1}$ is approximatedby a symplectic integrator. A 2:nd order integrator is given by[Ruth, Forest]

$$
\exp \left(:-\mathrm{L}_{1}:\right)=\exp \left(:-\frac{\mathrm{L}}{2} \mathrm{H}_{4}:\right) \exp \left(:-\mathrm{L}_{5}:\right) \exp \left(:-\frac{\mathrm{L}}{2} \mathrm{H}_{4}:\right)+\mathrm{O}\left(\mathrm{~L}^{3}\right)
$$

Since $\mathrm{H}_{4}$ is the Hamiltonian for a driftand $\mathrm{H}_{5}$ corresponds to a thin kick, see Fig.2.


Fig. 2: A 2:nd order symplectic integrator.

Given a symmetric integrator of order $2 \mathrm{n}, \mathrm{S}_{2 \mathrm{n}}(\mathrm{L}), \mathrm{a}(2 \mathrm{n}+2)$ :th order integrator is obtained by [Yoshida]

$$
S_{2 n+2}(L)=S_{2 n}\left(z_{1} L\right) S_{2 n}\left(z_{0} L\right) S_{2 n}\left(z_{1} L\right)+O\left(L^{2 n+3}\right)
$$

where

$$
z_{0}=-\frac{2^{1 /(2 n+1)}}{2-2^{1 /(2 n+1)}}, \quad z_{1}=\frac{1}{2-2^{1 /(2 n+1)}}
$$

In particular, a 4:th order integrator is therefore given by

$$
\begin{aligned}
\exp \left(:-\mathrm{LH}_{1}:\right) & =\exp \left(:-\mathrm{c}_{1} \mathrm{~L}_{4}:\right) \exp \left(:-\mathrm{d}_{1} \mathrm{~L}_{5}:\right) \exp \left(:-\mathrm{c}_{2} \mathrm{~L}_{4}:\right) \exp \left(:-\mathrm{d}_{2} \mathrm{~L}_{5}:\right) \\
& +\exp \left(:-\mathrm{c}_{2} \mathrm{~L} \mathrm{H}_{4}:\right) \exp \left(:-\mathrm{d}_{1} \mathrm{LH}_{5}:\right) \exp \left(:-\mathrm{c}_{1} L \mathrm{H}_{4}:\right)+\mathrm{O}\left(\mathrm{~L}^{5}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathrm{c}_{1}=\frac{1}{2\left(2-2^{1 / 3}\right)}, & \mathrm{c}_{2}=\frac{1-2^{1 / 3}}{2\left(2-2^{1 / 3}\right)} \\
\mathrm{d}_{1}=\frac{1}{2-2^{1 / 3}}, & \mathrm{~d}_{2}=-\frac{2^{1 / 3}}{2-2^{1 / 3}}
\end{array}
$$

see Fig. 3.


Fig. 3: A 4:th order symplectic integrator.

Both integrators are implemented.

Implementation of torsion...
Mis-alignments are implemented by applying a Euclidian transformationat the entrance and exit of each magnet [Forest]. We first transformto the magnets local coordinate system

$$
\operatorname{prot}\left(\frac{\phi}{2}\right) \circ \mathrm{R}\left(\theta_{\operatorname{des}}\right)
$$

where $R(\theta)$ is a rotation in 2 dimensions

$$
\begin{aligned}
& \mathrm{x} \leftarrow \mathrm{x} \cos (\theta)+\mathrm{y} \sin (\theta) \\
& \mathrm{p}_{\mathrm{x}} \leftarrow \mathrm{p}_{\mathrm{x}} \cos (\theta)+\mathrm{p}_{\mathrm{y}} \sin (\theta), \\
& \mathrm{y} \leftarrow-\mathrm{x} \sin (\theta)+\mathrm{y} \cos (\theta) \\
& \mathrm{p}_{\mathrm{y}} \leftarrow-\mathrm{p}_{\mathrm{x}} \sin (\theta)+\mathrm{p}_{\mathrm{y}} \cos (\theta) \\
& \hline
\end{aligned}
$$

with the design roll $\theta_{\text {des }}$ (e.g.a vertical bend is obtained by rotating a horizontal bend by $90^{\circ}$ ) and prot defined by

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{s}} \leftarrow \sqrt{(1+\delta)^{2}-\mathrm{p}_{\mathrm{x}}^{2}-\mathrm{p}_{\mathrm{y}}^{2}}, & \\
\mathrm{x} \leftarrow \frac{\mathrm{x} \mathrm{p}_{\mathrm{s}}}{\mathrm{p}_{\mathrm{s}} \cos (\phi / 2)-\mathrm{p}_{\mathrm{x}} \sin (\phi / 2)}, & \mathrm{p}_{\mathrm{x}} \leftarrow \mathrm{p}_{\mathrm{s}} \sin \left(\frac{\phi}{2}\right)+\mathrm{p}_{\mathrm{x}} \cos \left(\frac{\phi}{2}\right), \\
\mathrm{y} \leftarrow \mathrm{y}+\frac{\mathrm{x} \mathrm{p}_{\mathrm{y}} \sin (\phi / 2)}{\mathrm{p}_{\mathrm{s}} \cos (\phi / 2)-\mathrm{p}_{\mathrm{x}} \sin (\phi / 2)}, & \mathrm{p}_{\mathrm{y}} \leftarrow \mathrm{p}_{\mathrm{y}}, \\
\mathrm{t} \leftarrow \mathrm{t}+\frac{\mathrm{x}\left(\frac{1}{\beta}+\delta\right) \sin (\phi / 2)}{\mathrm{p}_{\mathrm{s}} \cos (\phi / 2)-\mathrm{p}_{\mathrm{x}} \sin (\phi / 2)}, & \mathrm{p}_{\mathrm{t}} \leftarrow \mathrm{p}_{\mathrm{t}} \\
\hline
\end{array}
$$

where $\phi$ is the bend angle. If we expand and only keeplinear terms in the transverse coordinates as well as $\phi$ we find

$$
\begin{array}{ll}
\mathrm{x} \leftarrow \mathrm{x}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{x}} \leftarrow \mathrm{p}_{\mathrm{x}}+\sin \left(\frac{\phi}{2}\right)+\mathrm{O}(2), \\
\mathrm{y} \leftarrow \mathrm{y}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{y}} \leftarrow \mathrm{p}_{\mathrm{y}}, \\
\mathrm{t} \leftarrow \mathrm{t}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{t}} \leftarrow \mathrm{p}_{\mathrm{t}}
\end{array}
$$

The Euclidian transformation consists of a translation T

$$
\overline{\mathrm{x}} \leftarrow \mathrm{~T}(\overline{\mathrm{x}})=\overline{\mathrm{x}}-\Delta \overline{\mathrm{x}}
$$

followed by a rotation R with the total roll angle $\theta$. The total misaligment has the following contributions

$$
\Delta \overline{\mathrm{x}}=\Delta \overline{\mathrm{x}}_{\text {sys }}+\Delta \overline{\mathrm{x}}_{\text {rms }} \mathrm{r}
$$

where r is a random number and similarly, the total roll angle

$$
\theta=\theta_{\mathrm{des}}+\Delta \theta_{\mathrm{sys}}+\Delta \theta_{\mathrm{rms}} \mathrm{r}
$$

where $\theta_{\text {des }}$ is a design tilt. Sincewe are now in the magnet's reference system we only have to applyprot $(-\phi / 2)$ to transform back.

The multipole components have the following contributions

$$
\begin{aligned}
& a_{n}=a_{n \text { des }}+a_{n \text { sys }}+a_{n \text { rms }} r \\
& b_{n}=b_{n \text { des }}+b_{n \text { sys }}+b_{n \text { rms }} r
\end{aligned}
$$

where $a_{n \text { des }}$ and $b_{n \text { des }}$ are the design multipole strengths.

## The Euclidian Transformation

We summarize: at the entrance of a given magnet we applya Euclidian transformation

$$
\operatorname{prot}^{-1}\left(\frac{\phi}{2}\right) \circ \mathrm{R}(\theta) \circ \mathrm{T}(\Delta \overline{\mathrm{x}}) \circ \mathrm{R}^{-1} \circ\left(\theta_{\mathrm{des}}\right) \circ \operatorname{prot}\left(\frac{\phi}{2}\right) \circ \mathrm{R}\left(\theta_{\operatorname{des}}\right)
$$

The transformation

$$
R^{-1} \circ\left(\theta_{\mathrm{des}}\right) \circ \operatorname{prot}(\phi / 2) \circ R\left(\theta_{\mathrm{des}}\right)
$$

is given by

$$
\begin{array}{ll}
\mathrm{x} \leftarrow \mathrm{x}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{x}} \leftarrow \mathrm{p}_{\mathrm{x}}+\sin \left(\frac{\phi}{2}\right) \cos \left(\theta_{\mathrm{des}}\right)+\mathrm{O}(2), \\
\mathrm{y} \leftarrow \mathrm{y}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{y}} \leftarrow \mathrm{p}_{\mathrm{y}}+\sin \left(\frac{\phi}{2}\right) \sin \left(\theta_{\mathrm{des}}\right)+\mathrm{O}(2), \\
\mathrm{t} \leftarrow \mathrm{t}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{t}} \leftarrow \mathrm{p}_{\mathrm{t}}
\end{array}
$$

We then translate

$$
\begin{aligned}
& \mathrm{x} \leftarrow \mathrm{x}-\Delta \mathrm{x} \\
& \mathrm{y} \leftarrow \mathrm{y}-\Delta \mathrm{y}
\end{aligned}
$$

rotate

$$
\begin{aligned}
\mathrm{x} & \leftarrow \mathrm{x} \cos (\theta)+\mathrm{y} \sin (\theta) \\
\mathrm{p}_{\mathrm{x}} & \leftarrow \mathrm{p}_{\mathrm{x}} \cos (\theta)+\mathrm{p}_{\mathrm{y}} \sin (\theta) \\
\mathrm{y} & \leftarrow-\mathrm{x} \sin (\theta)+\mathrm{y} \cos (\theta) \\
\mathrm{p}_{\mathrm{y}} & \leftarrow-\mathrm{p}_{\mathrm{x}} \sin (\theta)+\mathrm{p}_{\mathrm{y}} \cos (\theta)
\end{aligned}
$$

and finally apply

$$
\operatorname{prot}^{-1}(\phi / 2) \circ \mathrm{R}(\theta)
$$

or

$$
\begin{aligned}
& \mathrm{x} \leftarrow \mathrm{x}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{x}} \leftarrow \mathrm{p}_{\mathrm{x}}-\sin \left(\frac{\phi}{2}\right)+\mathrm{O}(2) \\
& \mathrm{y} \leftarrow \mathrm{y}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{y}} \leftarrow \mathrm{p}_{\mathrm{y}}+\mathrm{O}(2) \\
& \mathrm{t} \leftarrow \mathrm{t}+\mathrm{O}(2), \quad \mathrm{p}_{\mathrm{t}} \leftarrow \mathrm{p}_{\mathrm{t}}
\end{aligned}
$$

We now integrate through the magnet. Similarly, at the exit weapply

$$
\mathrm{R}^{-1}\left(\theta_{\mathrm{des}}\right) \operatorname{prot}\left(\frac{\phi}{2}\right) \mathrm{R}\left(\theta_{\mathrm{des}}\right) \mathrm{T}^{-1}(\Delta \overline{\mathrm{x}}) \mathrm{R}^{-1}(\theta) \operatorname{prot}^{-1}\left(\frac{\phi}{2}\right)
$$

The corresponding matrix is

$$
\left(\begin{array}{ccccc}
\cos (\theta) & 0 & \sin (\theta) & 0 & 0 \\
0 & \cos (\theta) & 0 & \sin (\theta) & 0 \\
-\sin (\theta) & 0 & \cos (\theta) & 0 & 0 \\
0 & -\sin (\theta) & 0 & \cos (\theta) & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

since only the rotation contributes.

Note, that although the $4 \times 5$ matrix formalismcan be applied in the case of magnet errers this treatment isinconsistent, since the matrices are obtained by expanding aroundthe reference trajectory. In other words, only feed-down due tolinear terms, are
included for elements represented by matrices. This model should therefore, at most, be applied for linear latticedesign with no magnet errors. The use of a symplectic integratorand automatic differentiation (AD) allows for the implementationof a consistent model, since AD allows us to compute non-linearmaps around any reference curve and in particular, linear mapsaround the perturbed closed orbit.

For the $4 \times 5$ matrix formalism the linear one-turn-mapis computed by concatenating the linear transfer matrices.

In the case of the symplectic integrator, all the calculationsare performed using a package for truncated power series algebrato find the Taylor series expansion of the nonlinear map $M$ to arbitrary order. Given the purpose of this codeas well as for efficiency, we have linked to routines for linearpower series computing the linear map M. It is straightforward(more compact, efficient etc.) to write an independent code thatcomputes and analysis higher order maps by reading a machine filedescribing the lattice generated by this code.

The linear map M is calculated for a given reference trajectory.In the circular case the closed orbit is normally used. The closedorbit is different from the design orbit when misalign- and tilterrors are added for the magnets. In this case the closed orbithas to be found numerically.

For the one turn map we have

$$
\overline{\mathrm{x}}_{\mathrm{f}}=\mathrm{M} \overline{\mathrm{x}}_{\mathrm{i}}
$$

The closed orbit at the starting point of the lattice is givenby the fixed point

$$
\mathrm{M} \overline{\mathrm{x}}_{\mathrm{cod}}=\overline{\mathrm{x}}_{\mathrm{cod}}
$$

or

$$
(\mathrm{M}-\mathrm{I}) \bar{x}_{\mathrm{cod}}=0
$$

The fixed point is found numerically with Newton-Raphson's method[]

$$
\mathrm{f}^{\prime}\left(\overline{\mathrm{x}}_{\mathrm{k}}\right)\left(\overline{\mathrm{x}}_{\mathrm{k}+1}-\overline{\mathrm{x}}_{\mathrm{k}}\right)+\mathrm{f}\left(\overline{\mathrm{x}}_{\mathrm{k}}\right)=0
$$

where $\mathrm{f}^{\prime}\left(\overline{\mathrm{x}}_{\mathrm{k}}\right)$ the Jacobian. It follows

$$
\mathrm{f}\left(\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}\right)=(\mathrm{M}-\mathrm{I}) \overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}=\overline{\mathrm{x}}_{\mathrm{f}}^{\mathrm{k}}-\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}, \quad \mathrm{f}^{\prime}\left(\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}\right)=\mathrm{M}-\mathrm{I}
$$

so that

$$
\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}+1}=\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}-(\mathrm{M}-\mathrm{I})^{-1}\left(\overline{\mathrm{x}}_{\mathrm{f}}^{\mathrm{k}}-\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{k}}\right)
$$

Note that the linear one turn map $M$ has to be calculated for eachiteration. The closed orbit at other points in the lattice arecomputed by tracking.

The linear equations of motion are obtained by expandingthe Hamiltonian to second order and assuming mid-plane symmetry

$$
\mathrm{H}_{3}=\frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}{2(1+\delta)}+\frac{1}{2}\left[\mathrm{~b}_{2}(\mathrm{~s})+\mathrm{h}_{\mathrm{B}}^{2}(\mathrm{~s})\right] \mathrm{x}^{2}-\frac{1}{2} \mathrm{~b}_{2}(\mathrm{~s}) \mathrm{y}^{2}-\mathrm{h}_{\mathrm{B}}(\mathrm{~s}) \mathrm{x} \delta+\mathrm{O}(3)
$$

with the solution

$$
\begin{aligned}
& x=\sqrt{2 J_{x} \beta_{x}(s)} \cos \left[\mu_{x}(s)+\varphi_{x}\right] \\
& p_{x}=-\sqrt{\frac{2 J_{x}}{\beta_{x}(s)}}\left\{\sin \left[\mu_{x}(s)+\varphi_{x}\right]+\alpha_{x}(s) \cos \left[\mu_{x}(s)+\varphi_{x}\right]\right\}
\end{aligned}
$$

where

$$
\alpha_{x}(\mathrm{~s}) \equiv-\frac{1}{2} \beta_{\mathrm{x}}^{\prime}(\mathrm{s})
$$

The linear one-turn map $M$ can in the $2 \times 2$ case be written

$$
M=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

where the phase advance $\mu^{\mu(s)}$ is given by

$$
\mu(\mathrm{s}) \equiv \int_{\mathrm{s}_{0}}^{\mathrm{s}} \frac{\mathrm{~d} \tau}{\beta(\tau)}
$$

and

$$
\gamma \equiv \frac{1}{\beta}\left(1+\alpha^{2}\right)
$$

We apply the following canonical transformation A so that

$$
\mathrm{A}^{-1} \mathrm{MA}=\mathrm{R}(\mu)=\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)
$$

where ${ }^{\mathrm{R}}(\mu)$ is the 2-dimensional rotation matrix. We find

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{\gamma}} & \frac{-\alpha}{\sqrt{\gamma}} \\
0 & \sqrt{\gamma}
\end{array}\right)
$$

If one imposes the normal definition of phase advance, the correspondingA C\&S is obtained from A by rotating withand angle of $\arctan (\alpha)$

$$
\mathrm{A}_{\mathrm{C} \& \mathrm{~S}}=\left(\begin{array}{cc}
\frac{1}{\sqrt{\gamma}} & \frac{-\alpha}{\sqrt{\gamma}} \\
0 & \sqrt{\gamma}
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{\sqrt{1+\alpha^{2}}} & \frac{\alpha}{\sqrt{1+\alpha^{2}}} \\
\frac{-\alpha}{\sqrt{1+\alpha^{2}}} & \frac{1}{\sqrt{1+\alpha^{2}}}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
\frac{-\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
$$

In the general case, the $4 \times 5$ one-turn-map is diagonalized and the corresponding A is concatenatedwith the transport matrices to compute the values of the latticefunctions after each element in the lattice. Linear coupling istherefore autamatically taken into account

The one-turn matrix has the form

$$
\mathrm{M}=\left(\begin{array}{ccccc} 
& & & 0 & \mathrm{n}_{16} \\
& \mathrm{~N} & & 0 & \mathrm{n}_{26} \\
& & & 0 & \mathrm{n}_{36} \\
& & & & \mathrm{n}_{46} \\
& & & \\
\mathrm{n}_{51} \mathrm{n}_{52} \mathrm{n}_{53} \mathrm{n}_{54} & 1 & \mathrm{n}_{56} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

It follows that the $\delta$-dependent fix point is given by

$$
\Delta \overline{\mathrm{x}}_{\mathrm{cod}}=\bar{\eta} \delta=\mathrm{N} \bar{\eta} \delta+\overline{\mathrm{n}} \delta
$$

so that

$$
\bar{\eta}=(\mathrm{I}-\mathrm{N})^{-1} \overline{\mathrm{n}}
$$

where $\bar{\eta}=\left(\eta_{x}, \eta_{x}^{\prime}, \eta_{y}, \eta_{y}^{\prime}\right)$ is the linear dispersion. and $\bar{n}=\left(n_{16}, n_{26}, n_{36}, n_{46}\right)$. The translation to this point in phase space can be done bythe translation operator

$$
\mathrm{T}=\mathrm{e} \cdot \overline{\Delta \mathrm{x}} \cdot \overline{\mathrm{x}}:
$$

where

$$
: \overline{\Delta x} \cdot \overline{\mathrm{x}}:=\underset{\mathrm{ij}}{-\mid \Delta \mathrm{x}_{\mathrm{i}} \mathrm{~J}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}} .}
$$

and ${ }^{\mathrm{J}_{\mathrm{i}}}$ is the symplectic form

$$
\overline{\mathrm{J}}=\left(\begin{array}{cc}
\overline{0} & \overline{1} \\
-\overline{1} & \overline{0}
\end{array}\right)
$$

Applying the corresponding canonical transformation B

$$
B=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \eta_{\mathrm{x}} \\
0 & 1 & 0 & 0 & 0 & \eta^{\prime} \\
0 & 0 & 1 & 0 & 0 & \eta_{\mathrm{y}} \\
0 & 0 & 0 & 1 & 0 & \eta_{y}^{\prime} \\
-\eta^{\prime} & \eta_{\mathrm{x}} & -\eta_{\mathrm{y}}^{\prime} & \eta_{\mathrm{y}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and A as before we find

$$
\mathrm{A}^{-1} \mathrm{~B}^{-1} \mathrm{MB} A=\left(\begin{array}{cccccc}
\cos \mu_{\mathrm{x}} & \sin \mu_{\mathrm{x}} & 0 & 0 & 0 & 0 \\
-\sin \mu_{\mathrm{x}} & \cos \mu_{\mathrm{x}} & 0 & 0 & 0 & 0 \\
0 & 0 & \cos \mu_{\mathrm{y}} & \sin \mu_{\mathrm{y}} & 0 & 0 \\
0 & 0 & -\sin \mu_{\mathrm{y}} & \cos \mu_{\mathrm{y}} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \mathrm{C} \\
\alpha_{\mathrm{c}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $\alpha_{c}$ is the momentum compaction

$$
\alpha_{\mathrm{c}} \equiv \frac{1}{\mathrm{C}} \frac{\mathrm{~d}(\mathrm{c} \mathrm{~T})}{\mathrm{d} \delta}
$$

and $C$ the circumference. The longitudinal chromaticity $\eta_{\delta}$ is defined by

$$
\eta_{\delta} \equiv \frac{1}{\omega} \frac{d \omega}{d \delta}=\frac{1}{\gamma_{t}^{2}}-\alpha_{c}=\frac{E_{0}^{2}-\alpha_{c} E^{2}}{E^{2}}
$$

and we have for the linearized eqution of motion

$$
\delta^{\mathrm{f}}=\delta^{\mathrm{i}}+\frac{\mathrm{q} \hat{\mathrm{~V}}}{\mathrm{E}_{0}} \sin \left\{\frac{\omega_{\mathrm{RF}}}{\mathrm{c}}\left[\mathrm{c} \mathrm{~T}_{0}+\mathrm{c} \mathrm{~T}+\mathrm{T}_{\mathrm{i}}+\mathrm{C} \alpha_{\mathrm{c}} \delta+\overline{\mathrm{n}}^{\mathrm{T}} \cdot \overline{\mathrm{x}}\right]\right\}
$$

For reference purposes we present the corresponding equation ofmotion using angle variables

$$
\ddot{\phi}+\frac{\Omega^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

where

$$
\Omega=\sqrt{\frac{\omega_{\mathrm{RF}} \alpha_{\mathrm{c}} \cos \phi_{\mathrm{s}}}{\mathrm{~T}_{0}} \frac{\mathrm{q} \hat{\mathrm{~V}}_{\mathrm{RF}}}{\mathrm{E}_{0}}}
$$

and

$$
\phi=\frac{\omega_{\mathrm{RF}}}{\mathrm{c}} \mathrm{c} \text { T }, \quad \dot{\phi}=\omega_{\mathrm{RF}} \alpha_{\mathrm{c}} \delta
$$

The characteristic polynomial $\mathrm{P}(\lambda)$ of an arbitrarysymplectic matrix is given by [Forest]

$$
\mathrm{P}(\lambda)=\operatorname{det}(\mathrm{M}-\lambda \mathrm{I})=\left(\lambda-\lambda_{0}\right)\left(\lambda-\frac{1}{\lambda_{0}}\right)\left(\lambda-\lambda_{1}\right)\left(\lambda-\frac{1}{\lambda_{1}}\right)
$$

It follows that

$$
P(1)=(2-x)(2-y), \quad P(-1)=(2+x)(2+y)
$$

where

$$
\mathrm{x}=\lambda_{0}+\frac{1}{\lambda_{0}}=2 \cos \left(2 \pi v_{\mathrm{x}}\right)
$$

and similarly for y . Eliminating y

$$
x^{2}+4 b x+4 c=0
$$

where

$$
\mathrm{b}=\frac{\mathrm{P}(1)-\mathrm{P}(-1)}{16}, \quad \mathrm{c}=\frac{\mathrm{P}(1)+\mathrm{P}(-1)}{8}-1
$$

Solving for x

$$
x=-2\left(b \pm \sqrt{b^{2}-c}\right),
$$

so that

$$
\mathrm{V}_{\mathrm{x}, \mathrm{y}}=\frac{1}{2 \pi} \cos ^{-1}\left(\frac{\mathrm{x}}{2}\right)
$$

The right quadrant $(0 \rightarrow 2 \pi)$ is determined from inspection of the map $M$.

Chromatic effects using the matrix formalism, arecalculated by numerical differentiation. In particular, the closedorbit is calculated for the on- as well as the offmomentum togetherwith the one turn map.

The classical radiation from an accelerated relativisticelectron is given by [Sands p.98]

$$
\frac{\mathrm{dE}}{\mathrm{~d}(\mathrm{c} t)}=\frac{\mathrm{q}^{2} \mathrm{c}^{2} \mathrm{C}_{\gamma}}{2 \pi} \mathrm{E}^{2}\left(\overline{\mathrm{~B}}_{\perp}\right)^{2}
$$

where

$$
\mathrm{C}_{\gamma}=\frac{4 \pi}{3} \frac{\mathrm{r}_{\mathrm{e}}}{\left(\mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}\right)^{3}}=8.846269 \times 10^{-5} \mathrm{~m} \mathrm{GeV}^{-3}
$$

Since

$$
\frac{\mathrm{dE}}{\mathrm{~d}(\mathrm{ct})}=-\mathrm{p}_{0} \frac{\mathrm{~d} \mathrm{p}_{t}}{\mathrm{dt}}
$$

It follows

$$
\frac{d p_{t}}{d(c t)}=-\frac{c C_{\gamma}}{2 \pi} p_{0} E_{0}^{2}\left(1-\frac{p_{0} c}{E_{0}} p_{t}\right)^{2}\left(\frac{\bar{B}_{\perp}}{B \rho}\right)^{2}
$$

If we take the ultra-relativistic limit

$$
\mathrm{p}_{\mathrm{t}} \rightarrow-\delta, \quad \mathrm{p}_{0} \mathrm{c} \rightarrow \mathrm{E}_{0} \quad \text { when } \quad \beta \rightarrow 1
$$

we find

$$
\frac{\mathrm{d} \delta}{\mathrm{~d}(\mathrm{ct})}=-\frac{\mathrm{C}_{\gamma} \mathrm{E}_{0}^{3}}{2 \pi}(1+\delta)^{2}\left(\frac{\overline{\mathrm{~B}_{\perp}}}{\mathrm{B} \rho}\right)^{2}, \quad \beta \rightarrow 1
$$

The transverse field is computed from

$$
\begin{gathered}
\overline{\mathrm{B}}_{\perp}=\overline{\mathrm{B}} \times \hat{\mathrm{e}}_{\mathrm{s}} \\
\mathrm{r}^{\prime} \equiv \frac{\mathrm{d} \mathrm{r}}{\mathrm{~d} \mathrm{~s}}=\sqrt{\left(1+\mathrm{h}_{\mathrm{B}} \mathrm{x}\right)^{2}+\mathrm{x}^{\prime 2}+\mathrm{y}^{\prime 2}}
\end{gathered}
$$

$$
\hat{e}_{\mathrm{x}}=\frac{\mathrm{x}^{\prime}}{\left|\mathrm{r}^{\prime}\right|}, \quad \hat{\mathrm{e}}_{\mathrm{y}}=\frac{\mathrm{y}^{\prime}}{\left|\mathrm{r}^{\prime}\right|}, \quad \hat{\mathrm{e}}_{\mathrm{s}}=\frac{\mathrm{r}^{\prime}}{\left|\mathrm{r}^{\prime}\right|}
$$

Since $x$ ' and $y$ ' are conserved [Sands p. 104] it follows fromHamilton's equations

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\frac{\check{\mathrm{Z}} \mathrm{H}}{\mathrm{Z}_{\mathrm{x}}}=\frac{\mathrm{p}_{\mathrm{x}}}{1+\delta}+\mathrm{O}(2), \\
& \mathrm{y}^{\prime}=\frac{\check{\mathrm{Z}} \mathrm{H}}{\mathrm{Zp}_{\mathrm{y}}}=\frac{\mathrm{p}_{\mathrm{y}}}{1+\delta}+\mathrm{O}(2)
\end{aligned}
$$

that

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}^{\mathrm{f}}=\frac{\left(1+\delta^{\mathrm{f}}\right)}{1+\delta^{i}} \mathrm{p}_{\mathrm{x}}^{\mathrm{i}}, \\
& \mathrm{p}_{\mathrm{y}}^{\mathrm{f}}=\frac{\left(1+\delta^{\mathrm{f}}\right)}{1+\delta^{i}} \mathrm{p}_{\mathrm{y}}^{\mathrm{i}}
\end{aligned}
$$

Quantum Fluctuations

## The Local Bump Method

Closed orbit correction with local bump method []. Localbump implies


Fig. : Local bump

$$
\begin{aligned}
& \theta_{\mathrm{x} 1}=\text { free parameter, } \\
& \theta_{\mathrm{x} 2}=-\sqrt{\frac{\beta_{\mathrm{x} 1}}{\beta_{\mathrm{x} 2}}} \frac{\sin \left(\mu_{\mathrm{x} 3}-\mu_{\mathrm{x} 1}\right)}{\sin \left(\mu_{\mathrm{x} 3}-\mu_{\mathrm{x} 2}\right)} \theta_{\mathrm{x} 1}, \\
& \theta_{\mathrm{x} 3}=-\sqrt{\frac{\beta_{\mathrm{x} 1}}{\beta_{\mathrm{x} 3}}} \frac{\sin \left(\mu_{\mathrm{x} 2}-\mu_{\mathrm{x} 1}\right)}{\sin \left(\mu_{\mathrm{x} 3}-\mu_{\mathrm{x} 2}\right)} \theta_{\mathrm{x} 1}
\end{aligned}
$$

Least-squre minimization of the rms orbit

$$
\left.\mathrm{x}_{\mathrm{rms}}^{2}=\frac{\perp}{\mathrm{i}} \right\rvert\, \theta_{\mathrm{x} 1}\left(\mathrm{x}_{\mathrm{i}}+\sqrt{\beta_{\mathrm{x} 1} \beta_{\mathrm{xi}}(\mathrm{~s})} \sin \left(\mu_{\mathrm{xi}}-\mu_{\mathrm{x} 1}\right)\right)^{2}
$$

gives

$$
\theta_{\mathrm{x} 1}=-\frac{\frac{-1}{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \sqrt{\beta_{\mathrm{x} 1} \beta_{\mathrm{xi}}(\mathrm{~s})} \sin \left(\mu_{\mathrm{xi}}-\mu_{\mathrm{x} 1}\right)}{\frac{-1}{\mathrm{i}}\left[\sqrt{\beta_{\mathrm{x} 1} \beta_{\mathrm{xi}}(\mathrm{~s})} \sin \left(\mu_{\mathrm{xi}}-\mu_{\mathrm{x} 1}\right)\right]^{2}}
$$

In the linear approximation the new orbit is given by

$$
x(s)=\left\{\begin{array}{lc}
-\sqrt{\beta_{x 1} \beta_{x}(s)} \sin \left[\mu_{x}(s)-\mu_{x 1}\right] \theta_{x 1}, & s_{1} \leq s \leq s_{2} \\
-\sqrt{\beta_{\mathrm{x} 1} \beta_{\mathrm{x}}(\mathrm{~s})} \sin \left[\mu_{\mathrm{x}}(\mathrm{~s})-\mu_{\mathrm{x} 1}\right] \theta_{\mathrm{x} 1}+\sqrt{\beta_{\mathrm{x} 2} \beta_{\mathrm{x}}(\mathrm{~s})} \sin \left[\mu_{\mathrm{x}}(\mathrm{~s})-\mu_{\mathrm{x} 2}\right] \theta_{\mathrm{x} 2}, & \mathrm{~s}_{2} \leq \mathrm{s} \leq \mathrm{s}_{3}
\end{array}\right.
$$

Limited corrector strength is implented by successively scaling $\theta_{1}, \theta_{2}$, and $\theta_{3}$ until reaching valuesthat are within limits.

The correlation matrix is given by

$$
C_{i j}=\frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin (\pi v)} \cos \left[\pi v-\left|\mu_{i}-\mu_{j}\right|\right]+\eta_{i} \eta_{j} \delta
$$

where the last term only contributes in the case of a cavity.We attempt to solve the following equation

$$
\mathrm{C} \bar{\theta}_{\mathrm{x}}+\overline{\mathrm{x}}=0
$$

It can be shown that

TRACY


Fig. : Traditional tracking code structure

Fig. : TRACY program structure

Fig. : Pascal-S compiler/interpreter system

Tracy is using the following files

| input file $\quad$.inp |  |
| :--- | :--- | :--- |
| output file $\quad$ *.out |  |
| lattice file $\quad$.lat |  |
| lattice output file | *.lax |

## Omissions from Pascal-S

Pascal-S [] is a strict subset of Pascal []. It does notsupport the following

Data types enumerated, subrangeand pointer
Data structures
variant record, packed, set and file
Statements with and goto
Input/Output put and get

Since the lack of text files is non-acceptable for our purpose, it has been added with some constraints for easy implementation.

There are four basic types of elements: drift, multipole,cavity and marker.
procedure getelem(i : integer; var cellrec : celltype);

Get cell record number i from internal data structures toPascal-S stack
input: i element number
output: cellrec element information
example: getcell(globval.Cell_nLoc, cell);
procedure putelem(i : integer; var cellrec : celltype);

Put cell record number i from Pascal-S stack to internaldata structures
input: cellrec element information
output:i element number
example: putcell(0, cell);
procedure getglobv_(globval);
procedure putglobv_(globval);
trace
break

## Lattice Description

text files and include files. There are essentially fivedifferent kinds of standard procedures and functions added toPascal-S:
a) string manipulations
b) some additional standard mathematical functions
c) matrix manipulations
d) graphics routines (strict subset of GKS)
e) accelerator physics routines

They are listed in the following.

## String library

## Data Structures

const strlmax $=80$;
type strbuf = packed array [1..strlmax] of char;
tstring $=$ record
len : integer;
str : strbuf;
end;
function strlen_(var str : tstring) : integer;

Get length of string:
input: str
output: strlen_
example: $\quad$ len $:=$ strlen_(str);
procedure getstr(var str : tstring; vstr : packed array [low..high : integer]of char);

Get string:
input: vstr
output: str
procedure copystr(var outstr, instr : tstring);

Copy string:
input: instr
output: outstr
example: copystr( $\operatorname{str} 2, \operatorname{str} 1)$;
procedure concat(var str2 : tstring;
str1 : packed array [low..high : integer]of char);

Concatenate strings:
input: str1
output: str2
example: concat(str, ' add this to string');
procedure getint(var str : tstring; i, blanks : integer);

Write integer into string:
input: i number to be written into str
blanks field width
output: str
example: $\quad$ getint(str, 1234, 10);
corresponds to: write(str, 1234:10);
procedure getreal(var str : tstring; x : double; blanks,ndec : integer);

Write real into string:
input: $x \quad$ number to be written into str
blanks field width
ndec number of decimals
output: str
example: $\quad$ getreal(str, $3.1415,10,5)$;
corresponds to: write(str, 3.1415:10:5);
procedure getreale(var str : tstring; x : double;blanks, ndec : integer);

Write real into string, exponential form:
input: $x \quad$ number to be written into str
blanks field with
ndec number of decimals
output: str
example: getreale(str, i, 10, 5);
corresponds to: write(str, $x: 10+5$ );
function strind(var object: tstring;
pattern : packed array [low..high : integer]of char)
: integer;

Pattern matching:
input: object
pattern
output: strind 0 , if pattern not found, location, if pattern found
example: pos := strind(str, 'where');
procedure writestr(var str : tstring; blanks : integer;var outf : text);

Write string to file:
input: str
blanks field width
output: outf
example: writestr(str, 80, outfile);

## Data Structures

```
const matdim = 6;
type double = real8;
    vector = array [1..matdim] of double;
    matrix = array [1..matdim] of vector;
var pi : double;
    rseed0, rseed : integer;
    normcut_ : double;
```

Matdim is the maximum allowed matrix dimension.

FUNCTION dble(x : real) : double;

Convert from single to double precision
input: x
output: dble
example: $\quad \mathrm{z}:=\operatorname{dble}(1.1)$;

FUNCTION sngl(x : double) : real;

Convert from double to singe precision:
input: x
output: sngl
example: $\quad \mathrm{z}:=\operatorname{sngl}(2.1)$;

FUNCTION min_(x1, x2 : double) : double;

Get min value of x 1 and x 2
input: x1, x2
output: min_
example: $\quad$ xmin $:=$ min_(x1, x2);

FUNCTION max_(x1, x2 : double) : double;

Get max value of x 1 and x 2
input: x1, x2
output: max_
example: $\quad$ xmax := max_(x1, x2);

FUNCTION power(x, y : double) : double;

Evaluates $x^{\wedge} y$
input: x, y
output: power
example: $\quad \mathrm{z}:=\operatorname{power}(2.0,4)$;

FUNCTION tan_(x : double) : double;

Evaluates $\tan (\mathrm{x})$
input: x
output: tan_
example:

FUNCTION $\cosh \_(\mathrm{x}: \text { double) : double; }$

Evaluates $\cosh (\mathrm{x})$
input: x
output: cosh
example:

FUNCTION sinh_(x : double) : double;

Evaluetes $\sinh (\mathrm{x})$
input: x
output: sinh_
example:

# FUNCTION tanh_(x : double) : double; 

Evaluates $\tanh (\mathrm{x})$

PROCEDURE iniranf(i : integer);

Initialize random number generator
input: i
output:
example:

PROCEDURE newseed;

Get a new seed for random number generator
input:
output:
example:

FUNCTION ranf : double;

Random number generator with rectangular distribution
input:
output: ranf
example:

PROCEDURE setrancut(cut : double);

Set cut for normally distributed random number generator
input: cut
output:
example:

FUNCTION normranf : double;

Random number generator with normal distribution
input:
output: normranf example:

Conversion routines

FUNCTION degtorad (d : double) : double;

Degrees to radianer
input: d
output: degtorad
example:

FUNCTION sign(x : double) : integer;

Get sign of value
input: x
output: sign
example:

Function GetAngle(x, y : double) : double;

Get phi from $\mathrm{x}=\cos (\mathrm{phi}), \mathrm{y}=\sin (\mathrm{phi}),-\mathrm{pi} \leq$ phi $\leq$ pi
input: x, y
output: GetAngle
example:

For the following routines n is the dimension of the vectorsand matrices.

PROCEDURE UnitMat(n : integer; VAR A : matrix);

Unit matrix: $\mathrm{A} \neg \mathrm{I}$
input: A, n
output: A
example:

PROCEDURE CopyVec( n : integer; VAR u , v : vector);

Copy vector: $\mathrm{v} \neg \mathrm{u}$;
input: $\mathrm{u}, \mathrm{n}$
output: v
example:

PROCEDURE CopyMat(n : integer; VAR A, B : matrix);

Copy matrix: $\mathrm{B} \neg \mathrm{A}$
input: A, n
output: B
example:

PROCEDURE AddVec(n : integer; VAR a, b : vector);

Add vectors: $\mathrm{b} \neg \mathrm{a}+\mathrm{b}$
input: a, b, n
output: b
example:

PROCEDURE SubVec(n : integer; VAR u, v : vector);

Subtract vectors: $\mathrm{u} \neg \mathrm{v}-\mathrm{u}$
input: $u, v, n$
output: v
example:

PROCEDURE AddMat(n : integer; VAR A, B : matrix);

Add matrices: $\mathrm{A} \neg \mathrm{A}+\mathrm{B}$
input: A, B, n
output: B
example:

PROCEDURE SubMat( n : integer; VAR A, B : matrix);

Subtract matrices: B $\neg$ B - A
input: A, B, n
output: B
example:

PROCEDURE LinTrans(n : integer; VAR A : matrix; VARx : vector);

Linear transformation: $\mathrm{x} \neg \mathrm{A} * \mathrm{x}$
input: A, x, n
output: x
example:

PROCEDURE MulLMat( n : integer; VAR A, B : matrix);

Left matrix multiplication: $\mathrm{B} \neg \mathrm{A} * \mathrm{~B}$
input: A, B, n
output: B
example:

PROCEDURE MuIRMat(n : integer; VAR A, B : matrix);

Right matrix multiplication: $\mathrm{A} \neg \mathrm{A} * \mathrm{~B}$
input: $\mathrm{A}, \mathrm{B}, \mathrm{n}$
output: A
example:

FUNCTION TrMat(n : integer; VAR A : matrix) : double;

Trace: $\mathrm{A} \neg \operatorname{Tr}(\mathrm{A})$
input: A, n
output: A
example:

PROCEDURE TpMat(n : integer; VAR A : matrix);

Transpose $: \mathrm{A} \leftarrow \mathrm{A}^{\mathrm{T}}$
input: A, n
output: A
example:

FUNCTION DetMat(n : integer; VAR A : matrix) : double;

Determinant: $\mathrm{A} \neg|\mathrm{A}|$
input: A, n
output: A
example:
function InvMat(n : integer; VAR A : matrix) : boolean;

Inverse $: \mathrm{A} \leftarrow \mathrm{A}^{-1}$
input: A, n
output: A
example:
procedure prtmat(n : integer; var A : matrix);

Print matrix on terminal
input: A, n
output:
example:
function GetnKid(Fnum1 : integer) : integer;

Get number of elements (kids) in for a given family
function Elem_GetPos(Fnum1, Knum1 : integer) : integer;

Get element number (1-globval.cell_nloc)
procedure Cell_SetdP(dP : double);
input: dP
output:
example:
procedure Cell_Pass(i0, i1 : integer; var x : vector;var lastpos : integer);

Track particle from i0 to i1
input: i0 initial position
i1 final position
$x \quad$ initial conditions ( $x, p x, y, p y$, delta, ctau)
output: $\mathrm{x} \quad$ final conditions ( $\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$, delta,ctau)
lastpos last position (\# i1 if particle is lost)
example: $\quad \mathrm{x}[1]:=\mathrm{x} 0 ; \mathrm{x}[2]:=\mathrm{px} 0 ; \mathrm{x}[3]:=\mathrm{y} 0 ; \mathrm{x}[4]:=\mathrm{py} 0$;
$\mathrm{x}[5]:=$ delta; $\mathrm{x}[6]:=0.0$;
Cell_Pass(0, globval.Cell_nLoc, x, lastpos);
procedure Cell_Pass_M(i0, i1 : integer, var xref :vector; var mat : matrix; var lastpos : integer);

Track matrix from i0 to i1 around ref. orbit
input: 10 , i1
xref reference orbit
mat
output: mat
lastpos
example:
procedure Cell_DApass(i0, i1 : integer; var map :DAmap; var lastpos : integer);

Track matrix from i0 to il around ref. orbit, using DA
input: i0, i1
map
output: map
lastpos
example:
procedure Cell_Concat( dP : double);

Concatenate lattice for fast tracking
input: dP
output:
example:
procedure Cell_fPass(var x : vector; var lastpos :integer);

Fast tracking of particle using concatenated lattice
input: x
output: x
lastpos
example:
procedure Cell_fPass_M(var xref : vector; var mat: matrix; var lastpos : integer);

Fast tracking of matrix using concatenated lattice
input: xref
mat
output: mat
lastpos
example:
procedure Cell_GetCOD(imax : integer; eps, dP : double; var lastpos : integer);

Closed orbit finder
input: imax, eps, dP
output: laspos
example:

PROCEDURE Cell_GetABGN(var M : matrix; var alpha,beta, gamma,nu : vector2);

Get alpha, beta, gamma and nu from transport matrix
input: M
output: alpha, beta, gamma, nu
example:
procedure Cell_MatTwiss(i0, i1 : integer; var Ascr: matrix; chroma, ring : boolean);

Track A script from i0 to il
input: i0, i1, chroma, ring
Ascr
output: Ascr
example:
procedure Cell_DATwiss(i0, i1 : integer; var Ascr: DAmap; chroma, ring : boolean);

Track A script from i0 to i1 using DA
input: i0, i1, chroma, ring
Ascr
output: Ascr
example:
procedure Ring_Getchrom(dP : double);

Get chromaticity
input: dP
output:
example:
procedure Ring_GetTwiss(chroma : boolean; dP : double);

Get Twiss parameters around lattice
input: chroma, dP
output:
example:

PROCEDURE Ring_Fittune(var nu : vector2; eps : double;var q : ivector2; dkL : double; imax : integer);

Fit tune
input: nu, eps, q, dkL, imax
output:
example:

PROCEDURE Ring_Fitchrom(var ksi : vector2; eps : double;var s : ivector2; dkpL :
double; imax : integer);

Fit chromaticity
input: ksi, eps, s, dkpL, imax
output:
example:

PROCEDURE Ring_FitDisp(pos : integer; eta, eps : double; q : integer; dkL : double; imax : integer);

Fit dispersion
input: pos, eta, eps, q, dkL, imax
output:
example:
procedure InitBUMP(dnuhmin, dnuvmin : double);

Initialize orbit correction algorithm. It is necessary to call Ring_gettwiss before initbump can be called.
input: dnuhmin, dnuvmin
output:
example: $\quad$ Ring_gettwiss(false, 0.0 );
InitBump(0.0, 0.0);
procedure execbump(MaxKick : double);

Do one iteration of orbit correction
input: MaxKick
output:
example:

The following files are called include files and appear atthe input file level. They define generally useful specializedhigh level physics routines based on the more general low levelstandard procedures and functions.

## physlib.inc

## Data Structures

const nueps $=1 \mathrm{~d}-6$; nudk $=0.001$; nuimax $=10$;
ksieps $=1 \mathrm{~d}-6 ; \operatorname{ksidkp}=0.01 ;$ ksiimax $=10$;
dispeps $=1 \mathrm{~d}-4 ; \operatorname{dispdk}=0.2 ; \quad \operatorname{dispimax}=10 ;$

## Procedures and Functions

procedure printglob;

Print global values
input:
output:
example: Ring_gettwiss(true, 0.0);
getglobv_(globval);
printglob;
procedure printmat( n : integer; var A : matrix; varoutf : text);

Print matrix to file
input: $\mathrm{n}, \mathrm{A}$, outf
output:
example:
procedure printcellf;

Print Twiss parameters
input:
output:

## procedure Printcod;

Print closed orbit
input:
output:
example:
procedure getmean( n : integer; var x : graphvect);

Remove average value from a set of data
input: $\mathrm{n} \quad$ number of data
$x \quad$ data
output: x
example:
procedure getcod(dP : double; var lastpos : integer);

Get closed orbit
input: dP
output: lastpos
example:
procedure TraceABN(i0, i1 : integer; alpha, beta,eta, etap : Vector2);

Get alpha and beta from i0 to i1
input: i0, i1, alpha, beta, eta, etap
output:
example:
procedure ttwiss(alpha, beta, eta, etap : vector2; dP : double);

Get alpha and beta along lattice
input: alpha, beta, eta, etap, dP
output:
example:

PROCEDURE FitTune(qf, qd : integer; nux, nuy : double);

Fit tune
input: qf, qd, nux, nuy
output:
example:

PROCEDURE FitChrom(sf, sd : integer; ksix, ksiy :double);

Fit chromaticity
input: sf, sd, ksix, ksiy
output:
example:

PROCEDURE FitDisp(q, pos : integer; eta : double);

Fit dispersion
input: $q$, pos, eta
output:
example:
procedure getfloqs(var x : vector);

Transform to Floquet space
input: x
output: x
example:
procedure track(x, px, y, py, dp : double; nmax :integer;
var lastn, lastpos : integer; floq : boolean);

Track particle nmax turns around the closed orbti. Data is stored in the file tracking.dat. Ring_Gettwiss must be
called first.
input: x, px, y, py, dp
nmax, floq
output: lastn, lastpos
example: Ring_gettwiss(true, delta);
track(x0, px0, y0, py0, delta, nturn, lastn, lastpos, true);
if lastn <> nturn then writeln('Particle lost duringturn ', nturn:1, ' , at element ',
lastpos:1);
procedure getdynap(var r0, dr0 : vector; dp, eps :double; napp : integer; var rapp : vector);

Get dynamical aperture
input: r0, dr0, dp, eps, napp
output: rapp
example:
procedure gettrack(var n : integer; var $\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$ : graphvect);

Get tracking data from file. Track must be called first.
input: n
output: $\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$
example: Ring_gettwiss(true, delta);
$\operatorname{track}(\mathrm{x} 0, \mathrm{px} 0, \mathrm{y} 0, \mathrm{py} 0$, delta, nturn, lastn, lastpos, true); if lastn <> n then writeln('Particle lost during turn', n:1, ' , at element ', lastpos:1); gettrack(n, x, px, y, py);
procedure getj( n : integer; var $\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$ : graphvect);

Get linear invariant
input: $\mathrm{n}, \mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$
output: x , y
example: $\quad \operatorname{gettrack}(n, x, p x, y, p y)$;
getj(n, x, px, y, py);
procedure getphi(n : integer; var $\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$ : graphvect);

Get phase
input: $\mathrm{n}, \mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$
output: x , y
example: $\quad \operatorname{gettrack}(\mathrm{n}, \mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py})$;
getphi(n, x, px, y, py);
procedure setdS(Fnum : integer; dxrms, dyrms : double);

Set displacement errors
input: Fnum, dxrms, dyrms
output:
example:
procedure setdT(Fnum : integer; dTrms : double);

Set tilt errors
input: Fnum, dTrms
output:
example:
procedure setdk(Fnum, Order : integer; dksys,dkrms : double);

Set multipole errors
input: Fnum, Order, dksys, dkrms
output:
example:
procedure $\operatorname{plotfft}(\mathrm{wn}, \mathrm{n}:$ integer; var $\mathrm{x}:$ graphvect);

## Plot DFT

input: wn, n, x
output:
example:
procedure plotdynap(r0, dp, eps : double; npoint,napp : integer);

Plot dynamical aperture
input: r0, dp, eps, npoint, napp
output:
example:
procedure plotps;

Plot phase space
input:
output:
example:
procedure plotj;

Plot linear invariant
input:
output:
example:
procedure plotphi;

Plot phase
input:
output:
example:
procedure plotpos(lastpos : integer);

Plot beam position
input: lastpos
output:
example:
procedure plotcell(symfac : integer);

Plot Twiss functions
input: symfac
output:
example:
procedure plotcorr;

Plot orbit corrector strengths
input:
output:
example:
procedure plotcod;

Plot closed orbit
input:
output:
example:
procedure codcorrect(bumpimax : integer; thetamax: double);

Closed orbit correction
input: bumpimax, thetamax
output:
example:
K. Jensen and N. Wirth, "Pascal User Manual and Report", (Springer-Verlag,1975)
N. Wirth, "Pascal-S: a subset and its implementation, in Pascal- The Language and Its Implementation", ed. D. W. Barron, pp.199-260, (Wiley, 1981)
R. E. Berry, "Programming Language Translation", (Ellis Horwood,1983)
M. Rees and D. Robson, "Practical Compiling with Pascal-S",(Addison-Wesley, 1988)
E. Forest
H. Nishimura

