
Note:INCOMPLETE DRAFT (also outdated)

Tracy-2 User's Manual

J. Bengtsson

Acknowlegdement

This code has its origin in an idea initially realized by H. Nishimura, i.e. to use a
standard programming language as the command language for a tracking code. In
particular, startingfrom N. Wirth's Pascal-S compiler/interpreter (a strict subsetof Pascal),
in collaboration with E. Forest, the standard proceduresand functions of Pascal were
enhanced to include routines forbeam dynamics. However, the initial code was developed
for theshort terms needs in the lattice design of the Advanced LightSource (ALS) at LBL.
The code therefore finally reached a statewhere it could hardly be maintained or
modified. The currentcode is a compromize (e.g. Pascal is still used rather than e.g.C or
C++) that empasizes generality and flexibility in the userinterface, and is built from the
ideas and experiences gainedfrom the earlier codes. One working constraint has been to
keepbackwards compability. However, this has been sacrificed in caseswhere generality
or flexibility would have to be compromized. It grew out from an initial effort for an on-
line model for theAdvanced Light Source (ALS) but finally found little use due toan
overall lack of systematic approach in the commissioning process. I would like to thank
E. Forest for continued guidance concerningthe single particle dynamics and I am also
very grateful to S.Chattopadhyay head of the Center of Beam Physics for his
continuedsupport during this work.

1

Introduction

Design goals

A clean and straightforward implementation of a magnet. It isdefined by the coefficients
in the multipole expansion. Mis-alignmentsare implemented by applying a Euclidian
transformation at theentrance and exit of each element. All quantities (length,
multipolecomponents, mis-alignments and linear lattice functions) for amagnet can be
accessed and modified from the input file.

Choice of integrator: matrix style and 2:nd or 4:th order symplecticintegrator.

Magnets can be referenced induvidually or as families.

Non-linear optimizer (downhill simplex) and singular value decomposition.

Extensions: text files, include files, passing of arrays and recordsto physics routines (on
the Pascal-S stack), access to all latticeparameters through the record structure of a
magnet, matrix calculations,line numbers.

Linear DA library compatible to simplify possible relinking toM. Berz general DA
library.

Compiled input files.

Correction of a few Pascal-S bugs.

Emphasis has been put on implementing generic routines at thePascal-S level and high
level routines as include files.

Emphasize on structured and generic compact code.

Graphics: subset of GKS.

2

The Hamiltonian

The Hamiltonian describing the motion of a charged particlearound a reference

trajectory in an external magnetic field isgiven by

H1 ≡ - ps = - (1 + href x)
q
p0

 As + 1 - 2
β

 pt + pt
2 - px -

q
p0

 Ax
2
 - py -

q
p0

 Ay
2

 - 1
β

 pt

where

pt ≡ - E - E0
p0 c , href = 1

ρref

and

B = ∇ × A

β is the relativistic factor and we are using the phase space coordinates
 (x, px, y, py, ct, pt).These are deviations from a particle following the referencetrajectory
with the local curvature href and energy E0. In this curvilinear system[Bengtsson]

Bx = 1
1 + href x

ŽAy

Žs
 -

ŽAs

Žy

By = href
1 + href x

 As +
ŽAs

Žx
 - 1

1 + href x

ŽAx

Žs

Bs =
ŽAx

Žy
 -

ŽAy

Žx

Introducing the canonical transformation

 F2 = 1
β

 1 - 1 + β2
 2 δ + δ2

 c t + s
β

 + δ s , H2 = H1 +
ŽF2

Žs
 ,

- c T =
ŽF2

Žδ
 = -

β 1 + δ

1 + β2
 2 δ + δ2

 c t + s
β

 + s , pt =
ŽF2

Ž ct
 = 1

β
 1 - 1 + β2

 2 δ + δ2

and

δ ≡
p - p0

p0

where p0 is the momentum of the referenceparticle. We obtain

3

H2 = - (1 + href x)
q

p0
 As + 1 + δ 2

 - px -
q

p0
 Ax

2
 - py -

q
p0

 Ay
2

 + δ

using the phase space coordinates (x, px, y, py, -cT, δ). Note that T is not the time of
flight t which is given by

c t = 1
β

1 + β2

 2 δ + δ2

1 + δ
 c T + s - s

We will only consider the ultra-relativistic limit for which

pt → - δ , c t → c T when β → 1

It is straightforward to generalize if this approximation is notvalid.

In the case of a sectorbend we have

q
p0

 As = - 1
2

 1 + hB x

We linearize the equations of motion by expanding the Hamiltoniansto second order

H3 =
px2 + py2

2 1 + δ
 -

q
p0

 As + 1
2

 hB x 2 - hB x δ + O 3

where we have subtracted the dipole field fromAs

q
p0

 As →
q

p0
 As + 1

2
 1 + hB x

with href has been chosen equal to hB and by assuming the curvature href to be small

("large ring"). Using the multipole expansion

By + i Bx = B ρref i an + bn x + i y n - 1
n = 1

N

neglecting end-fields. It is clear that

q
p = - 1

B ρB

4

which is known as the "magnetic rigidity". It follows that

hB = b1

With a suitable choice of gauge we find the corresponding vectorpotential to be

q
p0

 Ax = 0 ,

q
p0

 Ay = 0 ,

q
p0

 As = -Re 1n i an + bn x + i y n
n = 1

N

where an and bn are the skew- and normal multipolecoefficients.

Hamiliton's equations are

 x' =
ŽH
Žpx

 =
px

1 + δ
 + O 2 ,

 px' = -
ŽH
Žx

 =
q

p0
 By + hB δ - hB

2 x + O 2 ,

 y' =
ŽH
Žpy

 =
py

1 + δ
 + O 2 ,

 py' = -
ŽH
Žy

 = -
q

p0
 Bx + O 2 ,

- cT' =
ŽH

Žδ
 = hB x + O 2

5

4 × 5 Matrix Formalism

Matrix style codes computes the solutions of Hamilton'sequations as Taylor expansion
around a reference curve xref

xj
f = Mjk xk

i
k

 + Tjkl xk
i xl

i
kl

 +

wherex = (x, px, y, py, δ) and Mjk is the Jacobian

M =
Ž xf, pxf , yf, pyf , δ

Ž xi, pxi , yi, pyi , δ xi=xref

In other words, M is the 4 × 5 linear transport matrixacting on the phase space vector
x = (x, px, y, py, δ). It is customary to choose the closed orbit as the referencecurve for

circular accelerators. Note that,xk
i
 is a contraviant vector,xk

i xl
i
 a contravariant second rank

tensor etc.

If only linear terms are kept

xf = M xi + O(x2)

The motion is symplectic since the equation of motions are derivedfrom a Hamiltonian .
It follows that

det M = 1

Since the higher order terms violates the symplectic condition,thin kicks are used for the
higher order multipoles. The magnetmodel used for 4 × 5 matrix style calculations
isshown in Fig. 1. Each magnet is broken up into two halves, representedby a linear
matrix, and a thin kick at the center, containingthe higher order multipoles.

L/2 L/2thin
kick

Fig. 1: The Magnet Model

6

Extended 4 × 5 Matrix Formalism Including ThinDipole Kicks

The 4 × 5 matrix formalism

xf = M xi

 can be extended to include dipole kicks

xf =

0
-b1 L

0
a1 L

0

 + M xi

by superposition. The column vector describing the dipole kickcan therefore be
implemented by adding this as a 6:th column anda 6:th row with (0, 0, 0, 0, 0, 0, 1) to the
matrix. The normalrule for matrix multiplication is then applied and it is possibleto
concatenate all linear elements, including dipole kicks andmis-alignments.

7

The Combined Function Sector Bend

In the focusing plane []

cos φ 1
K

 sin φ hB
K

 1 - cos φ

- K sin φ cos φ hB

K
 sin φ

0 0 1

and the defocusing plane

cosh φ 1
K

 sinh φ hB
K

 cosh φ - 1

K sinh φ cosh φ hB

K
 sinh φ

0 0 1

where

φ ≡ L K , K ≡
b2 + hB

2 , horizontal plane

b2, vertical plane

Edge Focusing

Leading order edge focusing is described by

1 0 0 0 0
hB tan ψ 1 0 0 0

0 0 - hB tan ψ - ψc 0 0
0 0 0 1 0
0 0 0 0 1

where ψ is the edge angle and ψc the leading order correction for a finite magnet gap,

givenby

ψc = K1 hB g
1 + sin2ψ

cos ψ
 1 - K1 K2 hB g tan ψ

where g is the total magnet gap, K1 = 0.5and K2 = 0. Note that this implementationdoes

not give the correct momentum dependence.

The Undulator

8

In the horizontal plane []

cos φ 1
K

 sin φ hB
K

 1 - cos φ

- K sin φ cos φ hB

K
 sin φ

0 0 1

and the vertical plane

cosh φ 1
K

 sinh φ hB
K

 cosh φ - 1

K sinh φ cosh φ hB

K
 sinh φ

0 0 1

The Thin Lens Approximation

Non-linear multipoles are modelled by thin kicks taking thelimit

L → 0 , kL = const

where kL is the integrated strength. The kick is obtained by integratingHamilton's
equations using delta functions for the multipolesand replacing the strength by integrated
strength. We find

pxf = pxi - L
q
p0

 By - hB δ + hB
2 xi ,

pyf = pyi +
q L
p0

 Bx ,

cTf = cTi + hB L xi

assuminghB to be small, where L is the length of the element. It is clearthat this model is
symplectic. The corresponding linear matrixis given by

1 0 0 0 0

-
q L
p0

-
ŽBy

Žx
 - L hB

2 1 -
q L
p0

-
ŽBy

Žy
0 L hB

0 0 1 0 0
q L
p0

-
ŽBx

Žx
0

q L
p0

-
ŽBx

Žy
1 0

0 0 0 0 1 x = xref

where the field derivatives are computed from the multipole expansion.

9

The Cavity Model

If we neglect radial fields in the cavity it can be representedby a thin longitudinal kick

δf
 = δi

 -
q VRF

E0
 sin 2 π fRF

c c T

where E0 is the beam energy,VRF the cavity voltage and fRF the RF frequency.Note that cT

is the deviation of pathlength relative to a referenceparticle. To obtain absolute
pathlength. the length of each magnetis added to the relative pathlength cT for each
element and, atthe cavity, we subtract

c Tf = c Ti - h c
fRF

where h is the harmonic number, to avoid numerical overflow forcT.

10

The Symplectic Integrator

It is possible to extend the 4 × 5 matrixformalism to the 6 × 6 case, as well as
include higherorder effects, by using a (non-symplectic), e.g. second ordermatrix
formalism [Brown]. However, this leads to a rather cumbersomeformulation. The elegant
way, which also has the advantage ofbeing exact in the transverse coordinates, is to use a
symplecticintegrator []. The importance of symplectic tracking for the studylong term
stability is obvious.

 The Hamiltonian is separated into two exactly solvable parts

H1 = H4 + H5

where, neglecting fringe fields

H4 = - (1 + href x) 1 + δ 2
 - px2 - py2 + δ , H5 = - (1 + href x)

q
p0

 As

For efficiency we will use the expanded Hamiltonian

H4 =
px2 + py2

2 1 + δ
 + O 3 , H5 = -

q
p0

 As + 1
2

 hB x 2 - hB x δ + O 3

The map generated by H1 is approximatedby a symplectic integrator. A 2:nd order

integrator is given by[Ruth, Forest]

exp : - L H1 : = exp : - L
2

 H4 : exp : - L H5 : exp : - L
2

 H4 : + O L3

Since H4 is the Hamiltonian for a driftand H5 corresponds to a thin kick, see Fig.2.

L/2 L/2thin
kick

Fig. 2: A 2:nd order symplectic integrator.

Given a symmetric integrator of order 2n, S2n(L), a (2n + 2):th order integrator is

obtained by [Yoshida]

11

S2n+2 L = S2n z1L S2n z0L S2n z1L + O L2n+3

where

z0 = - 21/ 2n+1

2 - 21/ 2n+1
 , z1 = 1

2 - 21/ 2n+1

In particular, a 4:th order integrator is therefore given by

exp : - L H1 : = exp : - c1 L H4 : exp : - d1 L H5 : exp : - c2 L H4 : exp : - d2 L H5 :

 + exp : - c2 L H4 : exp : - d1 L H5 : exp : - c1 L H4 : + O L5

where

c1 = 1
2 2 - 21/3

 , c2 = 1 - 21/3

2 2 - 21/3

d1 = 1
2 - 21/3

 , d2 = - 21/3

2 - 21/3

see Fig. 3.

c1 L thin
kick

thin
kick

thin
kick

c1 L c1 L c1 L

Fig. 3: A 4:th order symplectic integrator.

Both integrators are implemented.

12

Magnet Errors

Implementation of torsion...

Mis-alignments are implemented by applying a Euclidian transformationat the
entrance and exit of each magnet [Forest]. We first transformto the magnets local
coordinate system

prot
φ
2

 ° R θdes

where R(θ) is a rotation in 2 dimensions

 x ← x cos θ + y sin θ ,

px ← px cos θ + py sin θ ,

 y ← - x sin θ + y cos θ ,

py ← - px sin θ + py cos θ

with the design roll θdes (e.g.a vertical bend is obtained by rotating a horizontal bend by

90°) and prot defined by

ps ← 1 + δ 2
 - px2 - py2 ,

 x ←
x ps

ps cos φ/2 - px sin φ/2
 , px ← ps sin

φ
2

 + px cos
φ
2

 ,

 y ← y +
x py sin φ/2

ps cos φ/2 - px sin φ/2
 , py ← py ,

 t ← t +

x 1
β

 + δ sin φ/2

ps cos φ/2 - px sin φ/2
 , pt ← pt

where φ is the bend angle. If we expand and only keeplinear terms in the transverse
coordinates as well as φ we find

 x ← x + O 2 , px ← px + sin
φ
2

 + O 2 ,

 y ← y + O 2 , py ← py ,

 t ← t + O 2 , pt ← pt

The Euclidian transformation consists of a translation T

13

x ← T x = x - ∆x

followed by a rotation R with the total roll angle θ.The total misaligment has the
following contributions

∆x = ∆xsys + ∆xrms r

where r is a random number and similarly, the total roll angle

θ = θdes + ∆θsys + ∆θrms r

where θdes is a design tilt. Sincewe are now in the magnet's reference system we only have

to applyprot(-φ/2) to transform back.

 The multipole components have the following contributions

an = an des + an sys + an rms r
bn = bn des + bn sys + bn rms r

where an des and bn des are the design multipole strengths.

The Euclidian Transformation

We summarize: at the entrance of a given magnet we applya Euclidian transformation

prot-1
φ
2

 ° R θ ° T ∆ x ° R-1 ° θdes ° prot
φ
2

 ° R θdes

The transformation

R-1 ° θdes ° prot φ/2 ° R θdes

is given by

 x ← x + O 2 , px ← px + sin
φ
2

 cos θdes + O 2 ,

 y ← y + O 2 , py ← py + sin
φ
2

 sin θdes + O 2 ,

 t ← t + O 2 , pt ← pt

We then translate

14

 x ← x - ∆x ,

 y ← y - ∆y

rotate

 x ← x cos θ + y sin θ ,

px ← px cos θ + py sin θ ,

 y ← - x sin θ + y cos θ ,

py ← - px sin θ + py cos θ

and finally apply

prot-1 φ/2 ° R θ

or

 x ← x + O 2 , px ← px - sin
φ
2

 + O 2 ,

 y ← y + O 2 , py ← py + O 2 ,

 t ← t + O 2 , pt ← pt

We now integrate through the magnet. Similarly, at the exit weapply

R-1 θdes prot
φ
2

 R θdes T-1 ∆ x R-1 θ prot-1
φ
2

The corresponding matrix is

cos θ 0 sin θ 0 0

0 cos θ 0 sin θ 0

- sin θ 0 cos θ 0 0

0 - sin θ 0 cos θ 0
0 0 0 0 1

since only the rotation contributes.

Note, that although the 4 × 5 matrix formalismcan be applied in the case of magnet
errers this treatment isinconsistent, since the matrices are obtained by expanding
aroundthe reference trajectory. In other words, only feed-down due tolinear terms, are

15

included for elements represented by matrices.This model should therefore, at most, be
applied for linear latticedesign with no magnet errors. The use of a symplectic
integratorand automatic differentiation (AD) allows for the implementationof a consistent
model, since AD allows us to compute non-linearmaps around any reference curve and in
particular, linear mapsaround the perturbed closed orbit.

16

The Closed Orbit Finder

For the 4 × 5 matrix formalism the linear one-turn-mapis computed by concatenating
the linear transfer matrices.

In the case of the symplectic integrator, all the calculationsare performed using a
package for truncated power series algebrato find the Taylor series expansion of the non-
linear map M to arbitrary order. Given the purpose of this codeas well as for efficiency,
we have linked to routines for linearpower series computing the linear map M. It is
straightforward(more compact, efficient etc.) to write an independent code thatcomputes
and analysis higher order maps by reading a machine filedescribing the lattice generated
by this code.

The linear map M is calculated for a given reference trajectory.In the circular case the
closed orbit is normally used. The closedorbit is different from the design orbit when
misalign- and tilterrors are added for the magnets. In this case the closed orbithas to be
found numerically.

For the one turn map we have

xf = M xi

The closed orbit at the starting point of the lattice is givenby the fixed point

M xcod = xcod

or

M - I xcod = 0

The fixed point is found numerically with Newton-Raphson's method[]

f′ xk xk+1 - xk + f xk = 0

wheref′ xk the Jacobian. It follows

f xi
k = M - I xi

k = xf
k - xi

k, f′ xi
k = M - I

so that

xi
k+1 = xi

k - M - I -1 xf
k - xi

k

17

Note that the linear one turn map M has to be calculated for eachiteration. The closed
orbit at other points in the lattice arecomputed by tracking.

18

Linear Lattice Calculations

The linear equations of motion are obtained by expandingthe Hamiltonian to second
order and assuming mid-plane symmetry

H3 =
px2 + py2

2 1 + δ
 + 1

2
 b2 s + hB

2 s x2 - 1
2

 b2 s y2 - hB s x δ + O 3

with the solution

 x = 2 Jx βx s cos µx s + ϕx ,

px = - 2 Jx

βx s
 sin µx s + ϕx + αx s cos µx s + ϕx

where

αx s ≡ - 1
2

 βx
′

s

The linear one-turn map M can in the2 × 2 case be written

M =
cos µ + α sin µ β sin µ

- γ sin µ cos µ - α sin µ

where the phase advanceµ s is given by

µ s ≡ dτ
β τ

s0

s

and

γ ≡ 1
β

 1 + α2

We apply the following canonical transformation A so that

A-1 M A = R µ =
cos µ sin µ

- sin µ cos µ

19

whereR µ is the 2-dimensional rotation matrix. We find

A =

1
γ

- α
γ

0 γ

If one imposes the normal definition of phase advance, the correspondingAC&S is

obtained from A by rotating withand angle of arctan(α)

AC&S =

1
γ

- α
γ

0 γ

1

1 + α2
 α

1 + α2

- α
1 + α2

 1

1 + α2

 =
β 0

- α
β

1

β

In the general case, the4 × 5 one-turn-map is diagonalized and the corresponding A is
concatenatedwith the transport matrices to compute the values of the latticefunctions
after each element in the lattice. Linear coupling istherefore autamatically taken into
account

The one-turn matrix has the form

M =

0 n16

N 0 n26

0 n36

0 n46

n51n52n53n54 1 n56

0 0 0 0 0 1

It follows that the δ-dependent fix point is given by

∆xcod = η δ = N η δ + n δ

so that

η = I - N -1 n

whereη = ηx, η′x, ηy, η′y is the linear dispersion. andn = n16, n26, n36, n46 . The
translation to this point in phase space can be done bythe translation operator

20

T = e:∆x⋅ x:

where

:∆x⋅ x: = ∆xi Ji j xj
i j

andJi j is the symplectic form

J =
0 1

-1 0

Applying the corresponding canonical transformation B

B =

1 0 0 0 0 ηx

0 1 0 0 0 η′x

0 0 1 0 0 ηy

0 0 0 1 0 η′y

- η′x ηx - η′y ηy 1 0

0 0 0 0 0 1

and A as before we find

A-1 B-1 M B A =

cos µx sin µx 0 0 0 0

- sin µx cos µx 0 0 0 0

0 0 cos µy sin µy 0 0

0 0 - sin µy cos µy 0 0

0 0 0 0 1 C αc

0 0 0 0 0 1

where αc is the momentum compaction

αc ≡ 1
C

d c T

d δ

and C the circumference. The longitudinal chromaticityηδ is defined by

ηδ ≡ 1
ω

 d ω
d δ

 = 1
γt

2
 - αc =

E0
2 - αc E2

E2

and we have for the linearized eqution of motion

δf
 = δi

 +
q V
E0

 sin ωRF
c c T0 + c T + Ti + C αc δ + nT⋅ x

21

For reference purposes we present the corresponding equation ofmotion using angle
variables

φ + Ω2

cos φs

 sin φ - sin φs = 0

where

Ω =
ωRF αc cos φs

T0

q VRF

E0

and

φ = ωRF
c c T , φ = ωRF αc δ

22

Calculation of Tune for a General4 × 4 Symplectic Matrix

The characteristic polynomial P(λ) of an arbitrarysymplectic matrix is given by
[Forest]

P λ = det M - λ I = λ - λ0 λ - 1
λ0

 λ - λ1 λ - 1
λ1

It follows that

P 1 = 2 - x 2 - y , P -1 = 2 + x 2 + y

where

x = λ0 + 1
λ0

 = 2 cos 2πνx

and similarly for y. Eliminating y

x2 + 4 b x + 4 c = 0

where

b =
P 1 - P -1

16
 , c =

P 1 + P -1
8

 - 1

Solving for x

 x = - 2 b ± b2 - c ,

so that

νx,y = 1
2 π

 cos-1 x
2

The right quadrant (0 → 2π) is determined from inspection of the map M.

Chromatic effects using the matrix formalism, arecalculated by numerical
differentiation. In particular, the closedorbit is calculated for the on- as well as the off-
momentum togetherwith the one turn map.

23

Synchrotron Radiation

The classical radiation from an accelerated relativisticelectron is given by [Sands
p.98]

d E
d c t

 =
q2 c2 Cγ

2 π
 E2 B⊥

2

where

Cγ = 4 π
3

 re

me c2 3
 = 8.846269 × 10-5 m GeV-3

Since

d E
d c t

 = - p0
d pt

d t

It follows

d pt

d c t
 = -

c Cγ

2 π
 p0 E0

2 1 -
p0 c
E0

 pt
2
 B⊥
B ρ

2

If we take the ultra-relativistic limit

pt → - δ , p0 c → E0 when β → 1

we find

d δ
d c t

 = -
Cγ E0

3

2 π
 1 + δ 2

B⊥
B ρ

2
 , β → 1

The transverse field is computed from

B⊥ = B × es

r′ ≡ d r
d s

 = 1 + hB x 2 + x′2 + y′2

24

ex =
x′

r′
 , ey =

y′

r′
 , es =

r′

r′

Since x' and y' are conserved [Sands p. 104] it follows fromHamilton's equations

x' =
ŽH
Žpx

 =
px

1 + δ
 + O 2 ,

y' =
ŽH
Žpy

 =
py

1 + δ
 + O 2

that

pxf =
1 + δf

1 + δi
 pxi ,

pyf =
1 + δf

1 + δi
 pyi

25

Quantum Fluctuations

26

Closed Orbit Correction

The Local Bump Method

Closed orbit correction with local bump method []. Localbump implies

Fig. : Local bump

θx1 = free parameter ,

θx2 = -
βx1

βx2

sin µx3 - µx1

sin µx3 - µx2
 θx1 ,

θx3 = -
βx1

βx3

sin µx2 - µx1

sin µx3 - µx2
 θx1

Least-squre minimization of the rms orbit

xrms2 = θx1 xi + βx1 βxi s sin µxi - µx1
2

i

gives

θx1 = -

xi βx1 βxi s sin µxi - µx1
i

βx1 βxi s sin µxi - µx1
2

i

In the linear approximation the new orbit is given by

x s =
 - βx1 βx s sin µx s - µx1 θx1 , s1 ≤ s ≤ s2

 - βx1 βx s sin µx s - µx1 θx1 + βx2 βx s sin µx s - µx2 θx2 , s2 ≤ s ≤ s3

Limited corrector strength is implented by successively scalingθ
1
, θ

2
, and θ

3
 until

reaching valuesthat are within limits.

27

Singular Value Decomposition

The correlation matrix is given by

Cij =
βi βj

2 sin π ν
 cos π ν - µi - µj + ηi ηj δ

where the last term only contributes in the case of a cavity.We attempt to solve the
following equation

C θx + x = 0

It can be shown that

28

TRACY

lattice

commands

lattice parser

command parser

Fig. : Traditional tracking code structure

Fig. : TRACY program structure

Fig. : Pascal-S compiler/interpreter system

Tracy is using the following files

input file *.inp
output file *.out
lattice file *.lat
lattice output file *.lax

Omissions from Pascal-S

Pascal-S [] is a strict subset of Pascal []. It does notsupport the following

Data types enumerated, subrangeand pointer
Data structures variant record, packed, set and file
Statements with and goto
Input/Output put and get

Since the lack of text files is non-acceptable for our purpose,it has been added with some
constraints for easy implementation.

29

Data Structures for theLattice

There are four basic types of elements: drift, multipole,cavity and marker.

procedure getelem(i : integer; var cellrec : celltype);

Get cell record number i from internal data structures toPascal-S stack

input: i element number
output: cellrec element information
example: getcell(globval.Cell_nLoc, cell);

procedure putelem(i : integer; var cellrec : celltype);

Put cell record number i from Pascal-S stack to internaldata structures

input: cellrec element information
output: i element number
example: putcell(0, cell);

procedure getglobv_(globval);

procedure putglobv_(globval);

trace

break

30

Lattice Description

31

Enhancements to Pascal-S

text files and include files. There are essentially fivedifferent kinds of standard
procedures and functions added toPascal-S:

a) string manipulations
b) some additional standard mathematical functions
c) matrix manipulations
d) graphics routines (strict subset of GKS)
e) accelerator physics routines

They are listed in the following.

String library

Data Structures

const strlmax = 80;

type strbuf = packed array [1..strlmax] of char;
tstring = record
 len : integer;
 str : strbuf;
 end;

function strlen_(var str : tstring) : integer;

Get length of string:

input: str
output: strlen_
example: len := strlen_(str);

procedure getstr(var str : tstring;

 vstr : packed array [low..high : integer]of char);

Get string:

input: vstr
output: str

32

example: getstr(str, 'This is a string');

procedure copystr(var outstr, instr : tstring);

Copy string:

input: instr
output: outstr
example: copystr(str2, str1);

procedure concat(var str2 : tstring;

 str1 : packed array [low..high : integer]of char);

Concatenate strings:

input: str1
output: str2
example: concat(str, ' add this to string');

procedure getint(var str : tstring; i, blanks : integer);

Write integer into string:

input: i number to be written into str
blanks field width

output: str
example: getint(str, 1234, 10);
corresponds to: write(str, 1234:10);

procedure getreal(var str : tstring; x : double; blanks,ndec : integer);

Write real into string:

input: x number to be written into str
blanks field width
ndec number of decimals

output: str
example: getreal(str, 3.1415, 10, 5);
corresponds to: write(str, 3.1415:10:5);

33

procedure getreale(var str : tstring; x : double;blanks, ndec : integer);

Write real into string, exponential form:

input: x number to be written into str
blanks field with
ndec number of decimals

output: str
example: getreale(str, i, 10, 5);
corresponds to: write(str, x:10+5);

function strind(var object: tstring;

 pattern : packed array [low..high : integer]of char)
 : integer;

Pattern matching:

input: object
pattern

output: strind 0, if pattern not found, location,if pattern found
example: pos := strind(str, 'where');

procedure writestr(var str : tstring; blanks : integer;var outf : text);

Write string to file:

input: str
blanks field width

output: outf
example: writestr(str, 80, outfile);

34

Math library

Data Structures

const matdim = 6;

type double = real8;
vector = array [1..matdim] of double;
matrix = array [1..matdim] of vector;

var pi : double;
rseed0, rseed : integer;
normcut_ : double;

Matdim is the maximum allowed matrix dimension.

FUNCTION dble(x : real) : double;

Convert from single to double precision

input: x
output: dble
example: z := dble(1.1);

FUNCTION sngl(x : double) : real;

Convert from double to singe precision:

input: x
output: sngl
example: z := sngl(2.1);

FUNCTION min_(x1, x2 : double) : double;

Get min value of x1 and x2

input: x1, x2
output: min_
example: xmin := min_(x1, x2);

35

FUNCTION max_(x1, x2 : double) : double;

Get max value of x1 and x2

input: x1, x2
output: max_
example: xmax := max_(x1, x2);

FUNCTION power(x, y : double) : double;

Evaluates x^y

input: x, y
output: power
example: z := power(2.0, 4);

FUNCTION tan_(x : double) : double;

Evaluates tan(x)

input: x
output: tan_
example:

FUNCTION cosh_(x : double) : double;

Evaluates cosh(x)

input: x
output: cosh
example:

FUNCTION sinh_(x : double) : double;

Evaluetes sinh(x)

input: x
output: sinh_
example:

36

FUNCTION tanh_(x : double) : double;

Evaluates tanh(x)

PROCEDURE iniranf(i : integer);

Initialize random number generator

input: i
output:
example:

PROCEDURE newseed;

Get a new seed for random number generator

input:
output:
example:

FUNCTION ranf : double;

Random number generator with rectangular distribution

input:
output: ranf
example:

PROCEDURE setrancut(cut : double);

Set cut for normally distributed random number generator

input: cut
output:
example:

FUNCTION normranf : double;

Random number generator with normal distribution

37

input:
output: normranf
example:

Conversion routines

FUNCTION degtorad (d : double) : double;

Degrees to radianer

input: d
output: degtorad
example:

FUNCTION sign(x : double) : integer;

Get sign of value

input: x
output: sign
example:

Function GetAngle(x, y : double) : double;

Get phi from x=cos(phi), y=sin(phi), -pi ≤ phi≤ pi

input: x, y
output: GetAngle
example:

38

Matrix routines

For the following routines n is the dimension of the vectorsand matrices.

PROCEDURE UnitMat(n : integer; VAR A : matrix);

Unit matrix: A ¬ I

input: A, n
output: A
example:

PROCEDURE CopyVec(n : integer; VAR u, v : vector);

Copy vector: v ¬ u;

input: u, n
output: v
example:

PROCEDURE CopyMat(n : integer; VAR A, B : matrix);

Copy matrix: B ¬ A

input: A, n
output: B
example:

PROCEDURE AddVec(n : integer; VAR a, b : vector);

Add vectors: b ¬ a + b

input: a, b, n
output: b
example:

PROCEDURE SubVec(n : integer; VAR u, v : vector);

Subtract vectors: u ¬ v - u

39

input: u, v, n
output: v
example:

PROCEDURE AddMat(n : integer; VAR A, B : matrix);

Add matrices: A ¬ A + B

input: A, B, n
output: B
example:

PROCEDURE SubMat(n : integer; VAR A, B : matrix);

Subtract matrices: B ¬ B - A

input: A, B, n
output: B
example:

PROCEDURE LinTrans(n : integer; VAR A : matrix; VARx : vector);

Linear transformation: x ¬ A * x

input: A, x, n
output: x
example:

PROCEDURE MulLMat(n : integer; VAR A, B : matrix);

Left matrix multiplication: B ¬ A * B

input: A, B, n
output: B
example:

PROCEDURE MulRMat(n : integer; VAR A, B : matrix);

Right matrix multiplication: A ¬ A * B

40

input: A, B, n
output: A
example:

FUNCTION TrMat(n : integer; VAR A : matrix) : double;

Trace: A ¬ Tr(A)

input: A, n
output: A
example:

PROCEDURE TpMat(n : integer; VAR A : matrix);

Transpose:A ← AT

input: A, n
output: A
example:

FUNCTION DetMat(n : integer; VAR A : matrix) : double;

Determinant: A ¬ |A|

input: A, n
output: A
example:

function InvMat(n : integer; VAR A : matrix) : boolean;

Inverse:A ← A-1

input: A, n
output: A
example:

procedure prtmat(n : integer; var A : matrix);

Print matrix on terminal

41

input: A, n
output:
example:

42

Physics routines

function GetnKid(Fnum1 : integer) : integer;

Get number of elements (kids) in for a given family

function Elem_GetPos(Fnum1, Knum1 : integer) : integer;

Get element number (1 - globval.cell_nloc)

procedure Cell_SetdP(dP : double);

input: dP
output:
example:

procedure Cell_Pass(i0, i1 : integer; var x : vector;var lastpos : integer);

Track particle from i0 to i1

input: i0 initial position
i1 final position
x initial conditions (x, px, y, py, delta, ctau)

output: x final conditions (x, px, y, py, delta,ctau)
lastpos last position (# i1 if particle is lost)

example: x[1] := x0; x[2] := px0; x[3] := y0; x[4] :=py0;
x[5] := delta; x[6] := 0.0;
Cell_Pass(0, globval.Cell_nLoc, x, lastpos);

procedure Cell_Pass_M(i0, i1 : integer; var xref :vector; var mat : matrix; var

lastpos : integer);

Track matrix from i0 to i1 around ref. orbit

input: i0, i1
xref reference orbit
mat

output: mat
lastpos

example:

43

procedure Cell_DApass(i0, i1 : integer; var map :DAmap; var lastpos : integer);

Track matrix from i0 to i1 around ref. orbit, using DA

input: i0, i1
map

output: map
lastpos

example:

procedure Cell_Concat(dP : double);

Concatenate lattice for fast tracking

input: dP
output:
example:

procedure Cell_fPass(var x : vector; var lastpos :integer);

Fast tracking of particle using concatenated lattice

input: x
output: x

lastpos
example:

procedure Cell_fPass_M(var xref : vector; var mat: matrix; var lastpos : integer);

Fast tracking of matrix using concatenated lattice

input: xref
mat

output: mat
lastpos

example:

procedure Cell_GetCOD(imax : integer; eps, dP : double;var lastpos : integer);

44

Closed orbit finder

input: imax, eps, dP
output: laspos
example:

PROCEDURE Cell_GetABGN(var M : matrix; var alpha,beta, gamma,nu : vector2);

Get alpha, beta, gamma and nu from transport matrix

input: M
output: alpha, beta, gamma, nu
example:

procedure Cell_MatTwiss(i0, i1 : integer; var Ascr: matrix; chroma, ring : boolean);

Track A script from i0 to i1

input: i0, i1, chroma, ring
Ascr

output: Ascr
example:

procedure Cell_DATwiss(i0, i1 : integer; var Ascr: DAmap; chroma, ring : boolean);

Track A script from i0 to i1 using DA

input: i0, i1, chroma, ring
Ascr

output: Ascr
example:

procedure Ring_Getchrom(dP : double);

Get chromaticity

input: dP

45

output:
example:

procedure Ring_GetTwiss(chroma : boolean; dP : double);

Get Twiss parameters around lattice

input: chroma, dP
output:
example:

PROCEDURE Ring_Fittune(var nu : vector2; eps : double;var q : ivector2; dkL :

double; imax : integer);

Fit tune

input: nu, eps, q, dkL, imax
output:
example:

PROCEDURE Ring_Fitchrom(var ksi : vector2; eps : double;var s : ivector2; dkpL :

double; imax : integer);

Fit chromaticity

input: ksi, eps, s, dkpL, imax
output:
example:

PROCEDURE Ring_FitDisp(pos : integer; eta, eps : double;q : integer; dkL : double;

imax : integer);

Fit dispersion

input: pos, eta, eps, q, dkL, imax
output:
example:

procedure InitBUMP(dnuhmin, dnuvmin : double);

46

Initialize orbit correction algorithm. It is necessary to
call Ring_gettwiss before initbump can be called.

input: dnuhmin, dnuvmin
output:
example: Ring_gettwiss(false, 0.0);

InitBump(0.0, 0.0);

procedure execbump(MaxKick : double);

Do one iteration of orbit correction

input: MaxKick
output:
example:

47

Include Files

The following files are called include files and appear atthe input file level. They
define generally useful specializedhigh level physics routines based on the more general
low levelstandard procedures and functions.

physlib.inc

Data Structures

const nueps = 1d-6; nudk = 0.001; nuimax = 10;
ksieps = 1d-6; ksidkp = 0.01; ksiimax = 10;
dispeps = 1d-4; dispdk = 0.2; dispimax = 10;

Procedures and Functions

procedure printglob;

Print global values

input:
output:
example: Ring_gettwiss(true, 0.0);

getglobv_(globval);
printglob;

procedure printmat(n : integer; var A : matrix; varoutf : text);

Print matrix to file

input: n, A, outf
output:
example:

procedure printcellf;

Print Twiss parameters

input:
output:

48

example:

procedure Printcod;

Print closed orbit

input:
output:
example:

procedure getmean(n : integer; var x : graphvect);

Remove average value from a set of data

input: n number of data
x data

output: x
example:

procedure getcod(dP : double; var lastpos : integer);

Get closed orbit

input: dP
output: lastpos
example:

procedure TraceABN(i0, i1 : integer; alpha, beta,eta, etap : Vector2);

Get alpha and beta from i0 to i1

input: i0, i1, alpha, beta, eta, etap
output:
example:

procedure ttwiss(alpha, beta, eta, etap : vector2;dP : double);

Get alpha and beta along lattice

input: alpha, beta, eta, etap, dP

49

output:
example:

PROCEDURE FitTune(qf, qd : integer; nux, nuy : double);

Fit tune

input: qf, qd, nux, nuy
output:
example:

PROCEDURE FitChrom(sf, sd : integer; ksix, ksiy :double);

Fit chromaticity

input: sf, sd, ksix, ksiy
output:
example:

PROCEDURE FitDisp(q, pos : integer; eta : double);

Fit dispersion

input: q, pos, eta
output:
example:

procedure getfloqs(var x : vector);

Transform to Floquet space

input: x
output: x
example:

procedure track(x, px, y, py, dp : double; nmax :integer;

 var lastn, lastpos : integer; floq : boolean);

Track particle nmax turns around the closed orbti. Data is
stored in the file tracking.dat. Ring_Gettwiss must be

50

called first.

input: x, px, y, py, dp
nmax, floq

output: lastn, lastpos
example: Ring_gettwiss(true, delta);

track(x0, px0, y0, py0, delta,
 nturn, lastn, lastpos, true);
if lastn <> nturn then writeln('Particle lost duringturn ', nturn:1, ' , at element ',

lastpos:1);

procedure getdynap(var r0, dr0 : vector; dp, eps :double; napp : integer; var rapp :

vector);

Get dynamical aperture

input: r0, dr0, dp, eps, napp
output: rapp
example:

procedure gettrack(var n : integer; var x, px, y,py : graphvect);

Get tracking data from file. Track must be called first.

input: n
output: x, px, y, py
example: Ring_gettwiss(true, delta);

track(x0, px0, y0, py0, delta,
 nturn, lastn, lastpos, true);
if lastn <> n then writeln('Particle lost during turn', n:1, ' , at element ',

lastpos:1);
gettrack(n, x, px, y, py);

procedure getj(n : integer; var x, px, y, py : graphvect);

Get linear invariant

input: n, x, px, y, py
output: x, y
example: gettrack(n, x, px, y, py);

getj(n, x, px, y, py);

51

procedure getphi(n : integer; var x, px, y, py : graphvect);

Get phase

input: n, x, px, y, py
output: x, y
example: gettrack(n, x, px, y, py);

getphi(n, x, px, y, py);

procedure setdS(Fnum : integer; dxrms, dyrms : double);

Set displacement errors

input: Fnum, dxrms, dyrms
output:
example:

procedure setdT(Fnum : integer; dTrms : double);

Set tilt errors

input: Fnum, dTrms
output:
example:

procedure setdk(Fnum, Order : integer; dksys,dkrms : double);

Set multipole errors

input: Fnum, Order, dksys, dkrms
output:
example:

52

plotphys.inc

procedure plotfft(wn, n : integer; var x : graphvect);

Plot DFT

input: wn, n, x
output:
example:

procedure plotdynap(r0, dp, eps : double; npoint,napp : integer);

Plot dynamical aperture

input: r0, dp, eps, npoint, napp
output:
example:

procedure plotps;

Plot phase space

input:
output:
example:

procedure plotj;

Plot linear invariant

input:
output:
example:

procedure plotphi;

Plot phase

input:
output:
example:

53

procedure plotpos(lastpos : integer);

Plot beam position

input: lastpos
output:
example:

procedure plotcell(symfac : integer);

Plot Twiss functions

input: symfac
output:
example:

procedure plotcorr;

Plot orbit corrector strengths

input:
output:
example:

procedure plotcod;

Plot closed orbit

input:
output:
example:

procedure codcorrect(bumpimax : integer; thetamax: double);

Closed orbit correction

input: bumpimax, thetamax
output:
example:

54

References

K. Jensen and N. Wirth, "Pascal User Manual and Report", (Springer-Verlag,1975)

N. Wirth, "Pascal-S: a subset and its implementation, in Pascal- The Language and Its
Implementation", ed. D. W. Barron, pp.199-260, (Wiley, 1981)

R. E. Berry, "Programming Language Translation", (Ellis Horwood,1983)

M. Rees and D. Robson, "Practical Compiling with Pascal-S",(Addison-Wesley, 1988)

E. Forest

H. Nishimura

55

