Ignore:
Timestamp:
Oct 15, 2015, 9:21:49 AM (9 years ago)
Author:
hodnevuc
Message:
 
File:
1 edited

Legend:

Unmodified
Added
Removed
  • reconstruction/long_paper3/phase_reconstruction_paper.tex

    r284 r287  
    190190\begin{figure}[htbp]
    191191 \centering
    192   \includegraphics*[width=70mm]{plots/31.eps} \\
    193     \includegraphics*[width=70mm]{plots/32.eps}
     192  \includegraphics*[width=70mm]{plot1510/31.eps} \\
     193    \includegraphics*[width=70mm]{plot1510/32.eps}
    194194  %\includegraphics*[width=70mm]{newFig/lin27e203line203.eps}
    195195  \caption{Comparison of different samplings with $\chi^2$ criterium (top) and $\Delta_{FWHM}$ (bottom).}%VH add  picture
     
    327327\rho_{HF}(\omega)=A\omega^B
    328328\end{equation}
    329 where the A and B coefficient are selected from the boundary conditions.
     329where the A and B coefficient are selected from the boundary conditions. But assumption of finite bunch size set boundary condition on B. So even if $B>-2$ from crosslinking conditions, we use B=-2.
    330330Two other extrapolation methods have also been investigated:
    331331\begin{itemize}
     
    335335
    336336These HF extrapolation methods are compared on figure~\ref{hf} and~\ref{hf2}.\par
    337 Thus, by virtue of the above arguments and simulations, It's naturally to choose the high-frequency extrapolation by power function. Constants of extrapolation functions are selected from crosslinking conditions above.
     337Thus, by virtue of the above arguments and simulations, It's naturally to choose the high-frequency extrapolation by power function. Constants of extrapolation functions are selected from crosslinking conditions above and $B<=-2$ condition is also used.
    338338 
    339339 
     
    402402\begin{figure}[htbp]
    403403 \centering
    404   \includegraphics*[width=70mm]{plots/131.eps} \\
    405   \includegraphics*[width=70mm]{plots/132.eps}
     404  \includegraphics*[width=70mm]{plot1510/131.eps} \\
     405  \includegraphics*[width=70mm]{plot1510/132.eps}
    406406  \caption{{$\Delta_{FWHM}$  (top)  and $\chi^2$ (bottom) distribution of 1000 simulations reconstructed using the Hilbert transform  method (black line) and Kramers-Kronig reconstruction method (red line).  }}% VH change name of picture and unite with other
    407407   \label{profiles_stats_hilbert}
     
    423423\begin{figure}[htbp]
    424424 \centering
    425   \includegraphics*[width=70mm]{plots/15.eps}
     425  \includegraphics*[width=70mm]{plot1510/15.eps}
    426426  \caption{$\Delta_{FWXM}$  for 1000 profiles with both methods.}%VH add  picture
    427427   \label{fwxm}
     
    442442\begin{figure}[htbp]
    443443 \centering
    444   \includegraphics*[width=70mm]{plots/171.eps} \\
    445   \includegraphics*[width=70mm]{plots/172.eps} \\
     444  \includegraphics*[width=70mm]{plot1510/171.eps} \\
     445  \includegraphics*[width=70mm]{plot1510/172.eps} \\
    446446%  \includegraphics*[width=75mm]{THPME088f10.eps}
    447447  \caption{Distribution of the $\chi^2$ in the case of a lorenzian distribution. }
Note: See TracChangeset for help on using the changeset viewer.