source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/hion.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 18.9 KB
Line 
1\section[Ionization]{Hadron and Ion Ionization} \label{hion}
2
3\subsection{Method}
4 
5The class {\it G4hIonisation} provides the continuous energy loss due to
6ionization and simulates the 'discrete' part of the ionization, that is,
7delta rays produced by charged hadrons.  The class {\it G4ionIonisation} is
8intended for the simulation of energy loss by positive ions with change greater than unit.
9Inside these classes the following models are used:
10\begin{itemize}
11\item
12{\it G4BetherBlochModel} (valid for protons with $T > 2\; MeV$)
13\item 
14{\it G4BraggModel} (valid for protons with $T < 2\; MeV$)
15\item
16{\it G4BraggIonModel} (valid for protons with $T < 2\; MeV$)
17\end{itemize}
18The scaling relation (\ref{enloss.sc}) is a basic conception for the description
19of ionization of heavy charged particles. It is used both in energy loss
20calculation and in determination of the validity range of models. Namely the
21$T_p = 2 MeV$ limit for protons is scaled for a particle with mass $M_i$ 
22by the ratio of the particle mass to the proton mass $T_i = T_p M_p/M_i$.
23
24For all ionization models the value of the maximum energy
25transferable to a free electron $T_{max}$ is given by the following relation \cite{hion.pdg}:
26\begin{equation}
27\label{hion.c}
28T_{max} =\frac{2m_ec^2(\gamma^2 -1)}{1+2\gamma (m_e/M)+(m_e/M)^2 },
29\end{equation}
30where $m_e$ is the electron mass and $M$ is the mass of the incident particle.
31The method of calculation of the continuous energy loss and the total
32cross-section are explained below.
33
34\subsection{Continuous Energy Loss}
35
36The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
37loss ($T < T_{cut}$ formula \cite{hion.pdg}, which is modified taken into
38account various corrections \cite{hion.ahlen}:
39\begin{equation}
40\label{hion.d}
41\frac{dE}{dx} =
42       2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2}
43       \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
44       - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
45       - \delta - \frac{2C_e}{Z} + F\right ]
46\end{equation}
47 where
48\[
49\begin{array}{ll}
50r_e          & \mbox{classical electron radius:}
51                  \quad e^2/(4 \pi \epsilon_0 mc^2 )        \\
52mc^2         & \mbox{mass-energy of the electron}           \\
53n_{el}       & \mbox{electrons density in the material}     \\
54I            & \mbox{mean excitation energy in the material}\\
55Z            & \mbox{atomic number of the material}         \\
56$z$          & \mbox{charge of the hadron in units of the electron change} \\ 
57\gamma       & \mbox{$E/mc^2$}                              \\
58\beta^2      & 1-(1/\gamma^2)                               \\
59T_{up}       & \min(T_{cut},T_{max})                        \\
60\delta       & \mbox{density effect function}               \\
61C_e          & \mbox{shell correction function}             \\
62F            & \mbox{high order corrections}
63\end{array}
64\]
65In a single element the electron density is
66$$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
67($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
68 $A$: mass of a mole).  In a compound material
69$$ 
70n_{el} = \sum_i Z_i \: n_{ati}
71       = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
72$$
73$w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass $A_i$.
74
75
76The mean excitation energy $I$ for all elements is tabulated according to
77the ICRU recommended values \cite{hion.ICRU37}.
78
79\subsubsection{Shell Correction} 
80
81$2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
82fact of interaction of atomic electrons with atomic nucleus. This term more visible
83at low energies and for heavy atoms. The classical
84 expression for the term \cite{hion.ICRU49} is used
85\begin{equation}
86\label{hion.dh}
87C = \sum{C_{\nu}(\theta_{\nu},\eta_{\nu})}, \;\; \nu=K,L,M,...,
88\; \theta=\frac{J_{\nu}}{\epsilon_{\nu}}, \;\; \eta_{\nu}=\frac{\beta^2}{\alpha^2 Z^2_{\nu}},
89\end{equation}
90where $\alpha$ is the fine structure constant, $\beta$ is the hadron velocity,
91$J_{\nu}$ is the ionisation energy of the shell $\nu$, $\epsilon_{\nu}$ is
92Bohr ionisation energy of the shell $\nu$, $Z_{\nu}$ is the effective charge of the
93shell $\nu$.
94First terms $C_K$ and $C_L$ can be analytically computed in using an assumption
95non-relativistic hydrogenic wave functions \cite{hion.37,hion.38}.
96The results \cite{hion.39} of tabulation of these computations in the interval of parameters
97$\eta_{\nu} = 0.005\div 10$ and $\theta_{\nu}=0.25 \div 0.95$ are used directly.
98For higher values of $\eta_{\nu}$ the parameterization \cite{hion.39}
99is applied:
100\begin{equation}
101C_{\nu} = \frac{K_1}{\eta} + \frac{K_2}{\eta^2} + \frac{K_3}{\eta^3},
102\end{equation}
103where coefficients $K_i$ provide smooth shape of the function.
104The effective nuclear charge for the $L$-shell can be reproduced as $Z_L = Z - d$, $d$ 
105is a parameter shown in Table \ref{hion.t}.
106\begin{table}[hbt]
107\begin{centering}
108\begin{tabular}{|c|c|c|c|c|c|c|c|c|} 
109\hline
110$Z$ & 3    & 4    & 5    & 6    & 7    & 8    & 9    & $>$9\\ \hline
111$d$ & 1.72 & 2.09 & 2.48 & 2.82 & 3.16 & 3.53 & 3.84 & 4.15\\ \hline
112\end{tabular}
113\caption{Effective nuclear charge for the $L$-shell \cite{hion.ICRU49}.}
114\label{hion.th}
115\end{centering}
116\end{table}
117For outer
118shells the calculations are not available, so $L$-shell parameterization is used and the
119following scaling relation
120\cite{hion.ICRU49,hion.40} is applied:
121\begin{equation}
122\label{hion.dd}
123C_{\nu} = V_{\nu}C_L(\theta_L,H_{\nu}\eta_L), \;\; V_{\nu}=\frac{n_{\nu}}{n_L}, \;\; H_{\nu}=\frac{J_{\nu}}{J_L},
124\end{equation}
125where $V_{\nu}$ is a vertical scaling factor proportional to number of
126electrons at the shell $n_{\nu}$.
127The contribution of the shell correction term is about 10\%  for protons
128at $T = 2 MeV$.   
129
130\subsubsection{Density Correction} 
131
132$\delta$ is a correction term which takes into account the reduction in energy
133loss due to the so-called {\it density effect}.  This becomes important at
134high energies because media have a tendency to become polarized as the
135incident particle velocity increases.  As a consequence, the atoms in a
136medium can no longer be considered as isolated.  To correct for this effect
137the formulation of Sternheimer~\cite{hion.sternheimer} is used:
138\input{electromagnetic/utils/densityeffect}
139
140\subsubsection{High Order Corrections} 
141
142High order corrections term to Bethe-Bloch formula (\ref{hion.d}) can
143be expressed as
144\begin{equation}
145\label{hion.cor}
146F = G - S + 2(z L_1 + z^2 L_2),
147\end{equation}
148where G is the Mott correction term, S is the finite size correction term,
149$L_1$ is the Barkas correction, $L_2$ is the Bloch correction. The Mott term
150\cite{hion.ahlen} describes the close-collision corrections tend to become
151more important at large velocities and higher charge of projectile.
152The Fermi result is used:
153\begin{equation}
154G = \pi\alpha z\beta.
155\end{equation}
156The Barkas correction term describes distant collisions. The parameterization
157of Ref. is expressed in the form:
158\begin{equation}
159L_1 = \frac{1.29 F_A(b/x^{1/2})}{Z^{1/2}x^{3/2}}, \;\; x = \frac{\beta^2}{Z\alpha^2},
160\end{equation}
161where $F_A$ is tabulated function \cite{hion.Ashley}, b is scaled minimum impact parameter
162shown in Table \ref{hion.t1}. This and other corrections depending on atomic
163properties are assumed to be additive for mixtures and compounds.
164\begin{table}[hbt]
165\begin{centering}
166\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} 
167\hline
168$Z$ & 1 ($H_2$ gas) & 1   & 2   & 3 - 10 & 11 - 17 & 18  & 19 - 25 & 26 - 50 & $>$ 50\\ \hline
169$d$ & 0.6         & 1.8 & 0.6 & 1.8    & 1.4     & 1.8 & 1.4     & 1.35    & 1.3\\ \hline
170\end{tabular}
171\caption{Scaled minimum impact parameter b \cite{hion.ICRU49}.}
172\label{hion.t1}
173\end{centering}
174\end{table}
175For the Bloch correction term  the classical expression \cite{hion.ICRU49} is following:
176\begin{equation}
177z^2L_2 = -y^2 \sum^{\infty}_{n=1} \frac{1}{n(n^2 + y^2)}, \;\; y = \frac{z\alpha}{\beta}.
178\end{equation}
179The finite size correction term takes into account the space
180distribution of charge of
181the projectile particle. For muon it is zero, for hadrons this term become
182visible at energies above few hundred GeV and the following parameterization
183\cite{hion.ahlen} is used:
184\begin{equation}
185S = ln(1 + q), \;\; q = \frac{2 m_e T_{max}}{ \varepsilon^2},
186\end{equation}
187where $T_{max}$ is given in relation (\ref{hion.c}), $\varepsilon$ is proportional to
188the inverse effective radius of the projectile (Table \ref{hion.t2}).
189\begin{table}[hbt]
190\begin{centering}
191\begin{tabular}{|c|c|} 
192\hline
193mesons, spin = 0 ($\pi^{\pm}$, $K^{\pm}$) & $0.736\;GeV$\\ \hline
194baryons, spin = 1/2 & $0.843\;GeV$\\ \hline
195ions & $0.843\; A^{1/3}\;GeV$\\ \hline
196\end{tabular}
197\caption{The values of the $\varepsilon$ parameter for different particle types.}
198\label{hion.t2}
199\end{centering}
200\end{table}
201All these terms
202break scaling relation (\ref{enloss.sc}) if the projectile particle charge differs from
203$\pm$1. To take this circumstance into account  in {\it G4ionIonisation} process
204at initialisation time
205the term $F$ is ignored for the computation of the $dE/dx$ table.
206At run time this term is taken into account by adding to the mean energy loss a value
207\begin{equation}
208\Delta T' = 2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2} F\Delta s,
209\end{equation}
210where $\Delta s$ is the {\it true step length} and $F$ is the high order correction
211term (\ref{hion.cor}).
212
213\subsubsection{Parameterizations at Low Energies} 
214
215For scaled  energies below $T_{lim} = 2\;MeV$ shell correction becomes very
216large and precision of the
217Bethe-Bloch formula degrades, so parameterisation of evaluated data
218for stopping powers at low energies is required.
219These parameterisations for  all atoms
220is available from ICRU'49 report \cite{hion.ICRU49}. The proton parametrisation is used
221in {\it G4BraggModel}, which is included by default in the process {\it G4hIonisation}.
222The alpha particle parameterisation is used in the
223{\it G4BraggIonModel}, which is included by default in the process {\it G4ionIonisation}.
224To provide a smooth transition between low-energy and high-energy models the modified
225energy loss expression is used for high energy
226\begin{equation}
227S(T) = S_H (T) + (S_L(T_{lim}) - S_H(T_{lim}))\frac{T_{lim}}{T}, \;\; T > T_{lim},
228\end{equation}
229where $S$ is smoothed stopping power, $S_H$ is stopping power from formula (\ref{hion.d})
230 and $S_L$ is the low-energy parameterisation.
231
232The precision of Bethe-Bloch formula for $T>10 MeV$ is within 2\%, below the precision
233degrades and at $1 keV$ only 20\% may be garanteed. In the energy interval $1 - 10 MeV$
234the quality of description of the stopping power varied from atom to atom. To
235provide more stable and precise parameterisation the data from
236the NIST databases are included inside the standard package. These data are provided for
23774 materials of the NIST material database \cite{hion.nist}. The data from the PSTAR database
238are included into {\it G4BraggModel}. The data from the ASTAR database   
239are included into {\it G4BraggIonModel}. So, if Geant4 material is defined as a NIST
240material, than NIST data are used for low-energy parameterisation of stopping power.
241If material is not from the NIST database, then the ICRU'49 parameterisation is used.
242
243
244\subsubsection{Nuclear Stopping} 
245
246For scaled energies below $T_{lim} = 2 MeV$ the contribution of non-ionizing energy loss
247needs to be taken into account. The additional energy loss due to {\it nuclear stopping power}
248$\Delta T_N \Delta s$ is added the the energy loss. The process {\it G4ionIonisation}
249has a flag, which allows to switch on or off this correction. For that the method\\
250\\
251{\it G4ionIonisation::ActivateNuclearStopping(G4bool)} 
252\\
253\\
254can be used. By default
255this correction is active and the ICRU'49 parameterisation \cite{hion.ICRU49} is used.
256
257
258\subsection{Total Cross Section per Atom and Mean Free Path}
259
260For $T \gg I $ the differential cross section can be written as
261\begin{equation}
262\label{hion.i}
263\frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
264     \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right] 
265\end{equation}
266\cite{hion.pdg}.  In {\sc Geant4} $T_{cut} \geq 1$ keV.  Integrating from
267$T_{cut}$ to $T_{max}$ gives the total cross section per atom :
268\begin{eqnarray}
269\label{hion.j}
270\sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2} mc^2 \times 
271  \\ & &     \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
272                   - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
273                   + \frac{T_{max} - T_{cut}}{2E^2} 
274             \right\nonumber   
275\end{eqnarray}
276The last term is for spin $1/2$ only.  In a given material the mean free path
277is:
278\begin{equation}
279\begin{array}{lll} 
280\lambda = (n_{at} \cdot \sigma)^{-1} & or &
281\lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1}
282\end{array}
283\end{equation}
284The mean free path is tabulated during initialization as a function of the
285material and of the energy for all kinds of charged particles.
286
287\subsection{Simulating Delta-ray Production}
288
289A short overview of the sampling method is given in Chapter \ref{secmessel}.
290Apart from the normalization, the cross section \ref{hion.i} can be
291factorized :
292\begin{eqnarray}
293\frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
294\end{eqnarray}
295where
296\begin{eqnarray}
297f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
298g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
299\end{eqnarray}
300The last term in $g(T)$ is for spin $1/2$ only.  The energy $T$ is chosen by
301\begin{enumerate}
302\item sampling $T$ from $f(T)$
303\item calculating the rejection function $g(T)$ and accepting the sampled
304$T$ with a probability of $g(T)$.
305\end{enumerate}
306After the successful sampling of the energy, the direction
307of the scattered electron is generated with respect to the direction of the
308incident particle. The azimuthal angle $\phi$ is generated isotropically.
309The polar angle $\theta$ is calculated from energy-momentum conservation.
310This information is used to calculate the energy and momentum of both
311scattered particles and to transform them into the {\em global} coordinate
312system.
313
314\subsubsection{Ion Effective Charge}
315
316As ions penetrate matter they exchange electrons with the medium. In the
317implementation of {\it G4ionIonisation} the effective charge approach is
318used \cite{hion.Ziegler85}.
319A state of equilibrium between the ion and the medium is assumed, so that
320the ion's effective charge can be calculated as a function of its kinetic
321energy in a given material.  Before and after each step the dynamic
322charge of the ion is recalculated and saved in $G4DynamicParticle$, where
323it can be used not only for energy loss calculations but also for the
324sampling of transportation in an electromagnetic field.
325
326The ion effective charge is expressed via
327the ion charge $z_i$ and the
328fractional effective charge of ion $\gamma_i$:
329\begin{equation}
330z_{eff} = \gamma_i z_i.
331\label{hlei.p}
332\end{equation} 
333For helium ions
334fractional effective charge
335is parameterized for all elements
336\begin{eqnarray}
337(\gamma_{He})^2 & = &\left (1-\exp\left [-\sum_{j=0}^5{C_jQ^j}\right ]\right)
338\left ( 1  + \frac{ 7 + 0.05  Z }{1000} \exp( -(7.6-Q)^2 ) \right )^2,
339\nonumber \\
340 Q & = & \max ( 0, \ln T), 
341\label{hion.q} 
342\end{eqnarray} 
343where the coefficients $C_j$ are the same for all elements, and the
344helium ion kinetic energy $T$ is in $keV/amu$.
345
346
347The following expression is used for heavy ions \cite{hion.BK}
348\begin{equation}
349\gamma_i = \left ( q + \frac{1-q}{2} \left (\frac{v_0}{v_F} \right )^2
350\ln {\left ( 1 + \Lambda^2 \right )} \right )
351\left ( 1 + \frac{(0.18+0.0015Z)\exp(-(7.6-Q)^2)}{Z_i^2} \right ),
352\label{hion.s}
353\end{equation} 
354where $q$ is
355the fractional average charge of the ion,
356$v_0$ is the Bohr velocity,
357$v_F$ is the Fermi velocity of 
358the electrons in the target medium, and $\Lambda$ is
359the term taking into account the screening effect:
360\begin{equation}
361\Lambda = 10 \frac{v_F}{v_0} \frac{(1-q)^{2/3}}{Z_i^{1/3}(6+q)}.
362\label{hion.t}
363\end{equation} 
364The Fermi velocity of the medium is of the same order as the Bohr velocity, and
365its exact value depends on the detailed electronic structure of the medium.
366The expression for the fractional average charge of the ion is the following:
367\begin{equation}
368q = [1 -\exp(0.803y^{0.3}-1.3167y^{0.6}-0.38157y-0.008983y^2)],
369\label{hion.u}
370\end{equation} 
371where $y$ is a parameter that depends on the ion velocity $v_i$
372\begin{equation}
373y = \frac{v_i}{v_0Z^{2/3}} \left ( 1 +\frac {v_F^2}{5v_i^2} \right ).
374\label{hion.v}
375\end{equation} 
376The parametrisation of the effective charge of the ion applied
377if the kinetic energy is below limit value
378\begin{equation}
379T < 10 z_i \frac{M_i}{M_p}\;MeV,
380\label{hion.x}
381\end{equation} 
382where $M_i$ is the ion mass and $M_p$ is the proton mass.
383
384
385\subsection{Status of this document}
386  09.10.98 created by L. Urb\'an. \\
387  14.12.01 revised by M.Maire \\
388  29.11.02 re-worded by D.H. Wright \\
389  01.12.03 revised by V. Ivanchenko     \\
390  21.06.07 revised by V. Ivanchenko     \\
391
392\begin{latexonly}
393
394\begin{thebibliography}{99}
395
396\bibitem{hion.pdg}
397W.-M.~Yao et al.,  Jour. of Phys. G33 (2006) 1.
398\bibitem{hion.ahlen} 
399S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
400\bibitem{hion.ICRU37} 
401ICRU (A.~Allisy et al),
402Stopping Powers for Electrons and Positrons,
403ICRU Report 37, 1984.
404\bibitem{hion.ICRU49}ICRU (A.~Allisy et al),
405Stopping Powers and Ranges for Protons and Alpha
406Particles,
407ICRU Report 49, 1993.
408\bibitem{hion.37} 
409M.C.~Walske, Phys. Rev. 88 (1952) 1283.
410\bibitem{hion.38} 
411M.C.~Walske, Phys. Rev. 181 (1956) 940.
412\bibitem{hion.39} 
413G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
414\bibitem{hion.40} 
415H.~Bichsel, Phys. Rev. A46 (1992) 5761.
416\bibitem{hion.sternheimer}
417  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
418\bibitem{hion.Ashley}
419J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
420\bibitem{hion.nist}
421http://physics.nist.gov/PhysRevData/contents-radi.html
422\bibitem{hion.Ziegler85}
423J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
424and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
425\bibitem{hion.BK}
426W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
427\end{thebibliography}
428
429\end{latexonly}
430
431\begin{htmlonly}
432
433\subsection{Bibliography}
434
435\begin{enumerate}
436\item{hion.pdg}
437W.-M.~Yao et al.,  Jour. of Phys. G33 (2006) 1.
438\item{hion.ICRU37} 
439S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
440\item{hion.ICRU37} 
441ICRU (A.~Allisy et al),
442Stopping Powers for Electrons and Positrons,
443ICRU Report 37, 1984.
444\item{hion.ICRU49}ICRU (A.~Allisy et al),
445Stopping Powers and Ranges for Protons and Alpha
446Particles,
447ICRU Report 49, 1993.
448\item{hion.37} 
449M.C.~Walske, Phys. Rev. 88 (1952) 1283.
450\item{hion.38} 
451M.C.~Walske, Phys. Rev. 181 (1956) 940.
452\item{hion.39} 
453G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
454\item{hion.40} 
455H.~Bichsel, Phys. Rev. A46 (1992) 5761.
456\item{hion.sternheimer}
457  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
458\item{hion.Ashley}
459J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
460\item{hion.nist}
461http://physics.nist.gov/PhysRevData/contents-radi.html
462\item{hion.Ziegler85}
463J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
464and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
465\item{hion.BK}
466W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
467\end{enumerate}
468
469\end{htmlonly}
470
471
Note: See TracBrowser for help on using the repository browser.