source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/hion.tex @ 1222

Last change on this file since 1222 was 1222, checked in by garnier, 15 years ago

CVS update

File size: 19.2 KB
Line 
1\section[Ionization]{Hadron and Ion Ionization} \label{hion}
2
3\subsection{Method}
4 
5The class {\it G4hIonisation} provides the continuous energy loss due to
6ionization and simulates the 'discrete' part of the ionization, that is,
7delta rays produced by charged hadrons.  The class {\it G4ionIonisation} is
8intended for the simulation of energy loss by positive ions with change greater than unit.
9Inside these classes the following models are used:
10\begin{itemize}
11\item
12{\it G4BetherBlochModel} (valid for protons with $T > 2\; MeV$)
13\item 
14{\it G4BraggModel} (valid for protons with $T < 2\; MeV$)
15\item
16{\it G4BraggIonModel} (valid for protons with $T < 2\; MeV$)
17\end{itemize}
18The scaling relation (\ref{enloss.sc}) is a basic conception for the description
19of ionization of heavy charged particles. It is used both in energy loss
20calculation and in determination of the validity range of models. Namely the
21$T_p = 2 MeV$ limit for protons is scaled for a particle with mass $M_i$ 
22by the ratio of the particle mass to the proton mass $T_i = T_p M_p/M_i$.
23
24For all ionization models the value of the maximum energy
25transferable to a free electron $T_{max}$ is given by the following relation \cite{hion.pdg}:
26\begin{equation}
27\label{hion.c}
28T_{max} =\frac{2m_ec^2(\gamma^2 -1)}{1+2\gamma (m_e/M)+(m_e/M)^2 },
29\end{equation}
30where $m_e$ is the electron mass and $M$ is the mass of the incident particle.
31The method of calculation of the continuous energy loss and the total
32cross-section are explained below.
33
34\subsection{Continuous Energy Loss}
35
36The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
37loss ($T < T_{cut}$ formula \cite{hion.pdg}, which is modified taken into
38account various corrections \cite{hion.ahlen}:
39\begin{equation}
40\label{hion.d}
41\frac{dE}{dx} =
42       2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2}
43       \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
44       - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
45       - \delta - \frac{2C_e}{Z} + F\right ]
46\end{equation}
47 where
48\[
49\begin{array}{ll}
50r_e          & \mbox{classical electron radius:}
51                  \quad e^2/(4 \pi \epsilon_0 mc^2 )        \\
52mc^2         & \mbox{mass-energy of the electron}           \\
53n_{el}       & \mbox{electrons density in the material}     \\
54I            & \mbox{mean excitation energy in the material}\\
55Z            & \mbox{atomic number of the material}         \\
56$z$          & \mbox{charge of the hadron in units of the electron change} \\ 
57\gamma       & \mbox{$E/mc^2$}                              \\
58\beta^2      & 1-(1/\gamma^2)                               \\
59T_{up}       & \min(T_{cut},T_{max})                        \\
60\delta       & \mbox{density effect function}               \\
61C_e          & \mbox{shell correction function}             \\
62F            & \mbox{high order corrections}
63\end{array}
64\]
65In a single element the electron density is
66$$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
67($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
68 $A$: mass of a mole).  In a compound material
69$$ 
70n_{el} = \sum_i Z_i \: n_{ati}
71       = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
72$$
73$w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass $A_i$.
74
75
76The mean excitation energy $I$ for all elements is tabulated according to
77the ICRU recommended values \cite{hion.ICRU37}.
78
79\subsubsection{Shell Correction} 
80
81$2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
82fact of interaction of atomic electrons with atomic nucleus. This term more visible
83at low energies and for heavy atoms. The classical
84 expression for the term \cite{hion.ICRU49} is used
85\begin{equation}
86\label{hion.dh}
87C = \sum{C_{\nu}(\theta_{\nu},\eta_{\nu})}, \;\; \nu=K,L,M,...,
88\; \theta=\frac{J_{\nu}}{\epsilon_{\nu}}, \;\; \eta_{\nu}=\frac{\beta^2}{\alpha^2 Z^2_{\nu}},
89\end{equation}
90where $\alpha$ is the fine structure constant, $\beta$ is the hadron velocity,
91$J_{\nu}$ is the ionisation energy of the shell $\nu$, $\epsilon_{\nu}$ is
92Bohr ionisation energy of the shell $\nu$, $Z_{\nu}$ is the effective charge of the
93shell $\nu$.
94First terms $C_K$ and $C_L$ can be analytically computed in using an assumption
95non-relativistic hydrogenic wave functions \cite{hion.37,hion.38}.
96The results \cite{hion.39} of tabulation of these computations in the interval of parameters
97$\eta_{\nu} = 0.005\div 10$ and $\theta_{\nu}=0.25 \div 0.95$ are used directly.
98For higher values of $\eta_{\nu}$ the parameterization \cite{hion.39}
99is applied:
100\begin{equation}
101C_{\nu} = \frac{K_1}{\eta} + \frac{K_2}{\eta^2} + \frac{K_3}{\eta^3},
102\end{equation}
103where coefficients $K_i$ provide smooth shape of the function.
104The effective nuclear charge for the $L$-shell can be reproduced as $Z_L = Z - d$, $d$ 
105is a parameter shown in Table \ref{hion.t}.
106\begin{table}[hbt]
107\begin{centering}
108\begin{tabular}{|c|c|c|c|c|c|c|c|c|} 
109\hline
110$Z$ & 3    & 4    & 5    & 6    & 7    & 8    & 9    & $>$9\\ \hline
111$d$ & 1.72 & 2.09 & 2.48 & 2.82 & 3.16 & 3.53 & 3.84 & 4.15\\ \hline
112\end{tabular}
113\caption{Effective nuclear charge for the $L$-shell \cite{hion.ICRU49}.}
114\label{hion.th}
115\end{centering}
116\end{table}
117For outer
118shells the calculations are not available, so $L$-shell parameterization is used and the
119following scaling relation
120\cite{hion.ICRU49,hion.40} is applied:
121\begin{equation}
122\label{hion.dd}
123C_{\nu} = V_{\nu}C_L(\theta_L,H_{\nu}\eta_L), \;\; V_{\nu}=\frac{n_{\nu}}{n_L}, \;\; H_{\nu}=\frac{J_{\nu}}{J_L},
124\end{equation}
125where $V_{\nu}$ is a vertical scaling factor proportional to number of
126electrons at the shell $n_{\nu}$.
127The contribution of the shell correction term is about 10\%  for protons
128at $T = 2 MeV$.   
129
130\subsubsection{Density Correction} 
131
132$\delta$ is a correction term which takes into account the reduction in energy
133loss due to the so-called {\it density effect}.  This becomes important at
134high energies because media have a tendency to become polarized as the
135incident particle velocity increases.  As a consequence, the atoms in a
136medium can no longer be considered as isolated.  To correct for this effect
137the formulation of Sternheimer~\cite{hion.sternheimer} is used:
138\input{electromagnetic/utils/densityeffect}
139
140\subsubsection{High Order Corrections} 
141
142High order corrections term to Bethe-Bloch formula (\ref{hion.d}) can
143be expressed as
144\begin{equation}
145\label{hion.cor}
146F = G - S + 2(z L_1 + z^2 L_2),
147\end{equation}
148where G is the Mott correction term, S is the finite size correction term,
149$L_1$ is the Barkas correction, $L_2$ is the Bloch correction. The Mott term
150\cite{hion.ahlen} describes the close-collision corrections tend to become
151more important at large velocities and higher charge of projectile.
152The Fermi result is used:
153\begin{equation}
154G = \pi\alpha z\beta.
155\end{equation}
156The Barkas correction term describes distant collisions. The parameterization
157of Ref. is expressed in the form:
158\begin{equation}
159L_1 = \frac{1.29 F_A(b/x^{1/2})}{Z^{1/2}x^{3/2}}, \;\; x = \frac{\beta^2}{Z\alpha^2},
160\end{equation}
161where $F_A$ is tabulated function \cite{hion.Ashley}, b is scaled minimum impact parameter
162shown in Table \ref{hion.t1}. This and other corrections depending on atomic
163properties are assumed to be additive for mixtures and compounds.
164\begin{table}[hbt]
165\begin{centering}
166\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} 
167\hline
168$Z$ & 1 ($H_2$ gas) & 1   & 2   & 3 - 10 & 11 - 17 & 18  & 19 - 25 & 26 - 50 & $>$ 50\\ \hline
169$d$ & 0.6         & 1.8 & 0.6 & 1.8    & 1.4     & 1.8 & 1.4     & 1.35    & 1.3\\ \hline
170\end{tabular}
171\caption{Scaled minimum impact parameter b \cite{hion.ICRU49}.}
172\label{hion.t1}
173\end{centering}
174\end{table}
175For the Bloch correction term  the classical expression \cite{hion.ICRU49} is following:
176\begin{equation}
177z^2L_2 = -y^2 \sum^{\infty}_{n=1} \frac{1}{n(n^2 + y^2)}, \;\; y = \frac{z\alpha}{\beta}.
178\end{equation}
179The finite size correction term takes into account the space
180distribution of charge of
181the projectile particle. For muon it is zero, for hadrons this term become
182visible at energies above few hundred GeV and the following parameterization
183\cite{hion.ahlen} is used:
184\begin{equation}
185S = ln(1 + q), \;\; q = \frac{2 m_e T_{max}}{ \varepsilon^2},
186\end{equation}
187where $T_{max}$ is given in relation (\ref{hion.c}), $\varepsilon$ is proportional to
188the inverse effective radius of the projectile (Table \ref{hion.t2}).
189\begin{table}[hbt]
190\begin{centering}
191\begin{tabular}{|c|c|} 
192\hline
193mesons, spin = 0 ($\pi^{\pm}$, $K^{\pm}$) & $0.736\;GeV$\\ \hline
194baryons, spin = 1/2 & $0.843\;GeV$\\ \hline
195ions & $0.843\; A^{1/3}\;GeV$\\ \hline
196\end{tabular}
197\caption{The values of the $\varepsilon$ parameter for different particle types.}
198\label{hion.t2}
199\end{centering}
200\end{table}
201All these terms
202break scaling relation (\ref{enloss.sc}) if the projectile particle charge differs from
203$\pm$1. To take this circumstance into account  in {\it G4ionIonisation} process
204at initialisation time
205the term $F$ is ignored for the computation of the $dE/dx$ table.
206At run time this term is taken into account by adding to the mean energy loss a value
207\begin{equation}
208\Delta T' = 2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2} F\Delta s,
209\end{equation}
210where $\Delta s$ is the {\it true step length} and $F$ is the high order correction
211term (\ref{hion.cor}).
212
213\subsubsection{Parameterizations at Low Energies} 
214
215For scaled  energies below $T_{lim} = 2\;MeV$ shell correction becomes very
216large and precision of the
217Bethe-Bloch formula degrades, so parameterisation of evaluated data
218for stopping powers at low energies is required.
219These parameterisations for  all atoms
220is available from ICRU'49 report \cite{hion.ICRU49}. The proton parametrisation is used
221in {\it G4BraggModel}, which is included by default in the process {\it G4hIonisation}.
222The alpha particle parameterisation is used in the
223{\it G4BraggIonModel}, which is included by default in the process {\it G4ionIonisation}.
224To provide a smooth transition between low-energy and high-energy models the modified
225energy loss expression is used for high energy
226\begin{equation}
227S(T) = S_H (T) + (S_L(T_{lim}) - S_H(T_{lim}))\frac{T_{lim}}{T}, \;\; T > T_{lim},
228\end{equation}
229where $S$ is smoothed stopping power, $S_H$ is stopping power from formula (\ref{hion.d})
230 and $S_L$ is the low-energy parameterisation.
231
232The precision of Bethe-Bloch formula for $T>10 MeV$ is within 2\%, below the precision
233degrades and at $1 keV$ only 20\% may be garanteed. In the energy interval $1 - 10 MeV$
234the quality of description of the stopping power varied from atom to atom. To
235provide more stable and precise parameterisation the data from
236the NIST databases are included inside the standard package. These data are provided for
23774 materials of the NIST material database \cite{hion.nist}. The data from the PSTAR database
238are included into {\it G4BraggModel}. The data from the ASTAR database   
239are included into {\it G4BraggIonModel}. So, if Geant4 material is defined as a NIST
240material, than NIST data are used for low-energy parameterisation of stopping power.
241If material is not from the NIST database, then the ICRU'49 parameterisation is used.
242
243
244\subsubsection{Nuclear Stopping} 
245
246Nuclear stopping due to elastic ion-ion scattering since Geant4 v9.3
247can be simulated with the continuous process
248{\it G4NuclearStopping}. By default
249this correction is active and the ICRU'49 parameterisation \cite{hion.ICRU49} is used,
250which is implemented in the model class {\it G4ICRU49NuclearStoppingModel}
251
252
253\subsection{Total Cross Section per Atom and Mean Free Path}
254
255For $T \gg I $ the differential cross section can be written as
256\begin{equation}
257\label{hion.i}
258\frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
259     \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right] 
260\end{equation}
261\cite{hion.pdg}.  In {\sc Geant4} $T_{cut} \geq 1$ keV.  Integrating from
262$T_{cut}$ to $T_{max}$ gives the total cross section per atom :
263\begin{eqnarray}
264\label{hion.j}
265\sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2} mc^2 \times 
266  \\ & &     \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
267                   - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
268                   + \frac{T_{max} - T_{cut}}{2E^2} 
269             \right\nonumber   
270\end{eqnarray}
271The last term is for spin $1/2$ only.  In a given material the mean free path
272is:
273\begin{equation}
274\begin{array}{lll} 
275\lambda = (n_{at} \cdot \sigma)^{-1} & or &
276\lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1}
277\end{array}
278\end{equation}
279The mean free path is tabulated during initialization as a function of the
280material and of the energy for all kinds of charged particles.
281
282\subsection{Simulating Delta-ray Production}
283
284A short overview of the sampling method is given in Chapter \ref{secmessel}.
285Apart from the normalization, the cross section \ref{hion.i} can be
286factorized :
287\begin{eqnarray}
288\frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
289\end{eqnarray}
290where
291\begin{eqnarray}
292f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
293g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
294\end{eqnarray}
295The last term in $g(T)$ is for spin $1/2$ only.  The energy $T$ is chosen by
296\begin{enumerate}
297\item sampling $T$ from $f(T)$
298\item calculating the rejection function $g(T)$ and accepting the sampled
299$T$ with a probability of $g(T)$.
300\end{enumerate}
301After the successful sampling of the energy, the direction
302of the scattered electron is generated with respect to the direction of the
303incident particle. The azimuthal angle $\phi$ is generated isotropically.
304The polar angle $\theta$ is calculated from energy-momentum conservation.
305This information is used to calculate the energy and momentum of both
306scattered particles and to transform them into the {\em global} coordinate
307system.
308
309\subsubsection{Ion Effective Charge}
310
311As ions penetrate matter they exchange electrons with the medium. In the
312implementation of {\it G4ionIonisation} the effective charge approach is
313used \cite{hion.Ziegler85}.
314A state of equilibrium between the ion and the medium is assumed, so that
315the ion's effective charge can be calculated as a function of its kinetic
316energy in a given material.  Before and after each step the dynamic
317charge of the ion is recalculated and saved in $G4DynamicParticle$, where
318it can be used not only for energy loss calculations but also for the
319sampling of transportation in an electromagnetic field.
320
321The ion effective charge is expressed via
322the ion charge $z_i$ and the
323fractional effective charge of ion $\gamma_i$:
324\begin{equation}
325z_{eff} = \gamma_i z_i.
326\label{hlei.p}
327\end{equation} 
328For helium ions
329fractional effective charge
330is parameterized for all elements
331\begin{eqnarray}
332(\gamma_{He})^2 & = &\left (1-\exp\left [-\sum_{j=0}^5{C_jQ^j}\right ]\right)
333\left ( 1  + \frac{ 7 + 0.05  Z }{1000} \exp( -(7.6-Q)^2 ) \right )^2,
334\nonumber \\
335 Q & = & \max ( 0, \ln T), 
336\label{hion.q} 
337\end{eqnarray} 
338where the coefficients $C_j$ are the same for all elements, and the
339helium ion kinetic energy $T$ is in $keV/amu$.
340
341
342The following expression is used for heavy ions \cite{hion.BK}
343\begin{equation}
344\gamma_i = \left ( q + \frac{1-q}{2} \left (\frac{v_0}{v_F} \right )^2
345\ln {\left ( 1 + \Lambda^2 \right )} \right )
346\left ( 1 + \frac{(0.18+0.0015Z)\exp(-(7.6-Q)^2)}{Z_i^2} \right ),
347\label{hion.s}
348\end{equation} 
349where $q$ is
350the fractional average charge of the ion,
351$v_0$ is the Bohr velocity,
352$v_F$ is the Fermi velocity of 
353the electrons in the target medium, and $\Lambda$ is
354the term taking into account the screening effect:
355\begin{equation}
356\Lambda = 10 \frac{v_F}{v_0} \frac{(1-q)^{2/3}}{Z_i^{1/3}(6+q)}.
357\label{hion.t}
358\end{equation} 
359The Fermi velocity of the medium is of the same order as the Bohr velocity, and
360its exact value depends on the detailed electronic structure of the medium.
361The expression for the fractional average charge of the ion is the following:
362\begin{equation}
363q = [1 -\exp(0.803y^{0.3}-1.3167y^{0.6}-0.38157y-0.008983y^2)],
364\label{hion.u}
365\end{equation} 
366where $y$ is a parameter that depends on the ion velocity $v_i$
367\begin{equation}
368y = \frac{v_i}{v_0Z^{2/3}} \left ( 1 +\frac {v_F^2}{5v_i^2} \right ).
369\label{hion.v}
370\end{equation} 
371The parametrisation of the effective charge of the ion applied
372if the kinetic energy is below limit value
373\begin{equation}
374T < 10 z_i \frac{M_i}{M_p}\;MeV,
375\label{hion.x}
376\end{equation} 
377where $M_i$ is the ion mass and $M_p$ is the proton mass.
378
379
380\subsection{Status of this document}
381  09.10.98 created by L. Urb\'an. \\
382  14.12.01 revised by M.Maire \\
383  29.11.02 re-worded by D.H. Wright \\
384  01.12.03 revised by V. Ivanchenko     \\
385  21.06.07 revised by V. Ivanchenko     \\
386
387\begin{latexonly}
388
389\begin{thebibliography}{99}
390
391\bibitem{hion.pdg}
392W.-M.~Yao et al.,  Jour. of Phys. G33 (2006) 1.
393\bibitem{hion.ahlen} 
394S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
395\bibitem{hion.ICRU37} 
396ICRU (A.~Allisy et al),
397Stopping Powers for Electrons and Positrons,
398ICRU Report 37, 1984.
399\bibitem{hion.ICRU49}ICRU (A.~Allisy et al),
400Stopping Powers and Ranges for Protons and Alpha
401Particles,
402ICRU Report 49, 1993.
403\bibitem{hion.37} 
404M.C.~Walske, Phys. Rev. 88 (1952) 1283.
405\bibitem{hion.38} 
406M.C.~Walske, Phys. Rev. 181 (1956) 940.
407\bibitem{hion.39} 
408G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
409\bibitem{hion.40} 
410H.~Bichsel, Phys. Rev. A46 (1992) 5761.
411\bibitem{hion.sternheimer}
412  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
413\bibitem{hion.Ashley}
414J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
415\bibitem{hion.nist}
416http://physics.nist.gov/PhysRevData/contents-radi.html
417\bibitem{hion.Ziegler85}
418J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
419and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
420\bibitem{hion.BK}
421W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
422\end{thebibliography}
423
424\end{latexonly}
425
426\begin{htmlonly}
427
428\subsection{Bibliography}
429
430\begin{enumerate}
431\item{hion.pdg}
432W.-M.~Yao et al.,  Jour. of Phys. G33 (2006) 1.
433\item{hion.ICRU37} 
434S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
435\item{hion.ICRU37} 
436ICRU (A.~Allisy et al),
437Stopping Powers for Electrons and Positrons,
438ICRU Report 37, 1984.
439\item{hion.ICRU49}ICRU (A.~Allisy et al),
440Stopping Powers and Ranges for Protons and Alpha
441Particles,
442ICRU Report 49, 1993.
443\item{hion.37} 
444M.C.~Walske, Phys. Rev. 88 (1952) 1283.
445\item{hion.38} 
446M.C.~Walske, Phys. Rev. 181 (1956) 940.
447\item{hion.39} 
448G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
449\item{hion.40} 
450H.~Bichsel, Phys. Rev. A46 (1992) 5761.
451\item{hion.sternheimer}
452  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
453\item{hion.Ashley}
454J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
455\item{hion.nist}
456http://physics.nist.gov/PhysRevData/contents-radi.html
457\item{hion.Ziegler85}
458J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
459and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
460\item{hion.BK}
461W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
462\end{enumerate}
463
464\end{htmlonly}
465
466
Note: See TracBrowser for help on using the repository browser.