| 1 | \section[Ionization]{Hadron and Ion Ionization} \label{hion}
|
|---|
| 2 |
|
|---|
| 3 | \subsection{Method}
|
|---|
| 4 |
|
|---|
| 5 | The class {\it G4hIonisation} provides the continuous energy loss due to
|
|---|
| 6 | ionization and simulates the 'discrete' part of the ionization, that is,
|
|---|
| 7 | delta rays produced by charged hadrons. The class {\it G4ionIonisation} is
|
|---|
| 8 | intended for the simulation of energy loss by positive ions with change greater than unit.
|
|---|
| 9 | Inside these classes the following models are used:
|
|---|
| 10 | \begin{itemize}
|
|---|
| 11 | \item
|
|---|
| 12 | {\it G4BetherBlochModel} (valid for protons with $T > 2\; MeV$)
|
|---|
| 13 | \item
|
|---|
| 14 | {\it G4BraggModel} (valid for protons with $T < 2\; MeV$)
|
|---|
| 15 | \item
|
|---|
| 16 | {\it G4BraggIonModel} (valid for protons with $T < 2\; MeV$)
|
|---|
| 17 | \end{itemize}
|
|---|
| 18 | The scaling relation (\ref{enloss.sc}) is a basic conception for the description
|
|---|
| 19 | of ionization of heavy charged particles. It is used both in energy loss
|
|---|
| 20 | calculation and in determination of the validity range of models. Namely the
|
|---|
| 21 | $T_p = 2 MeV$ limit for protons is scaled for a particle with mass $M_i$
|
|---|
| 22 | by the ratio of the particle mass to the proton mass $T_i = T_p M_p/M_i$.
|
|---|
| 23 |
|
|---|
| 24 | For all ionization models the value of the maximum energy
|
|---|
| 25 | transferable to a free electron $T_{max}$ is given by the following relation \cite{hion.pdg}:
|
|---|
| 26 | \begin{equation}
|
|---|
| 27 | \label{hion.c}
|
|---|
| 28 | T_{max} =\frac{2m_ec^2(\gamma^2 -1)}{1+2\gamma (m_e/M)+(m_e/M)^2 },
|
|---|
| 29 | \end{equation}
|
|---|
| 30 | where $m_e$ is the electron mass and $M$ is the mass of the incident particle.
|
|---|
| 31 | The method of calculation of the continuous energy loss and the total
|
|---|
| 32 | cross-section are explained below.
|
|---|
| 33 |
|
|---|
| 34 | \subsection{Continuous Energy Loss}
|
|---|
| 35 |
|
|---|
| 36 | The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
|
|---|
| 37 | loss ($T < T_{cut}$ formula \cite{hion.pdg}, which is modified taken into
|
|---|
| 38 | account various corrections \cite{hion.ahlen}:
|
|---|
| 39 | \begin{equation}
|
|---|
| 40 | \label{hion.d}
|
|---|
| 41 | \frac{dE}{dx} =
|
|---|
| 42 | 2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2}
|
|---|
| 43 | \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
|
|---|
| 44 | - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
|
|---|
| 45 | - \delta - \frac{2C_e}{Z} + F\right ]
|
|---|
| 46 | \end{equation}
|
|---|
| 47 | where
|
|---|
| 48 | \[
|
|---|
| 49 | \begin{array}{ll}
|
|---|
| 50 | r_e & \mbox{classical electron radius:}
|
|---|
| 51 | \quad e^2/(4 \pi \epsilon_0 mc^2 ) \\
|
|---|
| 52 | mc^2 & \mbox{mass-energy of the electron} \\
|
|---|
| 53 | n_{el} & \mbox{electrons density in the material} \\
|
|---|
| 54 | I & \mbox{mean excitation energy in the material}\\
|
|---|
| 55 | Z & \mbox{atomic number of the material} \\
|
|---|
| 56 | $z$ & \mbox{charge of the hadron in units of the electron change} \\
|
|---|
| 57 | \gamma & \mbox{$E/mc^2$} \\
|
|---|
| 58 | \beta^2 & 1-(1/\gamma^2) \\
|
|---|
| 59 | T_{up} & \min(T_{cut},T_{max}) \\
|
|---|
| 60 | \delta & \mbox{density effect function} \\
|
|---|
| 61 | C_e & \mbox{shell correction function} \\
|
|---|
| 62 | F & \mbox{high order corrections}
|
|---|
| 63 | \end{array}
|
|---|
| 64 | \]
|
|---|
| 65 | In a single element the electron density is
|
|---|
| 66 | $$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
|
|---|
| 67 | ($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
|
|---|
| 68 | $A$: mass of a mole). In a compound material
|
|---|
| 69 | $$
|
|---|
| 70 | n_{el} = \sum_i Z_i \: n_{ati}
|
|---|
| 71 | = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
|
|---|
| 72 | $$
|
|---|
| 73 | $w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass $A_i$.
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 | The mean excitation energy $I$ for all elements is tabulated according to
|
|---|
| 77 | the ICRU recommended values \cite{hion.ICRU37}.
|
|---|
| 78 |
|
|---|
| 79 | \subsubsection{Shell Correction}
|
|---|
| 80 |
|
|---|
| 81 | $2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
|
|---|
| 82 | fact of interaction of atomic electrons with atomic nucleus. This term more visible
|
|---|
| 83 | at low energies and for heavy atoms. The classical
|
|---|
| 84 | expression for the term \cite{hion.ICRU49} is used
|
|---|
| 85 | \begin{equation}
|
|---|
| 86 | \label{hion.dh}
|
|---|
| 87 | C = \sum{C_{\nu}(\theta_{\nu},\eta_{\nu})}, \;\; \nu=K,L,M,...,
|
|---|
| 88 | \; \theta=\frac{J_{\nu}}{\epsilon_{\nu}}, \;\; \eta_{\nu}=\frac{\beta^2}{\alpha^2 Z^2_{\nu}},
|
|---|
| 89 | \end{equation}
|
|---|
| 90 | where $\alpha$ is the fine structure constant, $\beta$ is the hadron velocity,
|
|---|
| 91 | $J_{\nu}$ is the ionisation energy of the shell $\nu$, $\epsilon_{\nu}$ is
|
|---|
| 92 | Bohr ionisation energy of the shell $\nu$, $Z_{\nu}$ is the effective charge of the
|
|---|
| 93 | shell $\nu$.
|
|---|
| 94 | First terms $C_K$ and $C_L$ can be analytically computed in using an assumption
|
|---|
| 95 | non-relativistic hydrogenic wave functions \cite{hion.37,hion.38}.
|
|---|
| 96 | The results \cite{hion.39} of tabulation of these computations in the interval of parameters
|
|---|
| 97 | $\eta_{\nu} = 0.005\div 10$ and $\theta_{\nu}=0.25 \div 0.95$ are used directly.
|
|---|
| 98 | For higher values of $\eta_{\nu}$ the parameterization \cite{hion.39}
|
|---|
| 99 | is applied:
|
|---|
| 100 | \begin{equation}
|
|---|
| 101 | C_{\nu} = \frac{K_1}{\eta} + \frac{K_2}{\eta^2} + \frac{K_3}{\eta^3},
|
|---|
| 102 | \end{equation}
|
|---|
| 103 | where coefficients $K_i$ provide smooth shape of the function.
|
|---|
| 104 | The effective nuclear charge for the $L$-shell can be reproduced as $Z_L = Z - d$, $d$
|
|---|
| 105 | is a parameter shown in Table \ref{hion.t}.
|
|---|
| 106 | \begin{table}[hbt]
|
|---|
| 107 | \begin{centering}
|
|---|
| 108 | \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
|
|---|
| 109 | \hline
|
|---|
| 110 | $Z$ & 3 & 4 & 5 & 6 & 7 & 8 & 9 & $>$9\\ \hline
|
|---|
| 111 | $d$ & 1.72 & 2.09 & 2.48 & 2.82 & 3.16 & 3.53 & 3.84 & 4.15\\ \hline
|
|---|
| 112 | \end{tabular}
|
|---|
| 113 | \caption{Effective nuclear charge for the $L$-shell \cite{hion.ICRU49}.}
|
|---|
| 114 | \label{hion.th}
|
|---|
| 115 | \end{centering}
|
|---|
| 116 | \end{table}
|
|---|
| 117 | For outer
|
|---|
| 118 | shells the calculations are not available, so $L$-shell parameterization is used and the
|
|---|
| 119 | following scaling relation
|
|---|
| 120 | \cite{hion.ICRU49,hion.40} is applied:
|
|---|
| 121 | \begin{equation}
|
|---|
| 122 | \label{hion.dd}
|
|---|
| 123 | C_{\nu} = V_{\nu}C_L(\theta_L,H_{\nu}\eta_L), \;\; V_{\nu}=\frac{n_{\nu}}{n_L}, \;\; H_{\nu}=\frac{J_{\nu}}{J_L},
|
|---|
| 124 | \end{equation}
|
|---|
| 125 | where $V_{\nu}$ is a vertical scaling factor proportional to number of
|
|---|
| 126 | electrons at the shell $n_{\nu}$.
|
|---|
| 127 | The contribution of the shell correction term is about 10\% for protons
|
|---|
| 128 | at $T = 2 MeV$.
|
|---|
| 129 |
|
|---|
| 130 | \subsubsection{Density Correction}
|
|---|
| 131 |
|
|---|
| 132 | $\delta$ is a correction term which takes into account the reduction in energy
|
|---|
| 133 | loss due to the so-called {\it density effect}. This becomes important at
|
|---|
| 134 | high energies because media have a tendency to become polarized as the
|
|---|
| 135 | incident particle velocity increases. As a consequence, the atoms in a
|
|---|
| 136 | medium can no longer be considered as isolated. To correct for this effect
|
|---|
| 137 | the formulation of Sternheimer~\cite{hion.sternheimer} is used:
|
|---|
| 138 | \input{electromagnetic/utils/densityeffect}
|
|---|
| 139 |
|
|---|
| 140 | \subsubsection{High Order Corrections}
|
|---|
| 141 |
|
|---|
| 142 | High order corrections term to Bethe-Bloch formula (\ref{hion.d}) can
|
|---|
| 143 | be expressed as
|
|---|
| 144 | \begin{equation}
|
|---|
| 145 | \label{hion.cor}
|
|---|
| 146 | F = G - S + 2(z L_1 + z^2 L_2),
|
|---|
| 147 | \end{equation}
|
|---|
| 148 | where G is the Mott correction term, S is the finite size correction term,
|
|---|
| 149 | $L_1$ is the Barkas correction, $L_2$ is the Bloch correction. The Mott term
|
|---|
| 150 | \cite{hion.ahlen} describes the close-collision corrections tend to become
|
|---|
| 151 | more important at large velocities and higher charge of projectile.
|
|---|
| 152 | The Fermi result is used:
|
|---|
| 153 | \begin{equation}
|
|---|
| 154 | G = \pi\alpha z\beta.
|
|---|
| 155 | \end{equation}
|
|---|
| 156 | The Barkas correction term describes distant collisions. The parameterization
|
|---|
| 157 | of Ref. is expressed in the form:
|
|---|
| 158 | \begin{equation}
|
|---|
| 159 | L_1 = \frac{1.29 F_A(b/x^{1/2})}{Z^{1/2}x^{3/2}}, \;\; x = \frac{\beta^2}{Z\alpha^2},
|
|---|
| 160 | \end{equation}
|
|---|
| 161 | where $F_A$ is tabulated function \cite{hion.Ashley}, b is scaled minimum impact parameter
|
|---|
| 162 | shown in Table \ref{hion.t1}. This and other corrections depending on atomic
|
|---|
| 163 | properties are assumed to be additive for mixtures and compounds.
|
|---|
| 164 | \begin{table}[hbt]
|
|---|
| 165 | \begin{centering}
|
|---|
| 166 | \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
|
|---|
| 167 | \hline
|
|---|
| 168 | $Z$ & 1 ($H_2$ gas) & 1 & 2 & 3 - 10 & 11 - 17 & 18 & 19 - 25 & 26 - 50 & $>$ 50\\ \hline
|
|---|
| 169 | $d$ & 0.6 & 1.8 & 0.6 & 1.8 & 1.4 & 1.8 & 1.4 & 1.35 & 1.3\\ \hline
|
|---|
| 170 | \end{tabular}
|
|---|
| 171 | \caption{Scaled minimum impact parameter b \cite{hion.ICRU49}.}
|
|---|
| 172 | \label{hion.t1}
|
|---|
| 173 | \end{centering}
|
|---|
| 174 | \end{table}
|
|---|
| 175 | For the Bloch correction term the classical expression \cite{hion.ICRU49} is following:
|
|---|
| 176 | \begin{equation}
|
|---|
| 177 | z^2L_2 = -y^2 \sum^{\infty}_{n=1} \frac{1}{n(n^2 + y^2)}, \;\; y = \frac{z\alpha}{\beta}.
|
|---|
| 178 | \end{equation}
|
|---|
| 179 | The finite size correction term takes into account the space
|
|---|
| 180 | distribution of charge of
|
|---|
| 181 | the projectile particle. For muon it is zero, for hadrons this term become
|
|---|
| 182 | visible at energies above few hundred GeV and the following parameterization
|
|---|
| 183 | \cite{hion.ahlen} is used:
|
|---|
| 184 | \begin{equation}
|
|---|
| 185 | S = ln(1 + q), \;\; q = \frac{2 m_e T_{max}}{ \varepsilon^2},
|
|---|
| 186 | \end{equation}
|
|---|
| 187 | where $T_{max}$ is given in relation (\ref{hion.c}), $\varepsilon$ is proportional to
|
|---|
| 188 | the inverse effective radius of the projectile (Table \ref{hion.t2}).
|
|---|
| 189 | \begin{table}[hbt]
|
|---|
| 190 | \begin{centering}
|
|---|
| 191 | \begin{tabular}{|c|c|}
|
|---|
| 192 | \hline
|
|---|
| 193 | mesons, spin = 0 ($\pi^{\pm}$, $K^{\pm}$) & $0.736\;GeV$\\ \hline
|
|---|
| 194 | baryons, spin = 1/2 & $0.843\;GeV$\\ \hline
|
|---|
| 195 | ions & $0.843\; A^{1/3}\;GeV$\\ \hline
|
|---|
| 196 | \end{tabular}
|
|---|
| 197 | \caption{The values of the $\varepsilon$ parameter for different particle types.}
|
|---|
| 198 | \label{hion.t2}
|
|---|
| 199 | \end{centering}
|
|---|
| 200 | \end{table}
|
|---|
| 201 | All these terms
|
|---|
| 202 | break scaling relation (\ref{enloss.sc}) if the projectile particle charge differs from
|
|---|
| 203 | $\pm$1. To take this circumstance into account in {\it G4ionIonisation} process
|
|---|
| 204 | at initialisation time
|
|---|
| 205 | the term $F$ is ignored for the computation of the $dE/dx$ table.
|
|---|
| 206 | At run time this term is taken into account by adding to the mean energy loss a value
|
|---|
| 207 | \begin{equation}
|
|---|
| 208 | \Delta T' = 2 \pi r_e^2 mc^2 n_{el} \frac{z^2}{\beta^2} F\Delta s,
|
|---|
| 209 | \end{equation}
|
|---|
| 210 | where $\Delta s$ is the {\it true step length} and $F$ is the high order correction
|
|---|
| 211 | term (\ref{hion.cor}).
|
|---|
| 212 |
|
|---|
| 213 | \subsubsection{Parameterizations at Low Energies}
|
|---|
| 214 |
|
|---|
| 215 | For scaled energies below $T_{lim} = 2\;MeV$ shell correction becomes very
|
|---|
| 216 | large and precision of the
|
|---|
| 217 | Bethe-Bloch formula degrades, so parameterisation of evaluated data
|
|---|
| 218 | for stopping powers at low energies is required.
|
|---|
| 219 | These parameterisations for all atoms
|
|---|
| 220 | is available from ICRU'49 report \cite{hion.ICRU49}. The proton parametrisation is used
|
|---|
| 221 | in {\it G4BraggModel}, which is included by default in the process {\it G4hIonisation}.
|
|---|
| 222 | The alpha particle parameterisation is used in the
|
|---|
| 223 | {\it G4BraggIonModel}, which is included by default in the process {\it G4ionIonisation}.
|
|---|
| 224 | To provide a smooth transition between low-energy and high-energy models the modified
|
|---|
| 225 | energy loss expression is used for high energy
|
|---|
| 226 | \begin{equation}
|
|---|
| 227 | S(T) = S_H (T) + (S_L(T_{lim}) - S_H(T_{lim}))\frac{T_{lim}}{T}, \;\; T > T_{lim},
|
|---|
| 228 | \end{equation}
|
|---|
| 229 | where $S$ is smoothed stopping power, $S_H$ is stopping power from formula (\ref{hion.d})
|
|---|
| 230 | and $S_L$ is the low-energy parameterisation.
|
|---|
| 231 |
|
|---|
| 232 | The precision of Bethe-Bloch formula for $T>10 MeV$ is within 2\%, below the precision
|
|---|
| 233 | degrades and at $1 keV$ only 20\% may be garanteed. In the energy interval $1 - 10 MeV$
|
|---|
| 234 | the quality of description of the stopping power varied from atom to atom. To
|
|---|
| 235 | provide more stable and precise parameterisation the data from
|
|---|
| 236 | the NIST databases are included inside the standard package. These data are provided for
|
|---|
| 237 | 74 materials of the NIST material database \cite{hion.nist}. The data from the PSTAR database
|
|---|
| 238 | are included into {\it G4BraggModel}. The data from the ASTAR database
|
|---|
| 239 | are included into {\it G4BraggIonModel}. So, if Geant4 material is defined as a NIST
|
|---|
| 240 | material, than NIST data are used for low-energy parameterisation of stopping power.
|
|---|
| 241 | If material is not from the NIST database, then the ICRU'49 parameterisation is used.
|
|---|
| 242 |
|
|---|
| 243 |
|
|---|
| 244 | \subsubsection{Nuclear Stopping}
|
|---|
| 245 |
|
|---|
| 246 | For scaled energies below $T_{lim} = 2 MeV$ the contribution of non-ionizing energy loss
|
|---|
| 247 | needs to be taken into account. The additional energy loss due to {\it nuclear stopping power}
|
|---|
| 248 | $\Delta T_N \Delta s$ is added the the energy loss. The process {\it G4ionIonisation}
|
|---|
| 249 | has a flag, which allows to switch on or off this correction. For that the method\\
|
|---|
| 250 | \\
|
|---|
| 251 | {\it G4ionIonisation::ActivateNuclearStopping(G4bool)}
|
|---|
| 252 | \\
|
|---|
| 253 | \\
|
|---|
| 254 | can be used. By default
|
|---|
| 255 | this correction is active and the ICRU'49 parameterisation \cite{hion.ICRU49} is used.
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 | \subsection{Total Cross Section per Atom and Mean Free Path}
|
|---|
| 259 |
|
|---|
| 260 | For $T \gg I $ the differential cross section can be written as
|
|---|
| 261 | \begin{equation}
|
|---|
| 262 | \label{hion.i}
|
|---|
| 263 | \frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
|
|---|
| 264 | \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right]
|
|---|
| 265 | \end{equation}
|
|---|
| 266 | \cite{hion.pdg}. In {\sc Geant4} $T_{cut} \geq 1$ keV. Integrating from
|
|---|
| 267 | $T_{cut}$ to $T_{max}$ gives the total cross section per atom :
|
|---|
| 268 | \begin{eqnarray}
|
|---|
| 269 | \label{hion.j}
|
|---|
| 270 | \sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2} mc^2 \times
|
|---|
| 271 | \\ & & \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
|
|---|
| 272 | - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
|
|---|
| 273 | + \frac{T_{max} - T_{cut}}{2E^2}
|
|---|
| 274 | \right] \nonumber
|
|---|
| 275 | \end{eqnarray}
|
|---|
| 276 | The last term is for spin $1/2$ only. In a given material the mean free path
|
|---|
| 277 | is:
|
|---|
| 278 | \begin{equation}
|
|---|
| 279 | \begin{array}{lll}
|
|---|
| 280 | \lambda = (n_{at} \cdot \sigma)^{-1} & or &
|
|---|
| 281 | \lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1}
|
|---|
| 282 | \end{array}
|
|---|
| 283 | \end{equation}
|
|---|
| 284 | The mean free path is tabulated during initialization as a function of the
|
|---|
| 285 | material and of the energy for all kinds of charged particles.
|
|---|
| 286 |
|
|---|
| 287 | \subsection{Simulating Delta-ray Production}
|
|---|
| 288 |
|
|---|
| 289 | A short overview of the sampling method is given in Chapter \ref{secmessel}.
|
|---|
| 290 | Apart from the normalization, the cross section \ref{hion.i} can be
|
|---|
| 291 | factorized :
|
|---|
| 292 | \begin{eqnarray}
|
|---|
| 293 | \frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
|
|---|
| 294 | \end{eqnarray}
|
|---|
| 295 | where
|
|---|
| 296 | \begin{eqnarray}
|
|---|
| 297 | f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
|
|---|
| 298 | g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
|
|---|
| 299 | \end{eqnarray}
|
|---|
| 300 | The last term in $g(T)$ is for spin $1/2$ only. The energy $T$ is chosen by
|
|---|
| 301 | \begin{enumerate}
|
|---|
| 302 | \item sampling $T$ from $f(T)$
|
|---|
| 303 | \item calculating the rejection function $g(T)$ and accepting the sampled
|
|---|
| 304 | $T$ with a probability of $g(T)$.
|
|---|
| 305 | \end{enumerate}
|
|---|
| 306 | After the successful sampling of the energy, the direction
|
|---|
| 307 | of the scattered electron is generated with respect to the direction of the
|
|---|
| 308 | incident particle. The azimuthal angle $\phi$ is generated isotropically.
|
|---|
| 309 | The polar angle $\theta$ is calculated from energy-momentum conservation.
|
|---|
| 310 | This information is used to calculate the energy and momentum of both
|
|---|
| 311 | scattered particles and to transform them into the {\em global} coordinate
|
|---|
| 312 | system.
|
|---|
| 313 |
|
|---|
| 314 | \subsubsection{Ion Effective Charge}
|
|---|
| 315 |
|
|---|
| 316 | As ions penetrate matter they exchange electrons with the medium. In the
|
|---|
| 317 | implementation of {\it G4ionIonisation} the effective charge approach is
|
|---|
| 318 | used \cite{hion.Ziegler85}.
|
|---|
| 319 | A state of equilibrium between the ion and the medium is assumed, so that
|
|---|
| 320 | the ion's effective charge can be calculated as a function of its kinetic
|
|---|
| 321 | energy in a given material. Before and after each step the dynamic
|
|---|
| 322 | charge of the ion is recalculated and saved in $G4DynamicParticle$, where
|
|---|
| 323 | it can be used not only for energy loss calculations but also for the
|
|---|
| 324 | sampling of transportation in an electromagnetic field.
|
|---|
| 325 |
|
|---|
| 326 | The ion effective charge is expressed via
|
|---|
| 327 | the ion charge $z_i$ and the
|
|---|
| 328 | fractional effective charge of ion $\gamma_i$:
|
|---|
| 329 | \begin{equation}
|
|---|
| 330 | z_{eff} = \gamma_i z_i.
|
|---|
| 331 | \label{hlei.p}
|
|---|
| 332 | \end{equation}
|
|---|
| 333 | For helium ions
|
|---|
| 334 | fractional effective charge
|
|---|
| 335 | is parameterized for all elements
|
|---|
| 336 | \begin{eqnarray}
|
|---|
| 337 | (\gamma_{He})^2 & = &\left (1-\exp\left [-\sum_{j=0}^5{C_jQ^j}\right ]\right)
|
|---|
| 338 | \left ( 1 + \frac{ 7 + 0.05 Z }{1000} \exp( -(7.6-Q)^2 ) \right )^2,
|
|---|
| 339 | \nonumber \\
|
|---|
| 340 | Q & = & \max ( 0, \ln T),
|
|---|
| 341 | \label{hion.q}
|
|---|
| 342 | \end{eqnarray}
|
|---|
| 343 | where the coefficients $C_j$ are the same for all elements, and the
|
|---|
| 344 | helium ion kinetic energy $T$ is in $keV/amu$.
|
|---|
| 345 |
|
|---|
| 346 |
|
|---|
| 347 | The following expression is used for heavy ions \cite{hion.BK}:
|
|---|
| 348 | \begin{equation}
|
|---|
| 349 | \gamma_i = \left ( q + \frac{1-q}{2} \left (\frac{v_0}{v_F} \right )^2
|
|---|
| 350 | \ln {\left ( 1 + \Lambda^2 \right )} \right )
|
|---|
| 351 | \left ( 1 + \frac{(0.18+0.0015Z)\exp(-(7.6-Q)^2)}{Z_i^2} \right ),
|
|---|
| 352 | \label{hion.s}
|
|---|
| 353 | \end{equation}
|
|---|
| 354 | where $q$ is
|
|---|
| 355 | the fractional average charge of the ion,
|
|---|
| 356 | $v_0$ is the Bohr velocity,
|
|---|
| 357 | $v_F$ is the Fermi velocity of
|
|---|
| 358 | the electrons in the target medium, and $\Lambda$ is
|
|---|
| 359 | the term taking into account the screening effect:
|
|---|
| 360 | \begin{equation}
|
|---|
| 361 | \Lambda = 10 \frac{v_F}{v_0} \frac{(1-q)^{2/3}}{Z_i^{1/3}(6+q)}.
|
|---|
| 362 | \label{hion.t}
|
|---|
| 363 | \end{equation}
|
|---|
| 364 | The Fermi velocity of the medium is of the same order as the Bohr velocity, and
|
|---|
| 365 | its exact value depends on the detailed electronic structure of the medium.
|
|---|
| 366 | The expression for the fractional average charge of the ion is the following:
|
|---|
| 367 | \begin{equation}
|
|---|
| 368 | q = [1 -\exp(0.803y^{0.3}-1.3167y^{0.6}-0.38157y-0.008983y^2)],
|
|---|
| 369 | \label{hion.u}
|
|---|
| 370 | \end{equation}
|
|---|
| 371 | where $y$ is a parameter that depends on the ion velocity $v_i$
|
|---|
| 372 | \begin{equation}
|
|---|
| 373 | y = \frac{v_i}{v_0Z^{2/3}} \left ( 1 +\frac {v_F^2}{5v_i^2} \right ).
|
|---|
| 374 | \label{hion.v}
|
|---|
| 375 | \end{equation}
|
|---|
| 376 | The parametrisation of the effective charge of the ion applied
|
|---|
| 377 | if the kinetic energy is below limit value
|
|---|
| 378 | \begin{equation}
|
|---|
| 379 | T < 10 z_i \frac{M_i}{M_p}\;MeV,
|
|---|
| 380 | \label{hion.x}
|
|---|
| 381 | \end{equation}
|
|---|
| 382 | where $M_i$ is the ion mass and $M_p$ is the proton mass.
|
|---|
| 383 |
|
|---|
| 384 |
|
|---|
| 385 | \subsection{Status of this document}
|
|---|
| 386 | 09.10.98 created by L. Urb\'an. \\
|
|---|
| 387 | 14.12.01 revised by M.Maire \\
|
|---|
| 388 | 29.11.02 re-worded by D.H. Wright \\
|
|---|
| 389 | 01.12.03 revised by V. Ivanchenko \\
|
|---|
| 390 | 21.06.07 revised by V. Ivanchenko \\
|
|---|
| 391 |
|
|---|
| 392 | \begin{latexonly}
|
|---|
| 393 |
|
|---|
| 394 | \begin{thebibliography}{99}
|
|---|
| 395 |
|
|---|
| 396 | \bibitem{hion.pdg}
|
|---|
| 397 | W.-M.~Yao et al., Jour. of Phys. G33 (2006) 1.
|
|---|
| 398 | \bibitem{hion.ahlen}
|
|---|
| 399 | S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
|
|---|
| 400 | \bibitem{hion.ICRU37}
|
|---|
| 401 | ICRU (A.~Allisy et al),
|
|---|
| 402 | Stopping Powers for Electrons and Positrons,
|
|---|
| 403 | ICRU Report 37, 1984.
|
|---|
| 404 | \bibitem{hion.ICRU49}ICRU (A.~Allisy et al),
|
|---|
| 405 | Stopping Powers and Ranges for Protons and Alpha
|
|---|
| 406 | Particles,
|
|---|
| 407 | ICRU Report 49, 1993.
|
|---|
| 408 | \bibitem{hion.37}
|
|---|
| 409 | M.C.~Walske, Phys. Rev. 88 (1952) 1283.
|
|---|
| 410 | \bibitem{hion.38}
|
|---|
| 411 | M.C.~Walske, Phys. Rev. 181 (1956) 940.
|
|---|
| 412 | \bibitem{hion.39}
|
|---|
| 413 | G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
|
|---|
| 414 | \bibitem{hion.40}
|
|---|
| 415 | H.~Bichsel, Phys. Rev. A46 (1992) 5761.
|
|---|
| 416 | \bibitem{hion.sternheimer}
|
|---|
| 417 | R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
|
|---|
| 418 | \bibitem{hion.Ashley}
|
|---|
| 419 | J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
|
|---|
| 420 | \bibitem{hion.nist}
|
|---|
| 421 | http://physics.nist.gov/PhysRevData/contents-radi.html
|
|---|
| 422 | \bibitem{hion.Ziegler85}
|
|---|
| 423 | J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
|
|---|
| 424 | and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
|
|---|
| 425 | \bibitem{hion.BK}
|
|---|
| 426 | W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
|
|---|
| 427 | \end{thebibliography}
|
|---|
| 428 |
|
|---|
| 429 | \end{latexonly}
|
|---|
| 430 |
|
|---|
| 431 | \begin{htmlonly}
|
|---|
| 432 |
|
|---|
| 433 | \subsection{Bibliography}
|
|---|
| 434 |
|
|---|
| 435 | \begin{enumerate}
|
|---|
| 436 | \item{hion.pdg}
|
|---|
| 437 | W.-M.~Yao et al., Jour. of Phys. G33 (2006) 1.
|
|---|
| 438 | \item{hion.ICRU37}
|
|---|
| 439 | S.P. Ahlen, Rev. Mod. Phys. 52 (1980) 121.
|
|---|
| 440 | \item{hion.ICRU37}
|
|---|
| 441 | ICRU (A.~Allisy et al),
|
|---|
| 442 | Stopping Powers for Electrons and Positrons,
|
|---|
| 443 | ICRU Report 37, 1984.
|
|---|
| 444 | \item{hion.ICRU49}ICRU (A.~Allisy et al),
|
|---|
| 445 | Stopping Powers and Ranges for Protons and Alpha
|
|---|
| 446 | Particles,
|
|---|
| 447 | ICRU Report 49, 1993.
|
|---|
| 448 | \item{hion.37}
|
|---|
| 449 | M.C.~Walske, Phys. Rev. 88 (1952) 1283.
|
|---|
| 450 | \item{hion.38}
|
|---|
| 451 | M.C.~Walske, Phys. Rev. 181 (1956) 940.
|
|---|
| 452 | \item{hion.39}
|
|---|
| 453 | G.S.~Khandelwal, Nucl. Phys. A116 (1968) 97.
|
|---|
| 454 | \item{hion.40}
|
|---|
| 455 | H.~Bichsel, Phys. Rev. A46 (1992) 5761.
|
|---|
| 456 | \item{hion.sternheimer}
|
|---|
| 457 | R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
|
|---|
| 458 | \item{hion.Ashley}
|
|---|
| 459 | J.C.~Ashley, R.H.~Ritchie and W.~Brandt, Phys. Rev. A8 (1973) 2402.
|
|---|
| 460 | \item{hion.nist}
|
|---|
| 461 | http://physics.nist.gov/PhysRevData/contents-radi.html
|
|---|
| 462 | \item{hion.Ziegler85}
|
|---|
| 463 | J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
|
|---|
| 464 | and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
|
|---|
| 465 | \item{hion.BK}
|
|---|
| 466 | W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
|
|---|
| 467 | \end{enumerate}
|
|---|
| 468 |
|
|---|
| 469 | \end{htmlonly}
|
|---|
| 470 |
|
|---|
| 471 |
|
|---|