| 1 |
|
|---|
| 2 | \section{Compton Scattering by Linearly Polarized Gamma Rays}
|
|---|
| 3 |
|
|---|
| 4 |
|
|---|
| 5 | \subsection{The Cross Section}
|
|---|
| 6 |
|
|---|
| 7 | The quantum mechanical Klein - Nishina differential cross section for
|
|---|
| 8 | polarized photons is [Heitler 1954]:
|
|---|
| 9 |
|
|---|
| 10 | \[\frac{d\sigma}{d\Omega} = \frac{1}{4}r_0^2 \frac{h\nu^2}{h\nu_o^2} \frac{h\nu_o^2}{h\nu^2} \left[\frac{h\nu_o}{h\nu}+\frac{h\nu}{h\nu_o}-2+4 cos^2\Theta \right] \]
|
|---|
| 11 |
|
|---|
| 12 | \noindent
|
|---|
| 13 | where $\Theta$ is the angle between the two polarization vectors. In terms
|
|---|
| 14 | of the polar and azimuthal angles $ (\theta, \phi) $ this cross section can
|
|---|
| 15 | be written as
|
|---|
| 16 |
|
|---|
| 17 | \[\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2 \frac{h\nu^2}{h\nu_o^2} \frac{h\nu_o^2}{h\nu^2} \left[\frac{h\nu_o}{h\nu}+\frac{h\nu}{h\nu_o}-2 cos^2\phi sin^2\theta \right] \] .
|
|---|
| 18 |
|
|---|
| 19 |
|
|---|
| 20 | \subsection{Angular Distribution}
|
|---|
| 21 |
|
|---|
| 22 |
|
|---|
| 23 | The integration of this cross section over the azimuthal angle produces the
|
|---|
| 24 | standard cross section. The angular and energy distribution are then
|
|---|
| 25 | obtained in the same way as for the standard process. Using these values
|
|---|
| 26 | for the polar angle and the energy, the azimuthal angle is sampled from the
|
|---|
| 27 | following distribution:
|
|---|
| 28 |
|
|---|
| 29 | \[ P(\phi)= 1 - \frac{a}{b} cos^2\phi \]
|
|---|
| 30 |
|
|---|
| 31 | \noindent
|
|---|
| 32 | where $a = sin^2\theta $ and $b = \epsilon + 1/\epsilon$. $\epsilon$ is
|
|---|
| 33 | the ratio between the scattered photon energy and the incident photon
|
|---|
| 34 | energy.
|
|---|
| 35 |
|
|---|
| 36 |
|
|---|
| 37 | \subsection{Polarization Vector}
|
|---|
| 38 |
|
|---|
| 39 | The components of the vector polarization of the scattered photon are
|
|---|
| 40 | calculated from
|
|---|
| 41 |
|
|---|
| 42 | \[ \vec{\epsilon'_\bot} = \frac{1}{N} \left( \hat{j} cos\theta - \hat{k} sin\theta sin\phi \right) sin\beta \]
|
|---|
| 43 |
|
|---|
| 44 |
|
|---|
| 45 | \[ \vec{\epsilon'_\|} = \left[ N \hat{i}- \frac{1}{N} \hat{j} sin^2\theta sin\phi cos\phi - \frac{1}{N} \hat{k} sin\theta cos\theta cos\phi \right] cos\beta \]
|
|---|
| 46 |
|
|---|
| 47 | \noindent
|
|---|
| 48 | where \[ N = \sqrt{1-sin^2\theta cos^2\phi} . \]
|
|---|
| 49 |
|
|---|
| 50 | \noindent
|
|---|
| 51 | $cos\beta$ is calculated from $cos\Theta = N cos\beta $, while $cos\Theta$
|
|---|
| 52 | is sampled from the Klein - Nishina distribution.
|
|---|
| 53 |
|
|---|
| 54 | The binding effects and the Compton profile are neglected.
|
|---|
| 55 | The kinetic energy and momentum of the recoil electron are then
|
|---|
| 56 |
|
|---|
| 57 | \[ T_{el} = E - E' \]
|
|---|
| 58 | \[ \vec{P_{el}} = \vec{P_\gamma} - \vec{P_\gamma '} . \]
|
|---|
| 59 |
|
|---|
| 60 | The momentum vector of the scattered photon $\vec{P_\gamma}$ and its
|
|---|
| 61 | polarization vector are transformed into the {\tt World} coordinate system.
|
|---|
| 62 | The polarization and the direction of the scattered gamma in the final
|
|---|
| 63 | state are calculated in the reference frame in which the incoming photon is
|
|---|
| 64 | along the $z$-axis and has its polarization vector along the $x$-axis. The
|
|---|
| 65 | transformation to the {\tt World} coordinate system performs a linear
|
|---|
| 66 | combination of the initial direction, the initial poalrization and the cross
|
|---|
| 67 | product between them, using the projections of the calculated quantities
|
|---|
| 68 | along these axes.
|
|---|
| 69 |
|
|---|
| 70 | \subsection{Unpolarized Photons}
|
|---|
| 71 |
|
|---|
| 72 | A special treatment is devoted to unpolarized photons. In this case a
|
|---|
| 73 | random polarization in the plane perpendicular to the incident photon is
|
|---|
| 74 | selected.
|
|---|
| 75 |
|
|---|
| 76 | \subsection{Status of this document}
|
|---|
| 77 |
|
|---|
| 78 | 18.06.2001 created by Gerardo Depaola and Francesco Longo \\
|
|---|
| 79 | 10.06.2002 revision by Francesco Longo \\
|
|---|
| 80 | 26.01.2003 minor re-wording and correction of equations by D.H. Wright
|
|---|
| 81 |
|
|---|
| 82 | \begin{latexonly}
|
|---|
| 83 |
|
|---|
| 84 | \begin{thebibliography}{99}
|
|---|
| 85 |
|
|---|
| 86 | \bibitem{Heitler} W. Heitler {\em The Quantum Theory of Radiation, Oxford Clarendom Press } (1954)
|
|---|
| 87 |
|
|---|
| 88 | \end{thebibliography}
|
|---|
| 89 |
|
|---|
| 90 | \end{latexonly}
|
|---|
| 91 |
|
|---|
| 92 | \begin{htmlonly}
|
|---|
| 93 |
|
|---|
| 94 | \subsection{Bibliography}
|
|---|
| 95 |
|
|---|
| 96 | \begin{enumerate}
|
|---|
| 97 | \item W. Heitler {\em The Quantum Theory of Radiation, Oxford Clarendom Press } (1954)
|
|---|
| 98 | \end{enumerate}
|
|---|
| 99 |
|
|---|
| 100 | \end{htmlonly}
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|