source: trunk/examples/advanced/microbeam/README @ 1342

Last change on this file since 1342 was 1342, checked in by garnier, 14 years ago

update ti head

File size: 6.9 KB
Line 
1-------------------------------------------------------------------
2$Id: README,v 1.12 2010/10/07 14:03:11 sincerti Exp $
3-------------------------------------------------------------------
4
5     =========================================================
6                  Geant4 - Microbeam example
7     =========================================================
8
9                                README file
10                          ----------------------
11
12                           CORRESPONDING AUTHOR
13
14S. Incerti (a, *) et al.
15a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan
16(CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
17* e-mail:incerti@cenbg.in2p3.fr
18
19Last modified by S. Incerti, 07/10/2010
20
21---->0. INTRODUCTION.                                                   
22                                                                       
23The microbeam example simulates the cellular irradiation beam line
24installed on the AIFIRA electrostatic accelerator facility located at
25CENBG, Bordeaux-Gradignan, France. For more information on this facility,
26please visit :
27http://www.cenbg.in2p3.fr/
28
29An overall description of this example is also available in this directory:
30to access it, simply open the microbeam.htm file with your internet browser.
31
32---->1. GEOMETRY SET-UP.
33 
34The elements simulated are:
35
361. A switching dipole magnet with fringing field, to deflect the 3 MeV alpha
37beam generated by the electrostatic accelerator into the microbeam line,
38oriented at 10 degrees from the main beam direction;
39
402. A circular collimator object, defining the incident beam size at the
41microbeam line entrance;
42
433. A quadrupole based magnetic symmetric focusing system allowing equal
44transverse demagnifications of 10. Fringe fields are calculated from Enge's
45model.
46
474. A dedicated cellular irradiation chamber setup;
48
495. A set of horizontal and vertical electrostatic deflecting plates which can
50be turned on or off to deflect the beam on target;
51
526. A realistic human keratinocyte voxellized cell observed from confocal
53microscopy and taking into account realistic nucleus and cytoplasm chemical
54compositions
55
56
57---->2. EXPERIMENTAL SET-UP.     
58                                 
59The beam is defined at the microbeam line entrance through a collimator
605 micrometer in diameter. The beam is then focused onto target using a
61quadruplet of quadrupoles in the so-called Dymnikov magnetic configuration.
62The beam is sent to the irradiation chamber where it travels through a
63isobutane gas detector for counting purpose before reaching the polypropylene
64culture foil of the target cell which is immersed in the growing medium and
65enclosed within a dish. 
66
67A cell is placed on the polypropylene foil and is irradiated using the
68microbeam. The cell is represented through a 3D phantom (G4PVParameterization)
69obtained from confocal microscopy. In the provided example, the voxels sizes
70are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)
71
72The primary particle beam parameters are generated from experimental
73measurements performed on the AIFIRA facility. Incident particle used for
74cellular irradiation are 3 MeV alpha particles.
75
76More details on the experimental setup and its simulation with Geant4 can
77be found in the following papers, which may be found on the SLAC-SPIRES
78online database (http://www.slac.stanford.edu/spires/) :
79
80- MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRADIATION OF INDIVIDUAL CELLS USING
81A MICROBEAM FACILITY
82By S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi, Ph. Moretto
83Published in Rad. Prot. Dos. 133, 1 (2009) 2-11
84
85- MONTE CARLO SIMULATION OF THE CENBG MICROBEAM AND NANOBEAM LINES WITH THE
86GEANT4 TOOLKIT
87By S. Incerti, Q. Zhang, F. Andersson, Ph. Moretto, G.W. Grime,
88M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier and H. Seznec
89Published in Nucl. Instrum. and Meth. B 260 (2007) 20-27
90
91- A COMPARISON OF CELLULAR IRRADIATION TECHNIQUES WITH ALPHA PARTICLES USING
92THE GEANT4 MONTE CARLO SIMULATION TOOLKIT
93By S. Incerti, N. Gault, C. Habchi, J.L.. Lefaix, Ph. Moretto, J.L.. Poncy,
94T. Pouthier, H. Seznec. Dec 2006. 3pp.
95Published in Rad. Prot. Dos. 122, 1-4, (2006) 327-329
96
97- GEANT4 SIMULATION OF THE NEW CENBG MICRO AND NANO PROBES FACILITY
98By S. Incerti, C. Habchi, Ph. Moretto, J. Olivier and H. Seznec. May 2006. 5pp.
99Published in Nucl.Instrum.Meth.B249:738-742, 2006
100
101- A COMPARISON OF RAY-TRACING SOFTWARE FOR THE DESIGN OF QUADRUPOLE MICROBEAM
102SYSTEMS
103By S. Incerti et al.,
104Published in Nucl.Instrum.Meth.B231:76-85, 2005
105
106- DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MICROBEAM FOR THE IRRADIATION OF
107INDIVIDUAL CELLS.
108By Ph. Barberet, A. Balana, S. Incerti, C. Michelet-Habchi, Ph. Moretto,
109Th. Pouthier. Dec 2004. 6pp.
110Published in Rev.Sci.Instrum.76:015101, 2005
111
112- SIMULATION OF CELLULAR IRRADIATION WITH THE CENBG MICROBEAM LINE USING
113GEANT4.
114By S. Incerti, Ph. Barberet, R. Villeneuve, P. Aguer, E. Gontier,
115C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen, T. Pouthier, R.W. Smith. Oct 2003. 6pp.
116Published in IEEE Trans.Nucl.Sci.51:1395-1401, 2004
117
118- SIMULATION OF ION PROPAGATION IN THE MICROBEAM LINE OF CENBG USING
119GEANT4.
120By S. Incerti, Ph. Barberet, B. Courtois, C. Michelet-Habchi,
121Ph. Moretto. Sep 2003.
122Published in Nucl.Instrum.Meth.B210:92-97, 2003
123
124
125------->3 VISUALIZATION
126
127The user can visualize the targeted cell by uncommenting the following line in
128microbeam.mac:
129#/control/execute vis.mac
130
131---->4. HOW TO RUN THE EXAMPLE                                         
132
133The variable G4ANALYSIS_USE must be set to 1.
134
135In order to generate histograms, at least one of the AIDA implementations should be
136 available.
137 
138The code should be compiled with gmake and run with :
139
140> $G4WORDIR/bin/$G4SYSTEM/Microbeam
141
142The macro file microbeam.mac is read by default.
143
144
145---->5. PHYSICS
146
147Livermore, Binary and Binary_ion physics lists are used by default,
148see microbeam.mac
149
150---->6. SIMULATION OUTPUT AND RESULT ANALYZIS                                   
151
152The output results consist in several a microbeam.root file, containing several
153ntuples:
154
155* total deposited dose in the cell nucleus and in the cell
156cytoplasm by each incident alpha particle;
157
158* average on the whole run of the dose deposited per
159Voxel per incident alpha particle;
160
161* final stopping (x,y,z) position of the incident
162alpha particle within the irradiated medium (cell or culture medium)
163
164* stopping power dE/dx of the incident
165alpha particle just before penetrating into the targeted cell;
166
167* beam transverse position distribution(X and Y)
168just before penetrating into the targeted cell;
169
170These results can be easily analyzed using for example the provided ROOT macro
171file plot.C; to do so :
172* be sure to have ROOT installed on your machine
173* be sure to be in the microbeam directory
174* launch ROOT by typing root
175* under your ROOT session, type in : .X plot.C to execute the macro file
176
177
178---------------------------------------------------------------------------
179
180Should you have any enquiry, please do not hesitate to contact:
181incerti@cenbg.in2p3.fr
Note: See TracBrowser for help on using the repository browser.