| [807] | 1 | $Id: README,v 1.5 2006/05/18 08:16:42 grichine Exp $
|
|---|
| 2 | -------------------------------------------------------------------
|
|---|
| 3 |
|
|---|
| 4 | =========================================================
|
|---|
| 5 | Geant4 - an Object-Oriented Toolkit for Simulation in HEP
|
|---|
| 6 | =========================================================
|
|---|
| 7 |
|
|---|
| 8 | TestEm10
|
|---|
| 9 | --------
|
|---|
| 10 |
|
|---|
| 11 | Test for investigation of ionisation in thin absorbers, transition
|
|---|
| 12 | and synchrotron radiations. Default setup for "TestEm10.in" and "TestEm10.large_N.in" is
|
|---|
| 13 | the experiment for XTR with NIM A294 (1990) 465-472 (fig. 11) setup
|
|---|
| 14 |
|
|---|
| 15 |
|
|---|
| 16 | 0- INTRODUCTION
|
|---|
| 17 |
|
|---|
| 18 | The parameterisations models can be changed simply with:
|
|---|
| 19 |
|
|---|
| 20 | Idle> /XTRdetector/setModel i (i = 1 to 10)
|
|---|
| 21 |
|
|---|
| 22 | It is NOT needed (and not recommended) to issue the command
|
|---|
| 23 | /XTRdetector/update if just the model is changed.
|
|---|
| 24 |
|
|---|
| 25 | See macro file "TestEm10.in" for an example.
|
|---|
| 26 |
|
|---|
| 27 |
|
|---|
| 28 | 1- GEOMETRY DEFINITION
|
|---|
| 29 |
|
|---|
| 30 | The "absorber" is a tube made of a given material.
|
|---|
| 31 |
|
|---|
| 32 | Three parameters define the absorber :
|
|---|
| 33 | - the material of the absorber,
|
|---|
| 34 | - the thickness of an absorber,
|
|---|
| 35 | - the transverse size of the absorber (the input face is a square).
|
|---|
| 36 |
|
|---|
| 37 | The volume "World" contains the "absorber".
|
|---|
| 38 | In this test the parameters of the "World" can be changed , too.
|
|---|
| 39 |
|
|---|
| 40 | In addition a transverse uniform magnetic field can be applied.
|
|---|
| 41 |
|
|---|
| 42 | The default geometry is constructed in DetectorConstruction class,
|
|---|
| 43 | but all the parameters can be changed via
|
|---|
| 44 | the commands defined in the DetectorMessenger class.
|
|---|
| 45 |
|
|---|
| 46 | 2- AN EVENT : THE PRIMARY GENERATOR
|
|---|
| 47 |
|
|---|
| 48 | The primary kinematic consists of a single particle which hits the
|
|---|
| 49 | absorber perpendicular to the input face. The type of the particle
|
|---|
| 50 | and its energy are set in the PrimaryGeneratorAction class, and can
|
|---|
| 51 | be changed via the G4 build-in commands of ParticleGun class (see
|
|---|
| 52 | the macros provided with this example).
|
|---|
| 53 |
|
|---|
| 54 | A RUN is a set of events.
|
|---|
| 55 |
|
|---|
| 56 | 3- DETECTOR RESPONSE
|
|---|
| 57 |
|
|---|
| 58 | Here we test G4PAIionisation , G4IonisationByLogicalVolume and
|
|---|
| 59 | transition radiation processes
|
|---|
| 60 |
|
|---|
| 61 | A HIT is a record, event per event , of all the
|
|---|
| 62 | informations needed to simulate and analyse the detector response.
|
|---|
| 63 |
|
|---|
| 64 | In this example a CalorHit is defined as a set of 2 informations:
|
|---|
| 65 | - the total energy deposit in the absorber,
|
|---|
| 66 | - the total tracklength of all charged particles in the absorber,
|
|---|
| 67 |
|
|---|
| 68 | Therefore the absorber is declared
|
|---|
| 69 | 'sensitive detector' (SD), which means they can contribute to the hit.
|
|---|
| 70 |
|
|---|
| 71 | At the end of a run, from the histogram(s), one can study
|
|---|
| 72 | different physics quantities such as :
|
|---|
| 73 | - angle distribution,
|
|---|
| 74 | - energy deposit,
|
|---|
| 75 | - transmission/backscattering,
|
|---|
| 76 | - ...
|
|---|
| 77 |
|
|---|
| 78 | The test contains 10 built-in histograms, which can be activated by
|
|---|
| 79 | interactive commands (see the macros runxx.mac for details).
|
|---|
| 80 |
|
|---|
| 81 | The histogram files can be viewed using PAW e.g with the commands
|
|---|
| 82 |
|
|---|
| 83 | paw> h/file 1 geant4.plot01 or g4.p11
|
|---|
| 84 | paw> option stat
|
|---|
| 85 | paw> h/pl 1
|
|---|
| 86 |
|
|---|
| 87 |
|
|---|
| 88 |
|
|---|
| 89 | 4- PHYSICS DEMO
|
|---|
| 90 |
|
|---|
| 91 | The particle's type and the physic processes which will be available
|
|---|
| 92 | in this example are set in PhysicsList class.
|
|---|
| 93 |
|
|---|
| 94 | The messenger classes introduce interactive commands . Using these
|
|---|
| 95 | commands the geometry of the detector, the data of the primary
|
|---|
| 96 | particle, the limits of the histograms , etc. can be changed.
|
|---|
| 97 |
|
|---|
| 98 |
|
|---|
| 99 | 5- HOW TO START ?
|
|---|
| 100 |
|
|---|
| 101 | - compile and link to generate an executable
|
|---|
| 102 | % cd TestEm10
|
|---|
| 103 | % gmake
|
|---|
| 104 |
|
|---|
| 105 | - execute TestEm10 in 'batch' mode from macro files e.g.
|
|---|
| 106 | % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm10 run11.mac
|
|---|
| 107 |
|
|---|
| 108 | - execute TestEm10 in 'interactive' mode with visualization e.g.
|
|---|
| 109 | % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm10
|
|---|
| 110 | ....
|
|---|
| 111 | Idle> type your commands
|
|---|
| 112 | ....
|
|---|
| 113 |
|
|---|
| 114 | List of the built-in histograms
|
|---|
| 115 | -------------------------------
|
|---|
| 116 |
|
|---|
| 117 | 1. number of (tracking) steps/event
|
|---|
| 118 | 2. energy deposit distribution in the absorber (in MeV)
|
|---|
| 119 | 3. angle distribution of the primary particle at the exit
|
|---|
| 120 | of the absorber (deg)
|
|---|
| 121 | 4. distribution of the lateral displacement at exit(mm)
|
|---|
| 122 | 5. kinetic energy of the transmitted primaries (MeV)
|
|---|
| 123 | 6. angle distribution of the backscattered primaries (deg)
|
|---|
| 124 | 7. kinetic energy of the backscattered primary particles (MeV)
|
|---|
| 125 | 8. kinetic energy of the charged secondary particles (MeV)
|
|---|
| 126 | 9. z distribution of the secondary charged vertices (mm)
|
|---|
| 127 | 10. kinetic energy of the photons escaping the absorber (MeV)
|
|---|
| 128 |
|
|---|
| 129 |
|
|---|
| 130 | Using histograms
|
|---|
| 131 | ----------------
|
|---|
| 132 |
|
|---|
| 133 | By default the histograms are not activated. To activate histograms
|
|---|
| 134 | the environment variable G4ANALYSIS_USE should be defined. For instance
|
|---|
| 135 | uncomment the flag G4ANALYSIS_USE in GNUmakefile.
|
|---|
| 136 |
|
|---|
| 137 | To use histograms any of implementations of AIDA interfaces should
|
|---|
| 138 | be available (see http://aida.freehep.org).
|
|---|
| 139 |
|
|---|
| 140 | A package including AIDA and extended interfaces also using Python
|
|---|
| 141 | is PI, available from: http://cern.ch/pi .
|
|---|
| 142 |
|
|---|
| 143 | Once installed PI or PI-Lite in a specified local area $MYPY, it is
|
|---|
| 144 | required to add the installation path to $PATH, i.e. for example,
|
|---|
| 145 | for release 1.2.1 of PI:
|
|---|
| 146 |
|
|---|
| 147 | setenv PATH ${PATH}:$MYPI/1.2.1/app/releases/PI/PI_1_2_1/rh73_gcc32/bin
|
|---|
| 148 |
|
|---|
| 149 | CERN users can use the PATH to the LCG area on AFS.
|
|---|
| 150 |
|
|---|
| 151 | Before compilation of the example it is optimal to clean up old
|
|---|
| 152 | files:
|
|---|
| 153 |
|
|---|
| 154 | gmake histclean
|
|---|
| 155 | gmake
|
|---|
| 156 |
|
|---|
| 157 | Before running the example the command should be issued:
|
|---|
| 158 |
|
|---|
| 159 | eval `aida-config --runtime csh`
|
|---|
| 160 |
|
|---|
| 161 | It is possible to choose the format of the output file with
|
|---|
| 162 | histograms using UI command:
|
|---|
| 163 |
|
|---|
| 164 | /testem/histo/setFileType type
|
|---|
| 165 |
|
|---|
| 166 | The following types are available: hbook, root, xml.
|
|---|