source: trunk/source/processes/electromagnetic/lowenergy/src/G4hLowEnergyIonisation.cc@ 1058

Last change on this file since 1058 was 961, checked in by garnier, 17 years ago

update processes

File size: 67.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------
28// GEANT 4 class implementation file
29//
30// History: based on object model of
31// 2nd December 1995, G.Cosmo
32// ---------- G4hLowEnergyIonisation physics process -------
33// by Vladimir Ivanchenko, 14 July 1999
34// was made on the base of G4hIonisation class
35// developed by Laszlo Urban
36// ************************************************************
37// It is the extention of the ionisation process for the slow
38// charged hadrons.
39// ************************************************************
40// 28 July 1999 V.Ivanchenko cleen up
41// 17 August 1999 G.Mancinelli added ICRU parametrisations for protons
42// 20 August 1999 G.Mancinelli added ICRU tables for alpha
43// 31 August 1999 V.Ivanchenko update and cleen up
44// 30 Sept. 1999 V.Ivanchenko minor upgrade
45// 12 Dec. 1999 S. Chauvie added Barkas correction
46// 19 Jan. 2000 V.Ivanchenko minor changing in Barkas corrections
47// 02 April 2000 S. Chauvie linearization of Barkas effect
48// 03 April 2000 V.Ivanchenko Nuclear Stopping power for antiprotons
49// 23 May 2000 MG Pia Clean up for QAO model
50// 24 May 2000 MG Pia Code properly indented to improve legibility
51// 17 July 2000 V.Ivanchenko Bug in scaling AlongStepDoIt method
52// 25 July 2000 V.Ivanchenko New design iteration
53// 17 August 2000 V.Ivanchenko Add ion fluctuation models
54// 18 August 2000 V.Ivanchenko Bug fixed in GetConstrain
55// 22 August 2000 V.Ivanchenko Insert paramStepLimit and
56// reorganise access to Barkas and Bloch terms
57// 04 Sept. 2000 V.Ivanchenko rename fluctuations
58// 05 Sept. 2000 V.Ivanchenko clean up
59// 03 Oct. 2000 V.Ivanchenko CodeWizard clean up
60// 03 Nov. 2000 V.Ivanchenko MinKineticEnergy=LowestKineticEnergy=10eV
61// 05 Nov. 2000 MG Pia - Removed const cast previously introduced to get
62// the code compiled (const G4Material* now introduced in
63// electromagnetic/utils utils-V02-00-03 tag)
64// (this is going back and forth, to cope with Michel's
65// utils tag not being accepted yet by system testing)
66// 21 Nov. 2000 V.Ivanchenko Fix a problem in fluctuations
67// 23 Nov. 2000 V.Ivanchenko Ion type fluctuations only for charge>0
68// 10 May 2001 V.Ivanchenko Clean up againist Linux compilation with -Wall
69// 23 May 2001 V.Ivanchenko Minor fix in PostStepDoIt
70// 07 June 2001 V.Ivanchenko Clean up AntiProtonDEDX + add print out
71// 18 June 2001 V.Ivanchenko Cleanup print out
72// 18 Oct. 2001 V.Ivanchenko Add fluorescence
73// 30 Oct. 2001 V.Ivanchenko Add minGammaEnergy and minElectronEnergy
74// 07 Dec 2001 V.Ivanchenko Add SetFluorescence method
75// 15 Feb 2002 V.Ivanchenko Fix problem of Generic Ions
76// 25 Mar 2002 V.Ivanchenko Fix problem of fluorescence below threshold
77// 28 Mar 2002 V.Ivanchenko Set fluorescence off by default
78// 09 Apr 2002 V.Ivanchenko Fix table problem of GenericIons
79// 28 May 2002 V.Ivanchenko Remove flag fStopAndKill
80// 31 May 2002 V.Ivanchenko Add path of Fluo + Auger cuts to
81// AtomicDeexcitation
82// 03 Jun 2002 MGP Restore fStopAndKill
83// 10 Jun 2002 V.Ivanchenko Restore fStopButAlive
84// 12 Jun 2002 V.Ivanchenko Fix in fluctuations - if tmax<2*Ipot Gaussian
85// fluctuations enables
86// 20 Sept 2002 V.Ivanchenko Clean up energy ranges for models
87// 07 Oct 2002 V.Ivanchenko Clean up initialisation of fluorescence
88// 28 Oct 2002 V.Ivanchenko Optimal binning for dE/dx
89// 10 Dec 2002 V.Ivanchenko antiProtonLowEnergy -> 25 keV, QEG model below
90// 21 Jan 2003 V.Ivanchenko Cut per region
91// 10 Mar 2003 V.Ivanchenko Use SubTypes for ions
92// 12 Apr 2003 V.Ivanchenko Cut per region for fluo AlongStep
93// 18 Apr 2003 V.Ivanchenko finalRange redefinition
94// 26 Apr 2003 V.Ivanchenko fix for stepLimit
95// 30 Mar 2004 S.Saliceti add shellCS data member and expFlag variable,
96// atom total cross section for the Empiric Model
97// 28 May 2004 V.Ivanchenko fix for ionisation of antiprotons in complex materials
98// 30 Aug 2004 V.Ivanchenko use energy limit for parameterisation from model
99// 03 Oct 2005 V.Ivanchenko change logic of definition of high energy limit for
100// parametrised proton model: min(user value, model limit)
101// 26 Jan 2005 S. Chauvie added PrintInfoDefinition() for antiproton
102
103
104// -----------------------------------------------------------------------
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108
109#include "G4hLowEnergyIonisation.hh"
110#include "globals.hh"
111#include "G4ios.hh"
112#include "Randomize.hh"
113#include "G4Poisson.hh"
114#include "G4UnitsTable.hh"
115#include "G4EnergyLossTables.hh"
116#include "G4Material.hh"
117#include "G4DynamicParticle.hh"
118#include "G4ParticleDefinition.hh"
119#include "G4AtomicDeexcitation.hh"
120#include "G4AtomicTransitionManager.hh"
121#include "G4ShellVacancy.hh"
122#include "G4VhShellCrossSection.hh"
123#include "G4hShellCrossSection.hh"
124#include "G4hShellCrossSectionExp.hh"
125#include "G4hShellCrossSectionDoubleExp.hh"
126#include "G4VEMDataSet.hh"
127#include "G4EMDataSet.hh"
128#include "G4CompositeEMDataSet.hh"
129#include "G4Gamma.hh"
130#include "G4LogLogInterpolation.hh"
131#include "G4SemiLogInterpolation.hh"
132#include "G4ProcessManager.hh"
133#include "G4ProductionCutsTable.hh"
134
135//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
136
137G4hLowEnergyIonisation::G4hLowEnergyIonisation(const G4String& processName)
138 : G4hLowEnergyLoss(processName),
139 theBetheBlochModel(0),
140 theProtonModel(0),
141 theAntiProtonModel(0),
142 theIonEffChargeModel(0),
143 theNuclearStoppingModel(0),
144 theIonChuFluctuationModel(0),
145 theIonYangFluctuationModel(0),
146 theProtonTable("ICRU_R49p"),
147 theAntiProtonTable("ICRU_R49p"),
148 theNuclearTable("ICRU_R49"),
149 nStopping(true),
150 theBarkas(true),
151 theMeanFreePathTable(0),
152 paramStepLimit (0.005),
153 shellVacancy(0),
154 shellCS(0),
155 theFluo(false),
156 expFlag(false)
157{
158 InitializeMe();
159}
160
161//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
162
163void G4hLowEnergyIonisation::InitializeMe()
164{
165 LowestKineticEnergy = 10.0*eV ;
166 HighestKineticEnergy = 100.0*GeV ;
167 MinKineticEnergy = 10.0*eV ;
168 TotBin = 360 ;
169 protonLowEnergy = 1.*keV ;
170 protonHighEnergy = 100.*MeV ;
171 antiProtonLowEnergy = 25.*keV ;
172 antiProtonHighEnergy = 2.*MeV ;
173 minGammaEnergy = 25.*keV;
174 minElectronEnergy = 25.*keV;
175 verboseLevel = 0;
176
177//****************************************************************************
178// By default the method of cross section's calculation is swiched on an
179// 2nd implementation empirical model (G4hShellCrossSectionDoubleExp),
180// if you want to use Gryzinski's model (G4hShellCrossSection()) or the
181// 1st empiric one (G4hShellCrossSectionExp), you must change the
182// selection below and switching expFlag to FALSE
183//****************************************************************************
184
185 //shellCS = new G4hShellCrossSection();
186 //shellCS = new G4hShellCrossSectionExp();
187 shellCS = new G4hShellCrossSectionDoubleExp();
188 expFlag=true;
189}
190
191//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
192
193G4hLowEnergyIonisation::~G4hLowEnergyIonisation()
194{
195 if (theMeanFreePathTable) {
196 theMeanFreePathTable->clearAndDestroy();
197 delete theMeanFreePathTable;
198 }
199 if(theBetheBlochModel)delete theBetheBlochModel;
200 if(theProtonModel)delete theProtonModel;
201 if(theAntiProtonModel)delete theAntiProtonModel;
202 if(theNuclearStoppingModel)delete theNuclearStoppingModel;
203 if(theIonEffChargeModel)delete theIonEffChargeModel;
204 if(theIonChuFluctuationModel)delete theIonChuFluctuationModel;
205 if(theIonYangFluctuationModel)delete theIonYangFluctuationModel;
206 if(shellVacancy) delete shellVacancy;
207 if(shellCS) delete shellCS;
208 cutForDelta.clear();
209 G4int length = zFluoDataVector.size();
210 if(length) {
211 for(G4int i=0; i<length; i++) {
212 delete zFluoDataVector[i];
213 }
214 zFluoDataVector.clear();
215 }
216}
217
218//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
219
220void G4hLowEnergyIonisation::SetElectronicStoppingPowerModel(
221 const G4ParticleDefinition* aParticle,
222 const G4String& dedxTable)
223 // This method defines the ionisation parametrisation method via its name
224{
225 if(0 < aParticle->GetPDGCharge()) {
226 SetProtonElectronicStoppingPowerModel(dedxTable) ;
227 } else {
228 SetAntiProtonElectronicStoppingPowerModel(dedxTable) ;
229 }
230}
231
232//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
233
234void G4hLowEnergyIonisation::InitializeParametrisation()
235
236{
237 // Define models for parametrisation of electronic energy losses
238 theBetheBlochModel = new G4hBetheBlochModel("Bethe-Bloch") ;
239 theProtonModel = new G4hParametrisedLossModel(theProtonTable) ;
240 protonHighEnergy = std::min(protonHighEnergy,theProtonModel->HighEnergyLimit(0, 0));
241 theAntiProtonModel = new G4QAOLowEnergyLoss(theAntiProtonTable) ;
242 theNuclearStoppingModel = new G4hNuclearStoppingModel(theNuclearTable) ;
243 theIonEffChargeModel = new G4hIonEffChargeSquare("Ziegler1988") ;
244 theIonChuFluctuationModel = new G4IonChuFluctuationModel("Chu") ;
245 theIonYangFluctuationModel = new G4IonYangFluctuationModel("Yang") ;
246}
247
248//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249
250void G4hLowEnergyIonisation::BuildPhysicsTable(
251 const G4ParticleDefinition& aParticleType)
252
253 // just call BuildLossTable+BuildLambdaTable
254{
255 if(verboseLevel > 0) {
256 G4cout << "G4hLowEnergyIonisation::BuildPhysicsTable for "
257 << aParticleType.GetParticleName()
258 << " mass(MeV)= " << aParticleType.GetPDGMass()/MeV
259 << " charge= " << aParticleType.GetPDGCharge()/eplus
260 << " type= " << aParticleType.GetParticleType()
261 << G4endl;
262
263 if(verboseLevel > 1) {
264 G4ProcessVector* pv = aParticleType.GetProcessManager()->GetProcessList();
265
266 G4cout << " 0: " << (*pv)[0]->GetProcessName() << " " << (*pv)[0]
267 << " 1: " << (*pv)[1]->GetProcessName() << " " << (*pv)[1]
268 // << " 2: " << (*pv)[2]->GetProcessName() << " " << (*pv)[2]
269 << G4endl;
270 G4cout << "ionModel= " << theIonEffChargeModel
271 << " MFPtable= " << theMeanFreePathTable
272 << " iniMass= " << initialMass
273 << G4endl;
274 }
275 }
276
277 if(aParticleType.GetParticleType() == "nucleus" &&
278 aParticleType.GetParticleName() != "GenericIon" &&
279 aParticleType.GetParticleSubType() == "generic")
280 {
281
282 G4EnergyLossTables::Register(&aParticleType,
283 theDEDXpTable,
284 theRangepTable,
285 theInverseRangepTable,
286 theLabTimepTable,
287 theProperTimepTable,
288 LowestKineticEnergy, HighestKineticEnergy,
289 proton_mass_c2/aParticleType.GetPDGMass(),
290 TotBin);
291
292 return;
293 }
294
295 if( !CutsWhereModified() && theLossTable) return;
296
297 InitializeParametrisation() ;
298 G4Proton* theProton = G4Proton::Proton();
299 G4AntiProton* theAntiProton = G4AntiProton::AntiProton();
300
301 charge = aParticleType.GetPDGCharge()/eplus;
302 chargeSquare = charge*charge ;
303
304 const G4ProductionCutsTable* theCoupleTable=
305 G4ProductionCutsTable::GetProductionCutsTable();
306 size_t numOfCouples = theCoupleTable->GetTableSize();
307
308 cutForDelta.clear();
309 cutForGamma.clear();
310
311 for (size_t j=0; j<numOfCouples; j++) {
312
313 // get material parameters needed for the energy loss calculation
314 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j);
315 const G4Material* material= couple->GetMaterial();
316
317 // the cut cannot be below lowest limit
318 G4double tCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[j];
319 if(tCut > HighestKineticEnergy) tCut = HighestKineticEnergy;
320
321 G4double excEnergy = material->GetIonisation()->GetMeanExcitationEnergy();
322
323 tCut = std::max(tCut,excEnergy);
324 cutForDelta.push_back(tCut);
325
326 // the cut cannot be below lowest limit
327 tCut = (*(theCoupleTable->GetEnergyCutsVector(0)))[j];
328 if(tCut > HighestKineticEnergy) tCut = HighestKineticEnergy;
329 tCut = std::max(tCut,minGammaEnergy);
330 cutForGamma.push_back(tCut);
331 }
332
333 if(verboseLevel > 0) {
334 G4cout << "Cuts are defined " << G4endl;
335 }
336
337 if(0.0 < charge)
338 {
339 {
340 BuildLossTable(*theProton) ;
341
342// The following vector has a fixed dimension (see src/G4hLowEnergyLoss.cc for more details)
343// It happended in the past that caused memory corruption errors. The problem is still pending, even if temporary solved
344// G4cout << "[NOTE]: __LINE__=" << __LINE__ << ", aParticleType=" << aParticleType.GetParticleName() << ", theProton=" << theProton << ", theLossTable=" << theLossTable << ", CounterOfpProcess=" << CounterOfpProcess << G4endl;
345
346 RecorderOfpProcess[CounterOfpProcess] = theLossTable ;
347 CounterOfpProcess++;
348 }
349 } else {
350 {
351 BuildLossTable(*theAntiProton) ;
352
353// The following vector has a fixed dimension (see src/G4hLowEnergyLoss.cc for more details)
354// It happended in the past that caused memory corruption errors. The problem is still pending, even if temporary solved
355// G4cout << "[NOTE]: __LINE__=" << __LINE__ << ", aParticleType=" << aParticleType.GetParticleName() << ", theAntiProton=" << theAntiProton << ", theLossTable=" << theLossTable << ", CounterOfpbarProcess=" << CounterOfpbarProcess << G4endl;
356
357 RecorderOfpbarProcess[CounterOfpbarProcess] = theLossTable ;
358 CounterOfpbarProcess++;
359 }
360 }
361
362 if(verboseLevel > 0) {
363 G4cout << "G4hLowEnergyIonisation::BuildPhysicsTable: "
364 << "Loss table is built "
365// << theLossTable
366 << G4endl;
367 }
368
369 BuildLambdaTable(aParticleType) ;
370 BuildDataForFluorescence(aParticleType);
371
372 if(verboseLevel > 1) {
373 G4cout << (*theMeanFreePathTable) << G4endl;
374 }
375
376 if(verboseLevel > 0) {
377 G4cout << "G4hLowEnergyIonisation::BuildPhysicsTable: "
378 << "DEDX table will be built "
379// << theDEDXpTable << " " << theDEDXpbarTable
380// << " " << theRangepTable << " " << theRangepbarTable
381 << G4endl;
382 }
383
384 BuildDEDXTable(aParticleType) ;
385
386 if(verboseLevel > 1) {
387 G4cout << (*theDEDXpTable) << G4endl;
388 }
389
390 if((&aParticleType == theProton) || (&aParticleType == theAntiProton)) PrintInfoDefinition() ;
391
392 if(verboseLevel > 0) {
393 G4cout << "G4hLowEnergyIonisation::BuildPhysicsTable: end for "
394 << aParticleType.GetParticleName() << G4endl;
395 }
396}
397
398//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
399
400void G4hLowEnergyIonisation::BuildLossTable(
401 const G4ParticleDefinition& aParticleType)
402{
403
404 // Initialisation
405 G4double lowEdgeEnergy , ionloss, ionlossBB, paramB ;
406 G4double lowEnergy, highEnergy;
407 G4Proton* theProton = G4Proton::Proton();
408
409 if(aParticleType == *theProton) {
410 lowEnergy = protonLowEnergy ;
411 highEnergy = protonHighEnergy ;
412 charge = 1.0 ;
413 } else {
414 lowEnergy = antiProtonLowEnergy ;
415 highEnergy = antiProtonHighEnergy ;
416 charge = -1.0 ;
417 }
418 chargeSquare = 1.0 ;
419
420 const G4ProductionCutsTable* theCoupleTable=
421 G4ProductionCutsTable::GetProductionCutsTable();
422 size_t numOfCouples = theCoupleTable->GetTableSize();
423
424 if ( theLossTable) {
425 theLossTable->clearAndDestroy();
426 delete theLossTable;
427 }
428
429 theLossTable = new G4PhysicsTable(numOfCouples);
430
431 // loop for materials
432 for (size_t j=0; j<numOfCouples; j++) {
433
434 // create physics vector and fill it
435 G4PhysicsLogVector* aVector = new G4PhysicsLogVector(LowestKineticEnergy,
436 HighestKineticEnergy,
437 TotBin);
438
439 // get material parameters needed for the energy loss calculation
440 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j);
441 const G4Material* material= couple->GetMaterial();
442
443 if ( charge > 0.0 ) {
444 ionloss = ProtonParametrisedDEDX(couple,highEnergy) ;
445 } else {
446 ionloss = AntiProtonParametrisedDEDX(couple,highEnergy) ;
447 }
448
449 ionlossBB = theBetheBlochModel->TheValue(&aParticleType,material,highEnergy) ;
450 ionlossBB -= DeltaRaysEnergy(couple,highEnergy,proton_mass_c2) ;
451
452
453 paramB = ionloss/ionlossBB - 1.0 ;
454
455 // now comes the loop for the kinetic energy values
456 for (G4int i = 0 ; i < TotBin ; i++) {
457 lowEdgeEnergy = aVector->GetLowEdgeEnergy(i) ;
458
459 // low energy part for this material, parametrised energy loss formulae
460 if ( lowEdgeEnergy < highEnergy ) {
461
462 if ( charge > 0.0 ) {
463 ionloss = ProtonParametrisedDEDX(couple,lowEdgeEnergy) ;
464 } else {
465 ionloss = AntiProtonParametrisedDEDX(couple,lowEdgeEnergy) ;
466 }
467
468 } else {
469
470 // high energy part for this material, Bethe-Bloch formula
471 ionloss = theBetheBlochModel->TheValue(theProton,material,
472 lowEdgeEnergy) ;
473
474 ionloss -= DeltaRaysEnergy(couple,lowEdgeEnergy,proton_mass_c2) ;
475
476 ionloss *= (1.0 + paramB*highEnergy/lowEdgeEnergy) ;
477 }
478
479 // now put the loss into the vector
480 if(verboseLevel > 1) {
481 G4cout << "E(MeV)= " << lowEdgeEnergy/MeV
482 << " dE/dx(MeV/mm)= " << ionloss*mm/MeV
483 << " in " << material->GetName() << G4endl;
484 }
485 aVector->PutValue(i,ionloss) ;
486 }
487 // Insert vector for this material into the table
488 theLossTable->insert(aVector) ;
489 }
490}
491
492//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
493
494void G4hLowEnergyIonisation::BuildDataForFluorescence(
495 const G4ParticleDefinition& aParticleType)
496{
497
498 if(verboseLevel > 1) {
499 G4cout << "G4hLowEnergyIonisation::BuildDataForFluorescence for "
500 << aParticleType.GetParticleName() << " is started" << G4endl;
501 }
502
503 // fill data for fluorescence
504
505 deexcitationManager.SetCutForSecondaryPhotons(minGammaEnergy);
506 deexcitationManager.SetCutForAugerElectrons(minElectronEnergy);
507
508 G4double mass = aParticleType.GetPDGMass();
509 const G4ProductionCutsTable* theCoupleTable=
510 G4ProductionCutsTable::GetProductionCutsTable();
511 size_t numOfCouples = theCoupleTable->GetTableSize();
512
513 if (shellVacancy != 0) delete shellVacancy;
514 shellVacancy = new G4ShellVacancy();
515 G4DataVector* ksi = 0;
516 G4DataVector* ksi1 = 0;
517 G4DataVector* energy = 0;
518 G4DataVector* energy1 = 0;
519 size_t binForFluo = TotBin/10;
520 G4int length = zFluoDataVector.size();
521 if(length > 0) {
522 for(G4int i=0; i<length; i++) {
523 G4VEMDataSet* x = zFluoDataVector[i];
524 delete x;
525 }
526 zFluoDataVector.clear();
527 }
528
529 G4PhysicsLogVector* bVector = new G4PhysicsLogVector(LowestKineticEnergy,
530 HighestKineticEnergy,
531 binForFluo);
532 const G4AtomicTransitionManager* transitionManager =
533 G4AtomicTransitionManager::Instance();
534
535 G4double bindingEnergy;
536 // G4double x;
537 // G4double y;
538
539 // loop for materials
540 for (size_t j=0; j<numOfCouples; j++) {
541
542 // get material parameters needed for the energy loss calculation
543 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j);
544 const G4Material* material= couple->GetMaterial();
545
546 const G4ElementVector* theElementVector = material->GetElementVector();
547 size_t NumberOfElements = material->GetNumberOfElements() ;
548 const G4double* theAtomicNumDensityVector =
549 material->GetAtomicNumDensityVector();
550 G4VDataSetAlgorithm* interp = new G4SemiLogInterpolation();
551 G4VEMDataSet* xsis = new G4CompositeEMDataSet(interp, 1., 1.);
552 G4VDataSetAlgorithm* interp1 = new G4SemiLogInterpolation();
553 G4VEMDataSet* xsis1 = new G4CompositeEMDataSet(interp1, 1., 1.);
554
555 G4double tCut = cutForDelta[j];
556 G4double elDensity = 1.;
557
558 for (size_t iel=0; iel<NumberOfElements; iel++ ) {
559
560 G4int Z = (G4int)((*theElementVector)[iel]->GetZ());
561 G4int nShells = transitionManager->NumberOfShells(Z);
562 energy = new G4DataVector();
563 ksi = new G4DataVector();
564 energy1= new G4DataVector();
565 ksi1 = new G4DataVector();
566 //if(NumberOfElements > 1)
567 elDensity = theAtomicNumDensityVector[iel]/((G4double)nShells);
568
569 for (size_t j = 0; j<binForFluo; j++) {
570
571 G4double tkin = bVector->GetLowEdgeEnergy(j);
572 G4double gamma = tkin/mass + 1.;
573 G4double beta2 = 1.0 - 1.0/(gamma*gamma);
574 G4double r = electron_mass_c2/mass;
575 G4double tmax = 2.*electron_mass_c2*(gamma*gamma - 1.)/(1. + 2.*gamma*r + r*r);
576 G4double cross = 0.;
577 G4double cross1 = 0.;
578 G4double eAverage= 0.;
579 G4double tmin = std::min(tCut,tmax);
580 G4double rel;
581
582 for (G4int n=0; n<nShells; n++) {
583
584 bindingEnergy = transitionManager->Shell(Z, n)->BindingEnergy();
585 if (tmin > bindingEnergy) {
586 rel = std::log(tmin/bindingEnergy);
587 eAverage += rel - beta2*(tmin - bindingEnergy)/tmax;
588 cross += 1.0/bindingEnergy - 1.0/tmin - beta2*rel/tmax;
589 }
590 if (tmax > tmin) {
591 cross1 += 1.0/tmin - 1.0/tmax - beta2*std::log(tmax/tmin)/tmax;
592 }
593 }
594
595 cross1 *= elDensity;
596 energy1->push_back(tkin);
597 ksi1->push_back(cross1);
598
599 if(eAverage > 0.) cross /= eAverage;
600 else cross = 0.;
601
602 energy->push_back(tkin);
603 ksi->push_back(cross);
604 }
605 G4VDataSetAlgorithm* algo = interp->Clone();
606 G4VEMDataSet* set = new G4EMDataSet(Z,energy,ksi,algo,1.,1.);
607 xsis->AddComponent(set);
608 G4VDataSetAlgorithm* algo1 = interp1->Clone();
609 G4VEMDataSet* set1 = new G4EMDataSet(Z,energy1,ksi1,algo1,1.,1.);
610 xsis1->AddComponent(set1);
611 }
612 if(verboseLevel > 1) {
613 G4cout << "### Shell inverse cross sections for "
614 << material->GetName() << G4endl;
615 xsis->PrintData();
616 G4cout << "### Atom cross sections for "
617 << material->GetName() << G4endl;
618 xsis1->PrintData();
619 }
620 shellVacancy->AddXsiTable(xsis);
621 zFluoDataVector.push_back(xsis1);
622 }
623 delete bVector;
624}
625
626//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
627
628void G4hLowEnergyIonisation::BuildLambdaTable(
629 const G4ParticleDefinition& aParticleType)
630
631{
632 // Build mean free path tables for the delta ray production process
633 // tables are built for MATERIALS
634
635 if(verboseLevel > 1) {
636 G4cout << "G4hLowEnergyIonisation::BuildLambdaTable for "
637 << aParticleType.GetParticleName() << " is started" << G4endl;
638 }
639
640
641 G4double lowEdgeEnergy, value;
642 charge = aParticleType.GetPDGCharge()/eplus ;
643 chargeSquare = charge*charge ;
644 initialMass = aParticleType.GetPDGMass();
645
646 const G4ProductionCutsTable* theCoupleTable=
647 G4ProductionCutsTable::GetProductionCutsTable();
648 size_t numOfCouples = theCoupleTable->GetTableSize();
649
650
651 if (theMeanFreePathTable) {
652 theMeanFreePathTable->clearAndDestroy();
653 delete theMeanFreePathTable;
654 }
655
656 theMeanFreePathTable = new G4PhysicsTable(numOfCouples);
657
658 // loop for materials
659
660 for (size_t J=0 ; J < numOfCouples; J++) {
661
662 //create physics vector then fill it ....
663 G4PhysicsLogVector* aVector = new G4PhysicsLogVector(LowestKineticEnergy,
664 HighestKineticEnergy,
665 TotBin);
666
667 // compute the (macroscopic) cross section first
668 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(J);
669 const G4Material* material= couple->GetMaterial();
670
671 const G4ElementVector* theElementVector =
672 material->GetElementVector() ;
673 const G4double* theAtomicNumDensityVector =
674 material->GetAtomicNumDensityVector();
675 const G4int NumberOfElements = material->GetNumberOfElements() ;
676
677 // get the electron kinetic energy cut for the actual material,
678 // it will be used in ComputeMicroscopicCrossSection
679 // ( it is the SAME for ALL the ELEMENTS in THIS MATERIAL )
680 // ------------------------------------------------------
681
682 G4double deltaCut = cutForDelta[J];
683
684 for ( G4int i = 0 ; i < TotBin ; i++ ) {
685 lowEdgeEnergy = aVector->GetLowEdgeEnergy(i) ;
686 G4double sigma = 0.0 ;
687 G4int Z;
688
689 for (G4int iel=0; iel<NumberOfElements; iel++ ) {
690 Z = (G4int) (*theElementVector)[iel]->GetZ();
691 totalCrossSectionMap [Z] = ComputeMicroscopicCrossSection(
692 aParticleType,
693 lowEdgeEnergy,
694 Z,
695 deltaCut ) ;
696 sigma += theAtomicNumDensityVector[iel]*ComputeMicroscopicCrossSection(
697 aParticleType,
698 lowEdgeEnergy,
699 Z,
700 deltaCut ) ;
701
702 }
703
704 // mean free path = 1./macroscopic cross section
705
706 value = sigma<=0 ? DBL_MAX : 1./sigma ;
707
708 aVector->PutValue(i, value) ;
709 }
710
711 theMeanFreePathTable->insert(aVector);
712 }
713
714}
715
716
717//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
718
719G4double G4hLowEnergyIonisation::ComputeMicroscopicCrossSection(
720 const G4ParticleDefinition& aParticleType,
721 G4double kineticEnergy,
722 G4double atomicNumber,
723 G4double deltaCutInEnergy) const
724{
725 //******************************************************************
726 // cross section formula is OK for spin=0, 1/2, 1 only !
727 // *****************************************************************
728
729 // calculates the microscopic cross section in GEANT4 internal units
730 // ( it is called for elements , AtomicNumber = z )
731
732 G4double energy, gamma, beta2, tmax, var;
733 G4double totalCrossSection = 0.0 ;
734
735 G4double particleMass = initialMass;
736
737 // get particle data ...................................
738
739 energy = kineticEnergy + particleMass;
740
741 // some kinematics......................
742
743 gamma = energy/particleMass;
744 beta2 = 1.0 - 1.0/(gamma*gamma);
745 var = electron_mass_c2/particleMass;
746 tmax = 2.*electron_mass_c2*(gamma*gamma - 1.)/(1. + 2.*gamma*var + var*var);
747
748 // now you can calculate the total cross section
749
750 if( tmax > deltaCutInEnergy ) {
751
752 var=deltaCutInEnergy/tmax;
753 totalCrossSection = (1.0 - var*(1.0 - beta2*std::log(var))) / deltaCutInEnergy ;
754 G4double spin = aParticleType.GetPDGSpin() ;
755
756 // +term for spin=1/2 particle
757 if( 0.5 == spin )
758 totalCrossSection += 0.5 * (tmax - deltaCutInEnergy) / (energy*energy);
759
760 // +term for spin=1 particle
761 else if( 0.9 < spin )
762 totalCrossSection += -std::log(var)/(3.0*deltaCutInEnergy) +
763 (tmax - deltaCutInEnergy) * ( (5.0+ 1.0/var)*0.25 / (energy*energy) -
764 beta2 / (tmax * deltaCutInEnergy) ) / 3.0 ;
765
766 totalCrossSection *= twopi_mc2_rcl2 * atomicNumber / beta2 ;
767 }
768
769 return totalCrossSection ;
770}
771
772//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
773
774G4double G4hLowEnergyIonisation::GetMeanFreePath(const G4Track& trackData,
775 G4double, // previousStepSize
776 enum G4ForceCondition* condition)
777{
778 const G4DynamicParticle* aParticle = trackData.GetDynamicParticle();
779 const G4MaterialCutsCouple* couple = trackData.GetMaterialCutsCouple();
780 const G4Material* material = couple->GetMaterial();
781 G4double meanFreePath;
782 G4bool isOutRange ;
783
784 *condition = NotForced ;
785
786 G4double kineticEnergy = (aParticle->GetKineticEnergy())*initialMass/(aParticle->GetMass());
787 charge = aParticle->GetCharge()/eplus;
788 chargeSquare = theIonEffChargeModel->TheValue(aParticle, material);
789
790 if(kineticEnergy < LowestKineticEnergy) meanFreePath = DBL_MAX;
791
792 else {
793 if(kineticEnergy > HighestKineticEnergy)
794 kineticEnergy = HighestKineticEnergy;
795 meanFreePath = (((*theMeanFreePathTable)(couple->GetIndex()))->
796 GetValue(kineticEnergy,isOutRange))/chargeSquare;
797 }
798
799 return meanFreePath ;
800}
801
802//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
803
804G4double G4hLowEnergyIonisation::GetConstraints(
805 const G4DynamicParticle* particle,
806 const G4MaterialCutsCouple* couple)
807{
808 // returns the Step limit
809 // dEdx is calculated as well as the range
810 // based on Effective Charge Approach
811
812 const G4Material* material = couple->GetMaterial();
813 G4Proton* theProton = G4Proton::Proton();
814 G4AntiProton* theAntiProton = G4AntiProton::AntiProton();
815
816 G4double stepLimit = 0.0 ;
817 G4double dx, highEnergy;
818
819 G4double massRatio = proton_mass_c2/(particle->GetMass()) ;
820 G4double kineticEnergy = particle->GetKineticEnergy() ;
821
822 // Scale the kinetic energy
823
824 G4double tscaled = kineticEnergy*massRatio ;
825 fBarkas = 0.0;
826
827 if(charge > 0.0) {
828
829 highEnergy = protonHighEnergy ;
830
831 fRangeNow = G4EnergyLossTables::GetRange(theProton, tscaled, couple);
832 dx = G4EnergyLossTables::GetRange(theProton, highEnergy, couple);
833 fdEdx = G4EnergyLossTables::GetDEDX(theProton, tscaled, couple)
834 * chargeSquare ;
835
836 // Correction for positive ions
837 if(theBarkas && tscaled > highEnergy) {
838 fBarkas = BarkasTerm(material,tscaled)*std::sqrt(chargeSquare)*chargeSquare
839 + BlochTerm(material,tscaled,chargeSquare);
840 }
841 // Antiprotons and negative hadrons
842 } else {
843
844 highEnergy = antiProtonHighEnergy ;
845 fRangeNow = G4EnergyLossTables::GetRange(theAntiProton, tscaled, couple);
846 dx = G4EnergyLossTables::GetRange(theAntiProton, highEnergy, couple);
847 fdEdx = G4EnergyLossTables::GetDEDX(theAntiProton, tscaled, couple)
848 * chargeSquare ;
849
850 if(theBarkas && tscaled > highEnergy) {
851 fBarkas = -BarkasTerm(material,tscaled)*std::sqrt(chargeSquare)*chargeSquare
852 + BlochTerm(material,tscaled,chargeSquare);
853 }
854 }
855 /*
856 const G4Material* mat = couple->GetMaterial();
857 G4double fac = gram/(MeV*cm2*mat->GetDensity());
858 G4cout << particle->GetDefinition()->GetParticleName()
859 << " in " << mat->GetName()
860 << " E(MeV)= " << kineticEnergy/MeV
861 << " dedx(MeV*cm^2/g)= " << fdEdx*fac
862 << " barcas(MeV*cm^2/gram)= " << fBarkas*fac
863 << " Q^2= " << chargeSquare
864 << G4endl;
865 */
866 // scaling back
867 fRangeNow /= (chargeSquare*massRatio) ;
868 dx /= (chargeSquare*massRatio) ;
869
870 stepLimit = fRangeNow ;
871 G4double r = std::min(finalRange, couple->GetProductionCuts()
872 ->GetProductionCut(idxG4ElectronCut));
873
874 if (fRangeNow > r) {
875 stepLimit = dRoverRange*fRangeNow + r*(1.0 - dRoverRange)*(2.0 - r/fRangeNow);
876 if (stepLimit > fRangeNow) stepLimit = fRangeNow;
877 }
878 // compute the (random) Step limit in standard energy range
879 if(tscaled > highEnergy ) {
880
881 // add Barkas correction directly to dedx
882 fdEdx += fBarkas;
883
884 if(stepLimit > fRangeNow - dx*0.9) stepLimit = fRangeNow - dx*0.9 ;
885
886 // Step limit in low energy range
887 } else {
888 G4double x = dx*paramStepLimit;
889 if (stepLimit > x) stepLimit = x;
890 }
891 return stepLimit ;
892}
893
894//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
895
896G4VParticleChange* G4hLowEnergyIonisation::AlongStepDoIt(
897 const G4Track& trackData,
898 const G4Step& stepData)
899{
900 // compute the energy loss after a step
901 G4Proton* theProton = G4Proton::Proton();
902 G4AntiProton* theAntiProton = G4AntiProton::AntiProton();
903 G4double finalT = 0.0 ;
904
905 aParticleChange.Initialize(trackData) ;
906
907 const G4MaterialCutsCouple* couple = trackData.GetMaterialCutsCouple();
908 const G4Material* material = couple->GetMaterial();
909
910 // get the actual (true) Step length from stepData
911 const G4double step = stepData.GetStepLength() ;
912
913 const G4DynamicParticle* particle = trackData.GetDynamicParticle() ;
914
915 G4double kineticEnergy = particle->GetKineticEnergy() ;
916 G4double massRatio = proton_mass_c2/(particle->GetMass()) ;
917 G4double tscaled= kineticEnergy*massRatio ;
918 G4double eloss = 0.0 ;
919 G4double nloss = 0.0 ;
920
921
922 // very small particle energy
923 if(kineticEnergy < MinKineticEnergy) {
924
925 eloss = kineticEnergy ;
926
927 // particle energy outside tabulated energy range
928 } else if( kineticEnergy > HighestKineticEnergy) {
929 eloss = step*fdEdx ;
930
931 // big step
932 } else if(step >= fRangeNow ) {
933 eloss = kineticEnergy ;
934
935 // tabulated range
936 } else {
937
938 // step longer than linear step limit
939 if(step > linLossLimit*fRangeNow) {
940
941 G4double rscaled= fRangeNow*massRatio*chargeSquare ;
942 G4double sscaled= step *massRatio*chargeSquare ;
943
944 if(charge > 0.0) {
945 eloss = G4EnergyLossTables::GetPreciseEnergyFromRange(
946 theProton,rscaled, couple) -
947 G4EnergyLossTables::GetPreciseEnergyFromRange(
948 theProton,rscaled-sscaled,couple) ;
949
950 } else {
951 eloss = G4EnergyLossTables::GetPreciseEnergyFromRange(
952 theAntiProton,rscaled,couple) -
953 G4EnergyLossTables::GetPreciseEnergyFromRange(
954 theAntiProton,rscaled-sscaled,couple) ;
955 }
956 eloss /= massRatio ;
957
958 // Barkas correction at big step
959 eloss += fBarkas*step;
960
961 // step shorter than linear step limit
962 } else {
963 eloss = step*fdEdx ;
964 }
965 if(nStopping && tscaled < protonHighEnergy) {
966 nloss = (theNuclearStoppingModel->TheValue(particle, material))*step;
967 }
968 }
969
970 if(eloss < 0.0) eloss = 0.0;
971
972 finalT = kineticEnergy - eloss - nloss;
973
974 if( EnlossFlucFlag && 0.0 < eloss && finalT > MinKineticEnergy) {
975
976 // now the electron loss with fluctuation
977 eloss = ElectronicLossFluctuation(particle, couple, eloss, step) ;
978 if(eloss < 0.0) eloss = 0.0;
979 finalT = kineticEnergy - eloss - nloss;
980 }
981
982 // stop particle if the kinetic energy <= MinKineticEnergy
983 if (finalT*massRatio <= MinKineticEnergy ) {
984
985 finalT = 0.0;
986 if(!particle->GetDefinition()->GetProcessManager()->
987 GetAtRestProcessVector()->size())
988 aParticleChange.ProposeTrackStatus(fStopAndKill);
989 else
990 aParticleChange.ProposeTrackStatus(fStopButAlive);
991 }
992
993 aParticleChange.ProposeEnergy( finalT );
994 eloss = kineticEnergy-finalT;
995
996 // Deexcitation only of ionised atoms
997 G4double hMass = particle->GetMass();
998 std::vector<G4DynamicParticle*>* newpart = 0;
999 G4DynamicParticle* part = 0;
1000
1001 if(theFluo) newpart = DeexciteAtom(couple, kineticEnergy, hMass, eloss);
1002
1003 if(newpart != 0) {
1004
1005 size_t nSecondaries = newpart->size();
1006 aParticleChange.SetNumberOfSecondaries(nSecondaries);
1007 G4Track* newtrack = 0;
1008 const G4StepPoint* preStep = stepData.GetPreStepPoint();
1009 const G4StepPoint* postStep = stepData.GetPostStepPoint();
1010 G4ThreeVector r = preStep->GetPosition();
1011 G4ThreeVector deltaR = postStep->GetPosition();
1012 deltaR -= r;
1013 G4double t = preStep->GetGlobalTime();
1014 G4double deltaT = postStep->GetGlobalTime();
1015 deltaT -= t;
1016 G4double time, q, e;
1017 G4ThreeVector position;
1018
1019 for(size_t i=0; i<nSecondaries; i++) {
1020
1021 part = (*newpart)[i];
1022 if(part) {
1023
1024 e = part->GetKineticEnergy();
1025 if(e <= eloss) {
1026
1027 eloss -= e;
1028 q = G4UniformRand();
1029 time = deltaT*q + t;
1030 position = deltaR*q;
1031 position += r;
1032 newtrack = new G4Track(part, time, position);
1033 aParticleChange.AddSecondary(newtrack);
1034
1035 } else {
1036
1037 delete part;
1038
1039 }
1040 }
1041 }
1042 delete newpart;
1043 }
1044
1045 aParticleChange.ProposeLocalEnergyDeposit(eloss);
1046 return &aParticleChange ;
1047}
1048
1049//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1050
1051G4double G4hLowEnergyIonisation::ProtonParametrisedDEDX(
1052 const G4MaterialCutsCouple* couple,
1053 G4double kineticEnergy) const
1054{
1055 const G4Material* material = couple->GetMaterial();
1056 G4Proton* theProton = G4Proton::Proton();
1057 G4double eloss = 0.0;
1058
1059 // Free Electron Gas Model
1060 if(kineticEnergy < protonLowEnergy) {
1061 eloss = (theProtonModel->TheValue(theProton, material, protonLowEnergy))
1062 * std::sqrt(kineticEnergy/protonLowEnergy) ;
1063
1064 // Parametrisation
1065 } else {
1066 eloss = theProtonModel->TheValue(theProton, material, kineticEnergy) ;
1067 }
1068
1069 // Delta rays energy
1070 eloss -= DeltaRaysEnergy(couple,kineticEnergy,proton_mass_c2) ;
1071
1072 if(verboseLevel > 2) {
1073 G4cout << "p E(MeV)= " << kineticEnergy/MeV
1074 << " dE/dx(MeV/mm)= " << eloss*mm/MeV
1075 << " for " << material->GetName()
1076 << " model: " << theProtonModel << G4endl;
1077 }
1078
1079 if(eloss < 0.0) eloss = 0.0 ;
1080
1081 return eloss ;
1082}
1083
1084//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1085
1086G4double G4hLowEnergyIonisation::AntiProtonParametrisedDEDX(
1087 const G4MaterialCutsCouple* couple,
1088 G4double kineticEnergy) const
1089{
1090 const G4Material* material = couple->GetMaterial();
1091 G4AntiProton* theAntiProton = G4AntiProton::AntiProton();
1092 G4double eloss = 0.0 ;
1093
1094 // Antiproton model is used
1095 if(theAntiProtonModel->IsInCharge(theAntiProton,material)) {
1096 if(kineticEnergy < antiProtonLowEnergy) {
1097 eloss = theAntiProtonModel->TheValue(theAntiProton,material,antiProtonLowEnergy)
1098 * std::sqrt(kineticEnergy/antiProtonLowEnergy) ;
1099
1100 // Parametrisation
1101 } else {
1102 eloss = theAntiProtonModel->TheValue(theAntiProton,material,
1103 kineticEnergy);
1104 }
1105
1106 // The proton model is used + Barkas correction
1107 } else {
1108 if(kineticEnergy < protonLowEnergy) {
1109 eloss = theProtonModel->TheValue(G4Proton::Proton(),material,protonLowEnergy)
1110 * std::sqrt(kineticEnergy/protonLowEnergy) ;
1111
1112 // Parametrisation
1113 } else {
1114 eloss = theProtonModel->TheValue(G4Proton::Proton(),material,
1115 kineticEnergy);
1116 }
1117 //if(theBarkas) eloss -= 2.0*BarkasTerm(material, kineticEnergy);
1118 }
1119
1120 // Delta rays energy
1121 eloss -= DeltaRaysEnergy(couple,kineticEnergy,proton_mass_c2) ;
1122
1123 if(verboseLevel > 2) {
1124 G4cout << "pbar E(MeV)= " << kineticEnergy/MeV
1125 << " dE/dx(MeV/mm)= " << eloss*mm/MeV
1126 << " for " << material->GetName()
1127 << " model: " << theProtonModel << G4endl;
1128 }
1129
1130 if(eloss < 0.0) eloss = 0.0 ;
1131
1132 return eloss ;
1133}
1134
1135//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1136
1137G4double G4hLowEnergyIonisation::DeltaRaysEnergy(
1138 const G4MaterialCutsCouple* couple,
1139 G4double kineticEnergy,
1140 G4double particleMass) const
1141{
1142 G4double dloss = 0.0 ;
1143
1144 G4double deltaCutNow = cutForDelta[(couple->GetIndex())] ;
1145 const G4Material* material = couple->GetMaterial();
1146 G4double electronDensity = material->GetElectronDensity();
1147 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
1148
1149 G4double tau = kineticEnergy/particleMass ;
1150 G4double rateMass = electron_mass_c2/particleMass ;
1151
1152 // some local variables
1153
1154 G4double gamma,bg2,beta2,tmax,x ;
1155
1156 gamma = tau + 1.0 ;
1157 bg2 = tau*(tau+2.0) ;
1158 beta2 = bg2/(gamma*gamma) ;
1159 tmax = 2.*electron_mass_c2*bg2/(1.0+2.0*gamma*rateMass+rateMass*rateMass) ;
1160
1161 // Validity range for delta electron cross section
1162 G4double deltaCut = std::max(deltaCutNow, eexc);
1163
1164 if ( deltaCut < tmax) {
1165 x = deltaCut / tmax ;
1166 dloss = ( beta2 * (x - 1.0) - std::log(x) ) * twopi_mc2_rcl2
1167 * electronDensity / beta2 ;
1168 }
1169 return dloss ;
1170}
1171
1172//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1173
1174G4VParticleChange* G4hLowEnergyIonisation::PostStepDoIt(
1175 const G4Track& trackData,
1176 const G4Step& stepData)
1177{
1178 // Units are expressed in GEANT4 internal units.
1179
1180 G4double KineticEnergy,TotalEnergy,TotalMomentum,betasquare,
1181 DeltaKineticEnergy,DeltaTotalMomentum,costheta,sintheta,phi,
1182 dirx,diry,dirz,finalKineticEnergy,finalPx,finalPy,finalPz,
1183 x,xc,grej,Psquare,Esquare,rate,finalMomentum ;
1184
1185 aParticleChange.Initialize(trackData) ;
1186 const G4MaterialCutsCouple* couple = trackData.GetMaterialCutsCouple();
1187
1188 const G4DynamicParticle* aParticle = trackData.GetDynamicParticle() ;
1189
1190 // some kinematics
1191
1192 ParticleMass=aParticle->GetDefinition()->GetPDGMass();
1193 KineticEnergy=aParticle->GetKineticEnergy();
1194 TotalEnergy=KineticEnergy + ParticleMass ;
1195 Psquare=KineticEnergy*(TotalEnergy+ParticleMass) ;
1196 Esquare=TotalEnergy*TotalEnergy;
1197 betasquare=Psquare/Esquare;
1198 G4ThreeVector ParticleDirection = aParticle->GetMomentumDirection() ;
1199
1200 G4double gamma= KineticEnergy/ParticleMass + 1.;
1201 G4double r = electron_mass_c2/ParticleMass;
1202 G4double tmax = 2.*electron_mass_c2*(gamma*gamma - 1.)/(1. + 2.*gamma*r + r*r);
1203
1204 // Validity range for delta electron cross section
1205 G4double DeltaCut = cutForDelta[couple->GetIndex()];
1206
1207 // This should not be a case
1208 if(DeltaCut >= tmax)
1209 return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
1210
1211 xc = DeltaCut / tmax;
1212 rate = tmax / TotalEnergy;
1213 rate = rate*rate ;
1214 G4double spin = aParticle->GetDefinition()->GetPDGSpin() ;
1215
1216 // sampling follows ...
1217 do {
1218 x=xc/(1.-(1.-xc)*G4UniformRand());
1219
1220 if(0.0 == spin) {
1221 grej = 1.0 - betasquare * x ;
1222
1223 } else if (0.5 == spin) {
1224 grej = (1.0 - betasquare * x + 0.5*x*x*rate) / (1.0 + 0.5 * rate) ;
1225
1226 } else {
1227 grej = (1.0 - betasquare * x ) * (1.0 + x/ (3.0*xc)) +
1228 x * x * rate * (1.0 + 0.5 * x / xc) / 3.0 /
1229 (1.0 + 1.0/(3.0*xc) + rate *(1.0+ 0.5/xc) /3.0) ;
1230 }
1231
1232 } while( G4UniformRand() > grej );
1233
1234
1235 DeltaKineticEnergy = x * tmax;
1236
1237 DeltaTotalMomentum = std::sqrt(DeltaKineticEnergy * (DeltaKineticEnergy +
1238 2. * electron_mass_c2 )) ;
1239 TotalMomentum = std::sqrt(Psquare) ;
1240 costheta = DeltaKineticEnergy * (TotalEnergy + electron_mass_c2)
1241 /(DeltaTotalMomentum * TotalMomentum) ;
1242
1243 // protection against costheta > 1 or < -1 ---------------
1244 if ( costheta < -1. )
1245 costheta = -1. ;
1246 if ( costheta > +1. )
1247 costheta = +1. ;
1248
1249 // direction of the delta electron ........
1250 phi = twopi * G4UniformRand() ;
1251 sintheta = std::sqrt(1. - costheta*costheta);
1252 dirx = sintheta * std::cos(phi) ;
1253 diry = sintheta * std::sin(phi) ;
1254 dirz = costheta ;
1255
1256 G4ThreeVector DeltaDirection(dirx,diry,dirz) ;
1257 DeltaDirection.rotateUz(ParticleDirection) ;
1258
1259 // create G4DynamicParticle object for delta ray
1260 G4DynamicParticle *theDeltaRay = new G4DynamicParticle;
1261 theDeltaRay->SetKineticEnergy( DeltaKineticEnergy );
1262 theDeltaRay->SetMomentumDirection(DeltaDirection.x(),
1263 DeltaDirection.y(),
1264 DeltaDirection.z());
1265 theDeltaRay->SetDefinition(G4Electron::Electron());
1266
1267 // fill aParticleChange
1268 finalKineticEnergy = KineticEnergy - DeltaKineticEnergy ;
1269
1270 // Generation of Fluorescence and Auger
1271 size_t nSecondaries = 0;
1272 size_t totalNumber = 1;
1273 std::vector<G4DynamicParticle*>* secondaryVector = 0;
1274 G4DynamicParticle* aSecondary = 0;
1275 G4ParticleDefinition* type = 0;
1276
1277 // Select atom and shell
1278 G4int Z = SelectRandomAtom(couple, KineticEnergy);
1279
1280 // G4cout << "Fluorescence is switched :" << theFluo << G4endl;
1281
1282 if(theFluo && Z > 5) {
1283
1284
1285
1286 // Atom total cross section for the Empiric Model
1287 if (expFlag) {
1288 shellCS->SetTotalCS(totalCrossSectionMap[Z]);
1289 }
1290 G4int shell = shellCS->SelectRandomShell(Z, KineticEnergy,ParticleMass,DeltaKineticEnergy);
1291
1292 if (expFlag && shell==1) {
1293 aParticleChange.ProposeLocalEnergyDeposit (KineticEnergy);
1294 aParticleChange.ProposeEnergy(0);
1295 }
1296
1297
1298 const G4AtomicShell* atomicShell =
1299 (G4AtomicTransitionManager::Instance())->Shell(Z, shell);
1300 G4double bindingEnergy = atomicShell->BindingEnergy();
1301
1302 if(verboseLevel > 1) {
1303 G4cout << "PostStep Z= " << Z << " shell= " << shell
1304 << " bindingE(keV)= " << bindingEnergy/keV
1305 << " finalE(keV)= " << finalKineticEnergy/keV
1306 << G4endl;
1307 }
1308
1309 // Fluorescence data start from element 6
1310
1311 if (finalKineticEnergy >= bindingEnergy
1312 && (bindingEnergy >= minGammaEnergy
1313 || bindingEnergy >= minElectronEnergy) ) {
1314
1315 G4int shellId = atomicShell->ShellId();
1316 secondaryVector = deexcitationManager.GenerateParticles(Z, shellId);
1317
1318 if (secondaryVector != 0) {
1319
1320 nSecondaries = secondaryVector->size();
1321 for (size_t i = 0; i<nSecondaries; i++) {
1322
1323 aSecondary = (*secondaryVector)[i];
1324 if (aSecondary) {
1325
1326 G4double e = aSecondary->GetKineticEnergy();
1327 type = aSecondary->GetDefinition();
1328 if (e < finalKineticEnergy &&
1329 ((type == G4Gamma::Gamma() && e > minGammaEnergy ) ||
1330 (type == G4Electron::Electron() && e > minElectronEnergy ))) {
1331
1332 finalKineticEnergy -= e;
1333 totalNumber++;
1334
1335 } else {
1336
1337 delete aSecondary;
1338 (*secondaryVector)[i] = 0;
1339 }
1340 }
1341 }
1342 }
1343 }
1344 }
1345
1346 // Save delta-electrons
1347
1348 G4double edep = 0.0;
1349
1350 if (finalKineticEnergy > MinKineticEnergy)
1351 {
1352 finalPx = TotalMomentum*ParticleDirection.x()
1353 - DeltaTotalMomentum*DeltaDirection.x();
1354 finalPy = TotalMomentum*ParticleDirection.y()
1355 - DeltaTotalMomentum*DeltaDirection.y();
1356 finalPz = TotalMomentum*ParticleDirection.z()
1357 - DeltaTotalMomentum*DeltaDirection.z();
1358 finalMomentum =
1359 std::sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz) ;
1360 finalPx /= finalMomentum ;
1361 finalPy /= finalMomentum ;
1362 finalPz /= finalMomentum ;
1363
1364 aParticleChange.ProposeMomentumDirection( finalPx,finalPy,finalPz );
1365 }
1366 else
1367 {
1368 edep = finalKineticEnergy;
1369 finalKineticEnergy = 0.;
1370 aParticleChange.ProposeMomentumDirection(ParticleDirection.x(),
1371 ParticleDirection.y(),ParticleDirection.z());
1372 if(!aParticle->GetDefinition()->GetProcessManager()->
1373 GetAtRestProcessVector()->size())
1374 aParticleChange.ProposeTrackStatus(fStopAndKill);
1375 else
1376 aParticleChange.ProposeTrackStatus(fStopButAlive);
1377 }
1378
1379 aParticleChange.ProposeEnergy( finalKineticEnergy );
1380 aParticleChange.ProposeLocalEnergyDeposit (edep);
1381 aParticleChange.SetNumberOfSecondaries(totalNumber);
1382 aParticleChange.AddSecondary(theDeltaRay);
1383
1384 // Save Fluorescence and Auger
1385
1386 if (secondaryVector) {
1387
1388 for (size_t l = 0; l < nSecondaries; l++) {
1389
1390 aSecondary = (*secondaryVector)[l];
1391 if(aSecondary) {
1392 aParticleChange.AddSecondary(aSecondary);
1393 }
1394 }
1395 delete secondaryVector;
1396 }
1397
1398 return G4VContinuousDiscreteProcess::PostStepDoIt(trackData,stepData);
1399}
1400
1401//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1402
1403std::vector<G4DynamicParticle*>*
1404G4hLowEnergyIonisation::DeexciteAtom(const G4MaterialCutsCouple* couple,
1405 G4double incidentEnergy,
1406 G4double hMass,
1407 G4double eLoss)
1408{
1409
1410 if (verboseLevel > 1) {
1411 G4cout << "DeexciteAtom: cutForPhotons(keV)= " << minGammaEnergy/keV
1412 << " cutForElectrons(keV)= " << minElectronEnergy/keV
1413 << " eLoss(MeV)= " << eLoss
1414 << G4endl;
1415 }
1416
1417
1418
1419 if(eLoss < minGammaEnergy && eLoss < minElectronEnergy) return 0;
1420
1421 const G4Material* material = couple->GetMaterial();
1422 G4int index = couple->GetIndex();
1423 // G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
1424 G4double gamma = incidentEnergy/hMass + 1;
1425 G4double beta2 = 1.0 - 1.0/(gamma*gamma);
1426 G4double r = electron_mass_c2/hMass;
1427 G4double tmax = 2.*electron_mass_c2*(gamma*gamma - 1.)/(1. + 2.*gamma*r + r*r);
1428 G4double tcut = std::min(tmax,cutForDelta[index]);
1429 const G4AtomicTransitionManager* transitionManager =
1430 G4AtomicTransitionManager::Instance();
1431
1432 size_t nElements = material->GetNumberOfElements();
1433 const G4ElementVector* theElementVector = material->GetElementVector();
1434 G4bool stop = true;
1435
1436 for (size_t j=0; j<nElements; j++) {
1437
1438 G4int Z = (G4int)((*theElementVector)[j]->GetZ());
1439 G4double maxE = transitionManager->Shell(Z, 0)->BindingEnergy();
1440
1441 if (Z > 5 && maxE < tcut && (maxE > minGammaEnergy || maxE > minElectronEnergy) ) {
1442 stop = false;
1443 break;
1444 }
1445 }
1446
1447 if(stop) return 0;
1448
1449 // create vector of tracks of secondary particles
1450
1451 std::vector<G4DynamicParticle*>* partVector =
1452 new std::vector<G4DynamicParticle*>;
1453 std::vector<G4DynamicParticle*>* secVector = 0;
1454 G4DynamicParticle* aSecondary = 0;
1455 G4ParticleDefinition* type = 0;
1456 G4double e, tkin, grej;
1457 G4ThreeVector position;
1458 G4int shell, shellId;
1459
1460 // sample secondaries
1461
1462 G4double etot = 0.0;
1463 std::vector<G4int> n = shellVacancy->GenerateNumberOfIonisations(couple,
1464 incidentEnergy, eLoss);
1465
1466 for (size_t i=0; i<nElements; i++) {
1467
1468 size_t nVacancies = n[i];
1469 G4int Z = (G4int)((*theElementVector)[i]->GetZ());
1470 G4double maxE = transitionManager->Shell(Z, 0)->BindingEnergy();
1471
1472 if (nVacancies && Z > 5 && maxE < tcut && (maxE > minGammaEnergy || maxE > minElectronEnergy)) {
1473 for(size_t j=0; j<nVacancies; j++) {
1474
1475 // sampling follows
1476 do {
1477 tkin = tcut/(1.0 + (tcut/maxE - 1.0)*G4UniformRand());
1478 grej = 1.0 - beta2 * tkin/tmax;
1479
1480 } while( G4UniformRand() > grej );
1481
1482 shell = shellCS->SelectRandomShell(Z,incidentEnergy,hMass,tkin);
1483
1484 shellId = transitionManager->Shell(Z, shell)->ShellId();
1485 G4double maxE = transitionManager->Shell(Z, shell)->BindingEnergy();
1486
1487 if (maxE>minGammaEnergy || maxE>minElectronEnergy ) {
1488 secVector = deexcitationManager.GenerateParticles(Z, shellId);
1489 } else {
1490 secVector = 0;
1491 }
1492
1493 if (secVector) {
1494
1495 for (size_t l = 0; l<secVector->size(); l++) {
1496
1497 aSecondary = (*secVector)[l];
1498 if(aSecondary) {
1499
1500 e = aSecondary->GetKineticEnergy();
1501 type = aSecondary->GetDefinition();
1502 if ( etot + e <= eLoss &&
1503 ( (type == G4Gamma::Gamma() && e > minGammaEnergy ) ||
1504 (type == G4Electron::Electron() && e > minElectronEnergy) ) ) {
1505
1506 etot += e;
1507 partVector->push_back(aSecondary);
1508
1509 } else {
1510 delete aSecondary;
1511 }
1512 }
1513 }
1514 delete secVector;
1515 }
1516 }
1517 }
1518 }
1519
1520 if(partVector->empty()) {
1521 delete partVector;
1522 return 0;
1523 }
1524
1525 return partVector;
1526}
1527
1528//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1529
1530G4int G4hLowEnergyIonisation::SelectRandomAtom(const G4MaterialCutsCouple* couple,
1531 G4double kineticEnergy) const
1532{
1533 const G4Material* material = couple->GetMaterial();
1534 G4int nElements = material->GetNumberOfElements();
1535 G4int Z = 0;
1536
1537 if(nElements == 1) {
1538 Z = (G4int)(material->GetZ());
1539 return Z;
1540 }
1541
1542 const G4ElementVector* theElementVector = material->GetElementVector();
1543 std::vector<G4double> p;
1544 G4int index = couple->GetIndex();
1545
1546 G4double norm = 0.0;
1547 for (G4int j=0; j<nElements; j++) {
1548
1549 const G4VEMDataSet* set = (zFluoDataVector[index])->GetComponent(j);
1550 G4double cross = set->FindValue(kineticEnergy);
1551
1552 p.push_back(cross);
1553 norm += cross;
1554 }
1555
1556 if(norm == 0.0) return 0;
1557
1558 G4double q = norm*G4UniformRand();
1559
1560 for (G4int i=0; i<nElements; i++) {
1561
1562 if(p[i] > q) {
1563 Z = (G4int)((*theElementVector)[i]->GetZ());
1564 break;
1565 }
1566 q -= p[i];
1567 }
1568
1569 return Z;
1570}
1571
1572//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1573
1574G4double G4hLowEnergyIonisation::ComputeDEDX(
1575 const G4ParticleDefinition* aParticle,
1576 const G4MaterialCutsCouple* couple,
1577 G4double kineticEnergy)
1578{
1579 const G4Material* material = couple->GetMaterial();
1580 G4Proton* theProton = G4Proton::Proton();
1581 G4AntiProton* theAntiProton = G4AntiProton::AntiProton();
1582 G4double dedx = 0.0 ;
1583
1584 G4double tscaled = kineticEnergy*proton_mass_c2/(aParticle->GetPDGMass()) ;
1585 charge = aParticle->GetPDGCharge() ;
1586
1587 if(charge>0.0) {
1588 if(tscaled > protonHighEnergy) {
1589 dedx=G4EnergyLossTables::GetDEDX(theProton,tscaled,couple) ;
1590
1591 } else {
1592 dedx=ProtonParametrisedDEDX(couple,tscaled) ;
1593 }
1594
1595 } else {
1596 if(tscaled > antiProtonHighEnergy) {
1597 dedx=G4EnergyLossTables::GetDEDX(theAntiProton,tscaled,couple);
1598
1599 } else {
1600 dedx=AntiProtonParametrisedDEDX(couple,tscaled) ;
1601 }
1602 }
1603 dedx *= theIonEffChargeModel->TheValue(aParticle, material, kineticEnergy) ;
1604
1605 return dedx ;
1606}
1607
1608//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1609
1610G4double G4hLowEnergyIonisation::BarkasTerm(const G4Material* material,
1611 G4double kineticEnergy) const
1612//Function to compute the Barkas term for protons:
1613//
1614//Ref. Z_1^3 effect in the stopping power of matter for charged particles
1615// J.C Ashley and R.H.Ritchie
1616// Physical review B Vol.5 No.7 1 April 1972 pagg. 2393-2397
1617//
1618{
1619 static double FTable[47][2] = {
1620 { 0.02, 21.5},
1621 { 0.03, 20.0},
1622 { 0.04, 18.0},
1623 { 0.05, 15.6},
1624 { 0.06, 15.0},
1625 { 0.07, 14.0},
1626 { 0.08, 13.5},
1627 { 0.09, 13.},
1628 { 0.1, 12.2},
1629 { 0.2, 9.25},
1630 { 0.3, 7.0},
1631 { 0.4, 6.0},
1632 { 0.5, 4.5},
1633 { 0.6, 3.5},
1634 { 0.7, 3.0},
1635 { 0.8, 2.5},
1636 { 0.9, 2.0},
1637 { 1.0, 1.7},
1638 { 1.2, 1.2},
1639 { 1.3, 1.0},
1640 { 1.4, 0.86},
1641 { 1.5, 0.7},
1642 { 1.6, 0.61},
1643 { 1.7, 0.52},
1644 { 1.8, 0.5},
1645 { 1.9, 0.43},
1646 { 2.0, 0.42},
1647 { 2.1, 0.3},
1648 { 2.4, 0.2},
1649 { 3.0, 0.13},
1650 { 3.08, 0.1},
1651 { 3.1, 0.09},
1652 { 3.3, 0.08},
1653 { 3.5, 0.07},
1654 { 3.8, 0.06},
1655 { 4.0, 0.051},
1656 { 4.1, 0.04},
1657 { 4.8, 0.03},
1658 { 5.0, 0.024},
1659 { 5.1, 0.02},
1660 { 6.0, 0.013},
1661 { 6.5, 0.01},
1662 { 7.0, 0.009},
1663 { 7.1, 0.008},
1664 { 8.0, 0.006},
1665 { 9.0, 0.0032},
1666 { 10.0, 0.0025} };
1667
1668 // Information on particle and material
1669 G4double kinE = kineticEnergy ;
1670 if(0.5*MeV > kinE) kinE = 0.5*MeV ;
1671 G4double gamma = 1.0 + kinE / proton_mass_c2 ;
1672 G4double beta2 = 1.0 - 1.0/(gamma*gamma) ;
1673 if(0.0 >= beta2) return 0.0;
1674
1675 G4double BarkasTerm = 0.0;
1676 G4double AMaterial = 0.0;
1677 G4double ZMaterial = 0.0;
1678 const G4ElementVector* theElementVector = material->GetElementVector();
1679 G4int numberOfElements = material->GetNumberOfElements();
1680
1681 for (G4int i = 0; i<numberOfElements; i++) {
1682
1683 AMaterial = (*theElementVector)[i]->GetA()*mole/g;
1684 ZMaterial = (*theElementVector)[i]->GetZ();
1685
1686 G4double X = 137.0 * 137.0 * beta2 / ZMaterial;
1687
1688 // Variables to compute L_1
1689 G4double Eta0Chi = 0.8;
1690 G4double EtaChi = Eta0Chi * ( 1.0 + 6.02*std::pow( ZMaterial,-1.19 ) );
1691 G4double W = ( EtaChi * std::pow( ZMaterial,1.0/6.0 ) ) / std::sqrt(X);
1692 G4double FunctionOfW = FTable[46][1]*FTable[46][0]/W ;
1693
1694 for(G4int j=0; j<47; j++) {
1695
1696 if( W < FTable[j][0] ) {
1697
1698 if(0 == j) {
1699 FunctionOfW = FTable[0][1] ;
1700
1701 } else {
1702 FunctionOfW = (FTable[j][1] - FTable[j-1][1]) * (W - FTable[j-1][0])
1703 / (FTable[j][0] - FTable[j-1][0])
1704 + FTable[j-1][1] ;
1705 }
1706
1707 break;
1708 }
1709
1710 }
1711
1712 BarkasTerm += FunctionOfW /( std::sqrt(ZMaterial * X) * X);
1713 }
1714
1715 BarkasTerm *= twopi_mc2_rcl2 * (material->GetElectronDensity()) / beta2 ;
1716
1717 return BarkasTerm;
1718}
1719
1720//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1721
1722G4double G4hLowEnergyIonisation::BlochTerm(const G4Material* material,
1723 G4double kineticEnergy,
1724 G4double cSquare) const
1725//Function to compute the Bloch term for protons:
1726//
1727//Ref. Z_1^3 effect in the stopping power of matter for charged particles
1728// J.C Ashley and R.H.Ritchie
1729// Physical review B Vol.5 No.7 1 April 1972 pagg. 2393-2397
1730//
1731{
1732 G4double eloss = 0.0 ;
1733 G4double gamma = 1.0 + kineticEnergy / proton_mass_c2 ;
1734 G4double beta2 = 1.0 - 1.0/(gamma*gamma) ;
1735 G4double y = cSquare / (137.0*137.0*beta2) ;
1736
1737 if(y < 0.05) {
1738 eloss = 1.202 ;
1739
1740 } else {
1741 eloss = 1.0 / (1.0 + y) ;
1742 G4double de = eloss ;
1743
1744 for(G4int i=2; de>eloss*0.01; i++) {
1745 de = 1.0/( i * (i*i + y)) ;
1746 eloss += de ;
1747 }
1748 }
1749 eloss *= -1.0 * y * cSquare * twopi_mc2_rcl2 *
1750 (material->GetElectronDensity()) / beta2 ;
1751
1752 return eloss;
1753}
1754
1755//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1756
1757G4double G4hLowEnergyIonisation::ElectronicLossFluctuation(
1758 const G4DynamicParticle* particle,
1759 const G4MaterialCutsCouple* couple,
1760 G4double meanLoss,
1761 G4double step) const
1762// calculate actual loss from the mean loss
1763// The model used to get the fluctuation is essentially the same
1764// as in Glandz in Geant3.
1765{
1766 // data members to speed up the fluctuation calculation
1767 // G4int imat ;
1768 // G4double f1Fluct,f2Fluct,e1Fluct,e2Fluct,rateFluct,ipotFluct;
1769 // G4double e1LogFluct,e2LogFluct,ipotLogFluct;
1770
1771 static const G4double minLoss = 1.*eV ;
1772 static const G4double kappa = 10. ;
1773 static const G4double theBohrBeta2 = 50.0 * keV/proton_mass_c2 ;
1774
1775 const G4Material* material = couple->GetMaterial();
1776 G4int imaterial = couple->GetIndex() ;
1777 G4double ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy() ;
1778 G4double electronDensity = material->GetElectronDensity() ;
1779 G4double zeff = electronDensity/(material->GetTotNbOfAtomsPerVolume()) ;
1780
1781 // get particle data
1782 G4double tkin = particle->GetKineticEnergy();
1783 G4double particleMass = particle->GetMass() ;
1784 G4double deltaCutInKineticEnergyNow = cutForDelta[imaterial];
1785
1786 // shortcut for very very small loss
1787 if(meanLoss < minLoss) return meanLoss ;
1788
1789 // Validity range for delta electron cross section
1790 G4double threshold = std::max(deltaCutInKineticEnergyNow,ipotFluct);
1791 G4double loss, siga;
1792
1793 G4double rmass = electron_mass_c2/particleMass;
1794 G4double tau = tkin/particleMass;
1795 G4double tau1 = tau+1.0;
1796 G4double tau2 = tau*(tau+2.);
1797 G4double tmax = 2.*electron_mass_c2*tau2/(1.+2.*tau1*rmass+rmass*rmass);
1798
1799
1800 if(tmax > threshold) tmax = threshold;
1801 G4double beta2 = tau2/(tau1*tau1);
1802
1803 // Gaussian fluctuation
1804 if(meanLoss > kappa*tmax || tmax < kappa*ipotFluct )
1805 {
1806 siga = tmax * (1.0-0.5*beta2) * step * twopi_mc2_rcl2
1807 * electronDensity / beta2 ;
1808
1809 // High velocity or negatively charged particle
1810 if( beta2 > 3.0*theBohrBeta2*zeff || charge < 0.0) {
1811 siga = std::sqrt( siga * chargeSquare ) ;
1812
1813 // Low velocity - additional ion charge fluctuations according to
1814 // Q.Yang et al., NIM B61(1991)149-155.
1815 } else {
1816 G4double chu = theIonChuFluctuationModel->TheValue(particle, material);
1817 G4double yang = theIonYangFluctuationModel->TheValue(particle, material);
1818 siga = std::sqrt( siga * (chargeSquare * chu + yang)) ;
1819 }
1820
1821 do {
1822 loss = G4RandGauss::shoot(meanLoss,siga);
1823 } while (loss < 0. || loss > 2.0*meanLoss);
1824 return loss;
1825 }
1826
1827 // Non Gaussian fluctuation
1828 static const G4double probLim = 0.01 ;
1829 static const G4double sumaLim = -std::log(probLim) ;
1830 static const G4double alim = 10.;
1831
1832 G4double suma,w1,w2,C,e0,lossc,w;
1833 G4double a1,a2,a3;
1834 G4int p1,p2,p3;
1835 G4int nb;
1836 G4double corrfac, na,alfa,rfac,namean,sa,alfa1,ea,sea;
1837 G4double dp3;
1838
1839 G4double f1Fluct = material->GetIonisation()->GetF1fluct();
1840 G4double f2Fluct = material->GetIonisation()->GetF2fluct();
1841 G4double e1Fluct = material->GetIonisation()->GetEnergy1fluct();
1842 G4double e2Fluct = material->GetIonisation()->GetEnergy2fluct();
1843 G4double e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct();
1844 G4double e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct();
1845 G4double rateFluct = material->GetIonisation()->GetRateionexcfluct();
1846 G4double ipotLogFluct= material->GetIonisation()->GetLogMeanExcEnergy();
1847
1848 w1 = tmax/ipotFluct;
1849 w2 = std::log(2.*electron_mass_c2*tau2);
1850
1851 C = meanLoss*(1.-rateFluct)/(w2-ipotLogFluct-beta2);
1852
1853 a1 = C*f1Fluct*(w2-e1LogFluct-beta2)/e1Fluct;
1854 a2 = C*f2Fluct*(w2-e2LogFluct-beta2)/e2Fluct;
1855 a3 = rateFluct*meanLoss*(tmax-ipotFluct)/(ipotFluct*tmax*std::log(w1));
1856 if(a1 < 0.0) a1 = 0.0;
1857 if(a2 < 0.0) a2 = 0.0;
1858 if(a3 < 0.0) a3 = 0.0;
1859
1860 suma = a1+a2+a3;
1861
1862 loss = 0.;
1863
1864
1865 if(suma < sumaLim) // very small Step
1866 {
1867 e0 = material->GetIonisation()->GetEnergy0fluct();
1868
1869 if(tmax == ipotFluct)
1870 {
1871 a3 = meanLoss/e0;
1872
1873 if(a3>alim)
1874 {
1875 siga=std::sqrt(a3) ;
1876 p3 = std::max(0,G4int(G4RandGauss::shoot(a3,siga)+0.5));
1877 }
1878 else
1879 p3 = G4Poisson(a3);
1880
1881 loss = p3*e0 ;
1882
1883 if(p3 > 0)
1884 loss += (1.-2.*G4UniformRand())*e0 ;
1885
1886 }
1887 else
1888 {
1889 tmax = tmax-ipotFluct+e0 ;
1890 a3 = meanLoss*(tmax-e0)/(tmax*e0*std::log(tmax/e0));
1891
1892 if(a3>alim)
1893 {
1894 siga=std::sqrt(a3) ;
1895 p3 = std::max(0,int(G4RandGauss::shoot(a3,siga)+0.5));
1896 }
1897 else
1898 p3 = G4Poisson(a3);
1899
1900 if(p3 > 0)
1901 {
1902 w = (tmax-e0)/tmax ;
1903 if(p3 > nmaxCont2)
1904 {
1905 dp3 = G4float(p3) ;
1906 corrfac = dp3/G4float(nmaxCont2) ;
1907 p3 = nmaxCont2 ;
1908 }
1909 else
1910 corrfac = 1. ;
1911
1912 for(G4int i=0; i<p3; i++) loss += 1./(1.-w*G4UniformRand()) ;
1913 loss *= e0*corrfac ;
1914 }
1915 }
1916 }
1917
1918 else // not so small Step
1919 {
1920 // excitation type 1
1921 if(a1>alim)
1922 {
1923 siga=std::sqrt(a1) ;
1924 p1 = std::max(0,G4int(G4RandGauss::shoot(a1,siga)+0.5));
1925 }
1926 else
1927 p1 = G4Poisson(a1);
1928
1929 // excitation type 2
1930 if(a2>alim)
1931 {
1932 siga=std::sqrt(a2) ;
1933 p2 = std::max(0,G4int(G4RandGauss::shoot(a2,siga)+0.5));
1934 }
1935 else
1936 p2 = G4Poisson(a2);
1937
1938 loss = p1*e1Fluct+p2*e2Fluct;
1939
1940 // smearing to avoid unphysical peaks
1941 if(p2 > 0)
1942 loss += (1.-2.*G4UniformRand())*e2Fluct;
1943 else if (loss>0.)
1944 loss += (1.-2.*G4UniformRand())*e1Fluct;
1945
1946 // ionisation .......................................
1947 if(a3 > 0.)
1948 {
1949 if(a3>alim)
1950 {
1951 siga=std::sqrt(a3) ;
1952 p3 = std::max(0,G4int(G4RandGauss::shoot(a3,siga)+0.5));
1953 }
1954 else
1955 p3 = G4Poisson(a3);
1956
1957 lossc = 0.;
1958 if(p3 > 0)
1959 {
1960 na = 0.;
1961 alfa = 1.;
1962 if (p3 > nmaxCont2)
1963 {
1964 dp3 = G4float(p3);
1965 rfac = dp3/(G4float(nmaxCont2)+dp3);
1966 namean = G4float(p3)*rfac;
1967 sa = G4float(nmaxCont1)*rfac;
1968 na = G4RandGauss::shoot(namean,sa);
1969 if (na > 0.)
1970 {
1971 alfa = w1*G4float(nmaxCont2+p3)/
1972 (w1*G4float(nmaxCont2)+G4float(p3));
1973 alfa1 = alfa*std::log(alfa)/(alfa-1.);
1974 ea = na*ipotFluct*alfa1;
1975 sea = ipotFluct*std::sqrt(na*(alfa-alfa1*alfa1));
1976 lossc += G4RandGauss::shoot(ea,sea);
1977 }
1978 }
1979
1980 nb = G4int(G4float(p3)-na);
1981 if (nb > 0)
1982 {
1983 w2 = alfa*ipotFluct;
1984 w = (tmax-w2)/tmax;
1985 for (G4int k=0; k<nb; k++) lossc += w2/(1.-w*G4UniformRand());
1986 }
1987 }
1988 loss += lossc;
1989 }
1990 }
1991
1992 return loss ;
1993}
1994
1995//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1996
1997void G4hLowEnergyIonisation::SetCutForSecondaryPhotons(G4double cut)
1998{
1999 minGammaEnergy = cut;
2000}
2001
2002//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
2003
2004void G4hLowEnergyIonisation::SetCutForAugerElectrons(G4double cut)
2005{
2006 minElectronEnergy = cut;
2007}
2008
2009//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
2010
2011void G4hLowEnergyIonisation::ActivateAugerElectronProduction(G4bool val)
2012{
2013 deexcitationManager.ActivateAugerElectronProduction(val);
2014}
2015
2016//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
2017
2018void G4hLowEnergyIonisation::PrintInfoDefinition() const
2019{
2020 G4String comments = " Knock-on electron cross sections . ";
2021 comments += "\n Good description above the mean excitation energy.\n";
2022 comments += " Delta ray energy sampled from differential Xsection.";
2023
2024 G4cout << G4endl << GetProcessName() << ": " << comments
2025 << "\n PhysicsTables from " << LowestKineticEnergy / eV << " eV "
2026 << " to " << HighestKineticEnergy / TeV << " TeV "
2027 << " in " << TotBin << " bins."
2028 << "\n Electronic stopping power model is "
2029 << theProtonTable
2030 << "\n from " << protonLowEnergy / keV << " keV "
2031 << " to " << protonHighEnergy / MeV << " MeV " << "." << G4endl ;
2032 G4cout << "\n Parametrisation model for antiprotons is "
2033 << theAntiProtonTable
2034 << "\n from " << antiProtonLowEnergy / keV << " keV "
2035 << " to " << antiProtonHighEnergy / MeV << " MeV " << "." << G4endl ;
2036 if(theBarkas){
2037 G4cout << " Parametrization of the Barkas effect is switched on."
2038 << G4endl ;
2039 }
2040 if(nStopping) {
2041 G4cout << " Nuclear stopping power model is " << theNuclearTable
2042 << G4endl ;
2043 }
2044
2045 G4bool printHead = true;
2046
2047 const G4ProductionCutsTable* theCoupleTable=
2048 G4ProductionCutsTable::GetProductionCutsTable();
2049 size_t numOfCouples = theCoupleTable->GetTableSize();
2050
2051 // loop for materials
2052
2053 for (size_t j=0 ; j < numOfCouples; j++) {
2054
2055 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(j);
2056 const G4Material* material= couple->GetMaterial();
2057 G4double deltaCutNow = cutForDelta[(couple->GetIndex())] ;
2058 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
2059
2060 if(eexc > deltaCutNow) {
2061 if(printHead) {
2062 printHead = false ;
2063
2064 G4cout << " material min.delta energy(keV) " << G4endl;
2065 G4cout << G4endl;
2066 }
2067
2068 G4cout << std::setw(20) << material->GetName()
2069 << std::setw(15) << eexc/keV << G4endl;
2070 }
2071 }
2072}
Note: See TracBrowser for help on using the repository browser.