source: trunk/source/processes/electromagnetic/standard/src/G4PAIPhotonModel.cc @ 1250

Last change on this file since 1250 was 1228, checked in by garnier, 15 years ago

update geant4.9.3 tag

File size: 41.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4PAIPhotonModel.cc,v 1.23 2009/07/26 15:51:01 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-03 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class
32// File name:     G4PAIPhotonModel.cc
33//
34// Author: Vladimir.Grichine@cern.ch based on G4PAIModel class
35//
36// Creation date: 20.05.2004
37//
38// Modifications:
39//
40// 17.08.04 V.Grichine, bug fixed for Tkin<=0 in SampleSecondary
41// 16.08.04 V.Grichine, bug fixed in massRatio for DEDX, CrossSection, SampleSecondary
42// 11.04.05 Major optimisation of internal interfaces (V.Ivantchenko)
43//
44
45#include "G4Region.hh"
46#include "G4PhysicsLogVector.hh"
47#include "G4PhysicsFreeVector.hh"
48#include "G4PhysicsTable.hh"
49#include "G4ProductionCutsTable.hh"
50#include "G4MaterialCutsCouple.hh"
51#include "G4MaterialTable.hh"
52#include "G4SandiaTable.hh"
53#include "G4PAIxSection.hh"
54
55#include "G4PAIPhotonModel.hh"
56#include "Randomize.hh"
57#include "G4Electron.hh"
58#include "G4Positron.hh"
59#include "G4Gamma.hh"
60#include "G4Poisson.hh"
61#include "G4Step.hh"
62#include "G4Material.hh"
63#include "G4DynamicParticle.hh"
64#include "G4ParticleDefinition.hh"
65#include "G4ParticleChangeForLoss.hh"
66#include "G4GeometryTolerance.hh"
67
68////////////////////////////////////////////////////////////////////////
69
70using namespace std;
71
72G4PAIPhotonModel::G4PAIPhotonModel(const G4ParticleDefinition* p, const G4String& nam)
73  : G4VEmModel(nam),G4VEmFluctuationModel(nam),
74  fLowestKineticEnergy(10.0*keV),
75  fHighestKineticEnergy(100.*TeV),
76  fTotBin(200),
77  fMeanNumber(20),
78  fParticle(0),
79  fHighKinEnergy(100.*TeV),
80  fLowKinEnergy(2.0*MeV),
81  fTwoln10(2.0*log(10.0)),
82  fBg2lim(0.0169),
83  fTaulim(8.4146e-3)
84{
85  if(p) SetParticle(p);
86
87  fVerbose  = 0;
88  fElectron = G4Electron::Electron();
89  fPositron = G4Positron::Positron();
90
91  fProtonEnergyVector = new G4PhysicsLogVector(fLowestKineticEnergy,
92                                                           fHighestKineticEnergy,
93                                                           fTotBin);
94  fPAItransferTable     = 0;
95  fPAIphotonTable       = 0;
96  fPAIplasmonTable      = 0;
97
98  fPAIdEdxTable         = 0;
99  fSandiaPhotoAbsCof    = 0;
100  fdEdxVector           = 0;
101
102  fLambdaVector         = 0;
103  fdNdxCutVector        = 0;
104  fdNdxCutPhotonVector  = 0;
105  fdNdxCutPlasmonVector = 0;
106
107  isInitialised      = false;
108}
109
110////////////////////////////////////////////////////////////////////////////
111
112G4PAIPhotonModel::~G4PAIPhotonModel()
113{
114  if(fProtonEnergyVector) delete fProtonEnergyVector;
115  if(fdEdxVector)         delete fdEdxVector ;
116  if ( fLambdaVector)     delete fLambdaVector;
117  if ( fdNdxCutVector)    delete fdNdxCutVector;
118
119  if( fPAItransferTable )
120  {
121        fPAItransferTable->clearAndDestroy();
122        delete fPAItransferTable ;
123  }
124  if( fPAIphotonTable )
125  {
126        fPAIphotonTable->clearAndDestroy();
127        delete fPAIphotonTable ;
128  }
129  if( fPAIplasmonTable )
130  {
131        fPAIplasmonTable->clearAndDestroy();
132        delete fPAIplasmonTable ;
133  }
134  if(fSandiaPhotoAbsCof)
135  {
136    for(G4int i=0;i<fSandiaIntervalNumber;i++)
137    {
138        delete[] fSandiaPhotoAbsCof[i];
139    }
140    delete[] fSandiaPhotoAbsCof;
141  }
142}
143
144///////////////////////////////////////////////////////////////////////////////
145
146void G4PAIPhotonModel::SetParticle(const G4ParticleDefinition* p)
147{
148  fParticle = p;
149  fMass = fParticle->GetPDGMass();
150  fSpin = fParticle->GetPDGSpin();
151  G4double q = fParticle->GetPDGCharge()/eplus;
152  fChargeSquare = q*q;
153  fLowKinEnergy *= fMass/proton_mass_c2;
154  fRatio = electron_mass_c2/fMass;
155  fQc = fMass/fRatio;
156}
157
158////////////////////////////////////////////////////////////////////////////
159
160void G4PAIPhotonModel::Initialise(const G4ParticleDefinition* p,
161                                   const G4DataVector&)
162{
163  if(isInitialised) return;
164  isInitialised = true;
165
166  if(!fParticle) SetParticle(p);
167
168  fParticleChange = GetParticleChangeForLoss();
169
170  const G4ProductionCutsTable* theCoupleTable =
171        G4ProductionCutsTable::GetProductionCutsTable();
172
173  for(size_t iReg = 0; iReg < fPAIRegionVector.size();++iReg) // region loop
174  {
175    const G4Region* curReg = fPAIRegionVector[iReg];
176
177    vector<G4Material*>::const_iterator matIter = curReg->GetMaterialIterator();
178    size_t jMat; 
179    size_t numOfMat = curReg->GetNumberOfMaterials();
180
181    //  for(size_t jMat = 0; jMat < curReg->GetNumberOfMaterials();++jMat){}
182    const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
183    size_t numberOfMat = G4Material::GetNumberOfMaterials();
184
185    for(jMat = 0 ; jMat < numOfMat; ++jMat) // region material loop
186    {
187      const G4MaterialCutsCouple* matCouple = theCoupleTable->
188      GetMaterialCutsCouple( *matIter, curReg->GetProductionCuts() );
189      fMaterialCutsCoupleVector.push_back(matCouple);
190
191      size_t iMatGlob;
192      for(iMatGlob = 0 ; iMatGlob < numberOfMat ; iMatGlob++ )
193      {
194        if( *matIter == (*theMaterialTable)[iMatGlob]) break ;
195      }
196      fMatIndex = iMatGlob;
197
198      ComputeSandiaPhotoAbsCof();
199      BuildPAIonisationTable();
200
201      fPAIxscBank.push_back(fPAItransferTable);
202      fPAIphotonBank.push_back(fPAIphotonTable);
203      fPAIplasmonBank.push_back(fPAIplasmonTable);
204      fPAIdEdxBank.push_back(fPAIdEdxTable);
205      fdEdxTable.push_back(fdEdxVector);
206
207      BuildLambdaVector(matCouple);
208
209      fdNdxCutTable.push_back(fdNdxCutVector);
210      fdNdxCutPhotonTable.push_back(fdNdxCutPhotonVector);
211      fdNdxCutPlasmonTable.push_back(fdNdxCutPlasmonVector);
212      fLambdaTable.push_back(fLambdaVector);
213
214
215      matIter++;
216    }
217  }
218}
219
220//////////////////////////////////////////////////////////////////
221
222void G4PAIPhotonModel::InitialiseMe(const G4ParticleDefinition*)
223{}
224
225//////////////////////////////////////////////////////////////////
226
227void G4PAIPhotonModel::ComputeSandiaPhotoAbsCof()
228{
229  G4int i, j, numberOfElements ;
230  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
231
232  G4SandiaTable thisMaterialSandiaTable(fMatIndex) ;
233  numberOfElements = (*theMaterialTable)[fMatIndex]->
234                                              GetNumberOfElements();
235  G4int* thisMaterialZ = new G4int[numberOfElements] ;
236
237  for(i=0;i<numberOfElements;i++) 
238  {
239    thisMaterialZ[i] = 
240    (G4int)(*theMaterialTable)[fMatIndex]->GetElement(i)->GetZ() ;
241  } 
242  fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaIntervals
243                           (thisMaterialZ,numberOfElements) ;
244
245  fSandiaIntervalNumber = thisMaterialSandiaTable.SandiaMixing
246                           ( thisMaterialZ ,
247                             (*theMaterialTable)[fMatIndex]->GetFractionVector() ,
248                             numberOfElements,fSandiaIntervalNumber) ;
249   
250  fSandiaPhotoAbsCof = new G4double*[fSandiaIntervalNumber] ;
251
252  for(i=0;i<fSandiaIntervalNumber;i++)  fSandiaPhotoAbsCof[i] = new G4double[5] ;
253   
254  for( i = 0 ; i < fSandiaIntervalNumber ; i++ )
255  {
256    fSandiaPhotoAbsCof[i][0] = thisMaterialSandiaTable.GetPhotoAbsorpCof(i+1,0) ; 
257
258    for( j = 1; j < 5 ; j++ )
259    {
260      fSandiaPhotoAbsCof[i][j] = thisMaterialSandiaTable.
261                                      GetPhotoAbsorpCof(i+1,j)*
262                 (*theMaterialTable)[fMatIndex]->GetDensity() ;
263    }
264  }
265  // delete[] thisMaterialZ ;
266}
267
268////////////////////////////////////////////////////////////////////////////
269//
270// Build tables for the ionization energy loss
271//  the tables are built for MATERIALS
272//                           *********
273
274void
275G4PAIPhotonModel::BuildPAIonisationTable()
276{
277  G4double LowEdgeEnergy , ionloss ;
278  G4double massRatio, tau, Tmax, Tmin, Tkin, deltaLow, gamma, bg2 ;
279  /*
280  if( fPAItransferTable )
281  {
282     fPAItransferTable->clearAndDestroy() ;
283     delete fPAItransferTable ;
284  }
285  */
286  fPAItransferTable = new G4PhysicsTable(fTotBin);
287  /*
288  if( fPAIratioTable )
289  {
290     fPAIratioTable->clearAndDestroy() ;
291     delete fPAIratioTable ;
292  }
293  */
294  fPAIphotonTable = new G4PhysicsTable(fTotBin);
295  fPAIplasmonTable = new G4PhysicsTable(fTotBin);
296  /*
297  if( fPAIdEdxTable )
298  {
299     fPAIdEdxTable->clearAndDestroy() ;
300     delete fPAIdEdxTable ;
301  }
302  */
303  fPAIdEdxTable = new G4PhysicsTable(fTotBin);
304
305  //  if(fdEdxVector) delete fdEdxVector ;
306  fdEdxVector = new G4PhysicsLogVector( fLowestKineticEnergy,
307                                         fHighestKineticEnergy,
308                                         fTotBin               ) ;
309  Tmin     = fSandiaPhotoAbsCof[0][0] ;      // low energy Sandia interval
310  deltaLow = 100.*eV; // 0.5*eV ;
311
312  for (G4int i = 0 ; i <= fTotBin ; i++)  //The loop for the kinetic energy
313  {
314    LowEdgeEnergy = fProtonEnergyVector->GetLowEdgeEnergy(i) ;
315    tau = LowEdgeEnergy/proton_mass_c2 ;
316    //    if(tau < 0.01)  tau = 0.01 ;
317    gamma = tau +1. ;
318    // G4cout<<"gamma = "<<gamma<<endl ;
319    bg2 = tau*(tau + 2. ) ;
320    massRatio = electron_mass_c2/proton_mass_c2 ;
321    Tmax = MaxSecondaryEnergy(fParticle, LowEdgeEnergy); 
322    // G4cout<<"proton Tkin = "<<LowEdgeEnergy/MeV<<" MeV"
323    // <<" Tmax = "<<Tmax/MeV<<" MeV"<<G4endl;
324    // Tkin = DeltaCutInKineticEnergyNow ;
325
326    // if ( DeltaCutInKineticEnergyNow > Tmax)         // was <
327    Tkin = Tmax ;
328    if ( Tkin < Tmin + deltaLow )  // low energy safety
329    {
330      Tkin = Tmin + deltaLow ;
331    }
332    G4PAIxSection protonPAI( fMatIndex,
333                             Tkin,
334                             bg2,
335                             fSandiaPhotoAbsCof,
336                             fSandiaIntervalNumber  ) ;
337
338
339    // G4cout<<"ionloss = "<<ionloss*cm/keV<<" keV/cm"<<endl ;
340    // G4cout<<"n1 = "<<protonPAI.GetIntegralPAIxSection(1)*cm<<" 1/cm"<<endl ;
341    // G4cout<<"protonPAI.GetSplineSize() = "<<
342    //    protonPAI.GetSplineSize()<<G4endl<<G4endl ;
343
344    G4PhysicsFreeVector* transferVector = new
345                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
346    G4PhysicsFreeVector* photonVector = new
347                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
348    G4PhysicsFreeVector* plasmonVector = new
349                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
350    G4PhysicsFreeVector* dEdxVector = new
351                             G4PhysicsFreeVector(protonPAI.GetSplineSize()) ;
352
353    for( G4int k = 0 ; k < protonPAI.GetSplineSize() ; k++ )
354    {
355      transferVector->PutValue( k ,
356                                protonPAI.GetSplineEnergy(k+1),
357                                protonPAI.GetIntegralPAIxSection(k+1) ) ;
358      photonVector->PutValue( k ,
359                                protonPAI.GetSplineEnergy(k+1),
360                                protonPAI.GetIntegralCerenkov(k+1) ) ;
361      plasmonVector->PutValue( k ,
362                                protonPAI.GetSplineEnergy(k+1),
363                                protonPAI.GetIntegralPlasmon(k+1) ) ;
364      dEdxVector->PutValue( k ,
365                                protonPAI.GetSplineEnergy(k+1),
366                                protonPAI.GetIntegralPAIdEdx(k+1) ) ;
367    }
368    ionloss = protonPAI.GetMeanEnergyLoss() ;   //  total <dE/dx>
369    if ( ionloss <= 0.)  ionloss = DBL_MIN ;
370    fdEdxVector->PutValue(i,ionloss) ;
371
372    fPAItransferTable->insertAt(i,transferVector) ;
373    fPAIphotonTable->insertAt(i,photonVector) ;
374    fPAIplasmonTable->insertAt(i,plasmonVector) ;
375    fPAIdEdxTable->insertAt(i,dEdxVector) ;
376
377  }                                        // end of Tkin loop
378  //  theLossTable->insert(fdEdxVector);
379  // end of material loop
380  // G4cout<<"G4PAIonisation::BuildPAIonisationTable() have been called"<<G4endl ;
381  // G4cout<<"G4PAIonisation::BuildLossTable() have been called"<<G4endl ;
382}
383
384///////////////////////////////////////////////////////////////////////
385//
386// Build mean free path tables for the delta ray production process
387//     tables are built for MATERIALS
388//
389
390void
391G4PAIPhotonModel::BuildLambdaVector(const G4MaterialCutsCouple* matCutsCouple)
392{
393  G4int i ;
394  G4double dNdxCut,dNdxPhotonCut,dNdxPlasmonCut, lambda;
395  G4double kCarTolerance = G4GeometryTolerance::GetInstance()
396                           ->GetSurfaceTolerance();
397
398  const G4ProductionCutsTable* theCoupleTable=
399        G4ProductionCutsTable::GetProductionCutsTable();
400
401  size_t numOfCouples = theCoupleTable->GetTableSize();
402  size_t jMatCC;
403
404  for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
405  {
406    if( matCutsCouple == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
407  }
408  if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
409
410  const vector<G4double>*  deltaCutInKineticEnergy = theCoupleTable->
411                                GetEnergyCutsVector(idxG4ElectronCut);
412  const vector<G4double>*  photonCutInKineticEnergy = theCoupleTable->
413                                GetEnergyCutsVector(idxG4GammaCut);
414
415  if (fLambdaVector)         delete fLambdaVector;
416  if (fdNdxCutVector)        delete fdNdxCutVector;
417  if (fdNdxCutPhotonVector)  delete fdNdxCutPhotonVector;
418  if (fdNdxCutPlasmonVector) delete fdNdxCutPlasmonVector;
419
420  fLambdaVector = new G4PhysicsLogVector( fLowestKineticEnergy,
421                                          fHighestKineticEnergy,
422                                          fTotBin                );
423  fdNdxCutVector = new G4PhysicsLogVector( fLowestKineticEnergy,
424                                          fHighestKineticEnergy,
425                                          fTotBin                );
426  fdNdxCutPhotonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
427                                          fHighestKineticEnergy,
428                                          fTotBin                );
429  fdNdxCutPlasmonVector = new G4PhysicsLogVector( fLowestKineticEnergy,
430                                          fHighestKineticEnergy,
431                                          fTotBin                );
432
433  G4double deltaCutInKineticEnergyNow  = (*deltaCutInKineticEnergy)[jMatCC];
434  G4double photonCutInKineticEnergyNow = (*photonCutInKineticEnergy)[jMatCC];
435
436  if(fVerbose > 0)
437  {
438    G4cout<<"PAIPhotonModel deltaCutInKineticEnergyNow = "
439          <<deltaCutInKineticEnergyNow/keV<<" keV"<<G4endl;
440    G4cout<<"PAIPhotonModel photonCutInKineticEnergyNow = "
441          <<photonCutInKineticEnergyNow/keV<<" keV"<<G4endl;
442  }
443  for ( i = 0 ; i <= fTotBin ; i++ )
444  {
445    dNdxPhotonCut  = GetdNdxPhotonCut(i,photonCutInKineticEnergyNow);
446    dNdxPlasmonCut = GetdNdxPlasmonCut(i,deltaCutInKineticEnergyNow);
447
448    dNdxCut        =  dNdxPhotonCut + dNdxPlasmonCut;
449    lambda         = dNdxCut <= DBL_MIN ? DBL_MAX: 1.0/dNdxCut;
450
451    if (lambda <= 1000*kCarTolerance) lambda = 1000*kCarTolerance; // Mmm ???
452
453    fLambdaVector->PutValue(i, lambda);
454
455    fdNdxCutVector->PutValue(i, dNdxCut);
456    fdNdxCutPhotonVector->PutValue(i, dNdxPhotonCut);
457    fdNdxCutPlasmonVector->PutValue(i, dNdxPlasmonCut);
458  }
459}
460
461///////////////////////////////////////////////////////////////////////
462//
463// Returns integral PAI cross section for energy transfers >= transferCut
464
465G4double 
466G4PAIPhotonModel::GetdNdxCut( G4int iPlace, G4double transferCut)
467{ 
468  G4int iTransfer;
469  G4double x1, x2, y1, y2, dNdxCut;
470  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
471  // G4cout<<"size = "<<G4int((*fPAItransferTable)(iPlace)->GetVectorLength())
472  //           <<G4endl; 
473  for( iTransfer = 0 ; 
474       iTransfer < G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) ; 
475       iTransfer++)
476  {
477    if(transferCut <= (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
478    {
479      break ;
480    }
481  } 
482  if ( iTransfer >= G4int((*fPAItransferTable)(iPlace)->GetVectorLength()) )
483  {
484      iTransfer = (*fPAItransferTable)(iPlace)->GetVectorLength() - 1 ;
485  }
486  y1 = (*(*fPAItransferTable)(iPlace))(iTransfer-1) ;
487  y2 = (*(*fPAItransferTable)(iPlace))(iTransfer) ;
488  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
489  x1 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
490  x2 = (*fPAItransferTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
491  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
492
493  if ( y1 == y2 )    dNdxCut = y2 ;
494  else
495  {
496    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
497    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
498    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
499    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
500  }
501  //  G4cout<<""<<dNdxCut<<G4endl;
502  return dNdxCut ;
503}
504
505///////////////////////////////////////////////////////////////////////
506//
507// Returns integral PAI cherenkovcross section for energy transfers >= transferCut
508
509G4double 
510G4PAIPhotonModel::GetdNdxPhotonCut( G4int iPlace, G4double transferCut)
511{ 
512  G4int iTransfer;
513  G4double x1, x2, y1, y2, dNdxCut;
514  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
515  // G4cout<<"size = "<<G4int((*fPAIphotonTable)(iPlace)->GetVectorLength())
516  //           <<G4endl; 
517  for( iTransfer = 0 ; 
518       iTransfer < G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) ; 
519       iTransfer++)
520  {
521    if(transferCut <= (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
522    {
523      break ;
524    }
525  } 
526  if ( iTransfer >= G4int((*fPAIphotonTable)(iPlace)->GetVectorLength()) )
527  {
528      iTransfer = (*fPAIphotonTable)(iPlace)->GetVectorLength() - 1 ;
529  }
530  y1 = (*(*fPAIphotonTable)(iPlace))(iTransfer-1) ;
531  y2 = (*(*fPAIphotonTable)(iPlace))(iTransfer) ;
532  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
533  x1 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
534  x2 = (*fPAIphotonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
535  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
536
537  if ( y1 == y2 )    dNdxCut = y2 ;
538  else
539  {
540    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
541    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
542    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
543    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
544  }
545  //  G4cout<<""<<dNdxPhotonCut<<G4endl;
546  return dNdxCut ;
547}
548
549///////////////////////////////////////////////////////////////////////
550//
551// Returns integral PAI cross section for energy transfers >= transferCut
552
553G4double 
554G4PAIPhotonModel::GetdNdxPlasmonCut( G4int iPlace, G4double transferCut)
555{ 
556  G4int iTransfer;
557  G4double x1, x2, y1, y2, dNdxCut;
558
559  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
560  // G4cout<<"size = "<<G4int((*fPAIPlasmonTable)(iPlace)->GetVectorLength())
561  //           <<G4endl; 
562  for( iTransfer = 0 ; 
563       iTransfer < G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) ; 
564       iTransfer++)
565  {
566    if(transferCut <= (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
567    {
568      break ;
569    }
570  } 
571  if ( iTransfer >= G4int((*fPAIplasmonTable)(iPlace)->GetVectorLength()) )
572  {
573      iTransfer = (*fPAIplasmonTable)(iPlace)->GetVectorLength() - 1 ;
574  }
575  y1 = (*(*fPAIplasmonTable)(iPlace))(iTransfer-1) ;
576  y2 = (*(*fPAIplasmonTable)(iPlace))(iTransfer) ;
577  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
578  x1 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
579  x2 = (*fPAIplasmonTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
580  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
581
582  if ( y1 == y2 )    dNdxCut = y2 ;
583  else
584  {
585    //  if ( x1 == x2  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
586    //    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*G4UniformRand() ;
587    if ( std::abs(x1-x2) <= eV  ) dNdxCut = y1 + (y2 - y1)*0.5 ;
588    else             dNdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
589  }
590  //  G4cout<<""<<dNdxPlasmonCut<<G4endl;
591  return dNdxCut ;
592}
593
594///////////////////////////////////////////////////////////////////////
595//
596// Returns integral dEdx for energy transfers >= transferCut
597
598G4double 
599G4PAIPhotonModel::GetdEdxCut( G4int iPlace, G4double transferCut)
600{ 
601  G4int iTransfer;
602  G4double x1, x2, y1, y2, dEdxCut;
603  // G4cout<<"iPlace = "<<iPlace<<"; "<<"transferCut = "<<transferCut<<G4endl;
604  // G4cout<<"size = "<<G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength())
605  //           <<G4endl; 
606  for( iTransfer = 0 ; 
607       iTransfer < G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) ; 
608       iTransfer++)
609  {
610    if(transferCut <= (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer))
611    {
612      break ;
613    }
614  } 
615  if ( iTransfer >= G4int((*fPAIdEdxTable)(iPlace)->GetVectorLength()) )
616  {
617      iTransfer = (*fPAIdEdxTable)(iPlace)->GetVectorLength() - 1 ;
618  }
619  y1 = (*(*fPAIdEdxTable)(iPlace))(iTransfer-1) ;
620  y2 = (*(*fPAIdEdxTable)(iPlace))(iTransfer) ;
621  // G4cout<<"y1 = "<<y1<<"; "<<"y2 = "<<y2<<G4endl;
622  x1 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1) ;
623  x2 = (*fPAIdEdxTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
624  // G4cout<<"x1 = "<<x1<<"; "<<"x2 = "<<x2<<G4endl;
625
626  if ( y1 == y2 )    dEdxCut = y2 ;
627  else
628  {
629    //  if ( x1 == x2  ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
630    //    if ( std::abs(x1-x2) <= eV  ) dEdxCut = y1 + (y2 - y1)*G4UniformRand() ;
631    if ( std::abs(x1-x2) <= eV  ) dEdxCut = y1 + (y2 - y1)*0.5 ;
632    else             dEdxCut = y1 + (transferCut - x1)*(y2 - y1)/(x2 - x1) ;     
633  }
634  //  G4cout<<""<<dEdxCut<<G4endl;
635  return dEdxCut ;
636}
637
638//////////////////////////////////////////////////////////////////////////////
639
640G4double G4PAIPhotonModel::ComputeDEDXPerVolume(const G4Material*,
641                                                const G4ParticleDefinition* p,
642                                                G4double kineticEnergy,
643                                                G4double cutEnergy)
644{
645  G4int iTkin,iPlace;
646  size_t jMat;
647
648  //G4double cut = std::min(MaxSecondaryEnergy(p, kineticEnergy), cutEnergy);
649  G4double cut = cutEnergy;
650
651  G4double particleMass = p->GetPDGMass();
652  G4double scaledTkin   = kineticEnergy*proton_mass_c2/particleMass;
653  G4double charge       = p->GetPDGCharge()/eplus;
654  G4double charge2      = charge*charge;
655  G4double dEdx         = 0.;
656  const G4MaterialCutsCouple* matCC = CurrentCouple();
657
658  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
659  {
660    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
661  }
662  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
663
664  fPAIdEdxTable = fPAIdEdxBank[jMat];
665  fdEdxVector = fdEdxTable[jMat];
666  for(iTkin = 0 ; iTkin <= fTotBin ; iTkin++)
667  {
668    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;   
669  }
670  iPlace = iTkin - 1;
671  if(iPlace < 0) iPlace = 0;
672  dEdx = charge2*( (*fdEdxVector)(iPlace) - GetdEdxCut(iPlace,cut) ) ; 
673
674  if( dEdx < 0.) dEdx = 0.;
675  return dEdx;
676}
677
678/////////////////////////////////////////////////////////////////////////
679
680G4double G4PAIPhotonModel::CrossSectionPerVolume( const G4Material*,
681                                                  const G4ParticleDefinition* p,
682                                                  G4double kineticEnergy,
683                                                  G4double cutEnergy,
684                                                  G4double maxEnergy  ) 
685{
686  G4int iTkin,iPlace;
687  size_t jMat, jMatCC;
688  G4double tmax = std::min(MaxSecondaryEnergy(p, kineticEnergy), maxEnergy);
689  if(cutEnergy >= tmax) return 0.0;
690  G4double particleMass = p->GetPDGMass();
691  G4double scaledTkin   = kineticEnergy*proton_mass_c2/particleMass;
692  G4double charge       = p->GetPDGCharge();
693  G4double charge2      = charge*charge, cross, cross1, cross2;
694  G4double photon1, photon2, plasmon1, plasmon2;
695
696  const G4MaterialCutsCouple* matCC = CurrentCouple();
697
698  const G4ProductionCutsTable* theCoupleTable=
699        G4ProductionCutsTable::GetProductionCutsTable();
700
701  size_t numOfCouples = theCoupleTable->GetTableSize();
702
703  for (jMatCC = 0 ; jMatCC < numOfCouples ; jMatCC++ )
704  {
705    if( matCC == theCoupleTable->GetMaterialCutsCouple(jMatCC) ) break;
706  }
707  if( jMatCC == numOfCouples && jMatCC > 0 ) jMatCC--;
708
709  const vector<G4double>*  photonCutInKineticEnergy = theCoupleTable->
710                                GetEnergyCutsVector(idxG4GammaCut);
711
712  G4double photonCut = (*photonCutInKineticEnergy)[jMatCC] ;
713
714  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
715  {
716    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
717  }
718  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
719
720  fPAItransferTable = fPAIxscBank[jMat];
721  fPAIphotonTable   = fPAIphotonBank[jMat];
722  fPAIplasmonTable  = fPAIplasmonBank[jMat];
723
724  for(iTkin = 0 ; iTkin <= fTotBin ; iTkin++)
725  {
726    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) break ;   
727  }
728  iPlace = iTkin - 1;
729  if(iPlace < 0) iPlace = 0;
730
731  // G4cout<<"iPlace = "<<iPlace<<"; tmax = "
732  // <<tmax<<"; cutEnergy = "<<cutEnergy<<G4endl; 
733  photon1 = GetdNdxPhotonCut(iPlace,tmax); 
734  photon2 = GetdNdxPhotonCut(iPlace,photonCut); 
735 
736  plasmon1 = GetdNdxPlasmonCut(iPlace,tmax); 
737  plasmon2 = GetdNdxPlasmonCut(iPlace,cutEnergy); 
738 
739  cross1 = photon1 + plasmon1;   
740  // G4cout<<"cross1 = "<<cross1<<G4endl; 
741  cross2 = photon2 + plasmon2;   
742  // G4cout<<"cross2 = "<<cross2<<G4endl; 
743  cross  = (cross2 - cross1)*charge2;
744  // G4cout<<"cross = "<<cross<<G4endl; 
745
746  if( cross < 0. ) cross = 0.;
747  return cross;
748}
749
750///////////////////////////////////////////////////////////////////////////
751//
752// It is analog of PostStepDoIt in terms of secondary electron or photon to
753// be returned as G4Dynamicparticle*.
754//
755
756void G4PAIPhotonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
757                                         const G4MaterialCutsCouple* matCC,
758                                         const G4DynamicParticle* dp,
759                                         G4double tmin,
760                                         G4double maxEnergy)
761{
762  size_t jMat;
763  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
764  {
765    if( matCC == fMaterialCutsCoupleVector[jMat] ) break;
766  }
767  if( jMat == fMaterialCutsCoupleVector.size() && jMat > 0 ) jMat--;
768
769  fPAItransferTable = fPAIxscBank[jMat];
770  fPAIphotonTable   = fPAIphotonBank[jMat];
771  fPAIplasmonTable  = fPAIplasmonBank[jMat];
772
773  fdNdxCutVector        = fdNdxCutTable[jMat];
774  fdNdxCutPhotonVector  = fdNdxCutPhotonTable[jMat];
775  fdNdxCutPlasmonVector = fdNdxCutPlasmonTable[jMat];
776
777  G4double tmax = min(MaxSecondaryKinEnergy(dp), maxEnergy);
778  if( tmin >= tmax && fVerbose > 0) 
779  {
780    G4cout<<"G4PAIPhotonModel::SampleSecondary: tmin >= tmax "<<G4endl;
781  }
782
783  G4ThreeVector direction = dp->GetMomentumDirection();
784  G4double particleMass  = dp->GetMass();
785  G4double kineticEnergy = dp->GetKineticEnergy();
786  G4double scaledTkin    = kineticEnergy*fMass/particleMass;
787  G4double totalEnergy   = kineticEnergy + particleMass;
788  G4double pSquare       = kineticEnergy*(totalEnergy+particleMass);
789
790  G4int iTkin;
791  for(iTkin=0;iTkin<=fTotBin;iTkin++)
792  {
793    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))  break ;
794  }
795  G4int iPlace = iTkin - 1 ;
796  if(iPlace < 0) iPlace = 0;
797
798  G4double dNdxPhotonCut  = (*fdNdxCutPhotonVector)(iPlace) ; 
799  G4double dNdxPlasmonCut = (*fdNdxCutPlasmonVector)(iPlace) ; 
800  G4double dNdxCut        = dNdxPhotonCut  + dNdxPlasmonCut;
801 
802  G4double ratio;
803  if (dNdxCut > 0.) ratio = dNdxPhotonCut/dNdxCut;
804  else              ratio = 0.;
805
806  if(ratio < G4UniformRand() ) // secondary e-
807  {
808    G4double deltaTkin     = GetPostStepTransfer(fPAIplasmonTable, fdNdxCutPlasmonVector,
809                                                 iPlace, scaledTkin);
810
811//  G4cout<<"PAIPhotonModel PlasmonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
812 
813    if( deltaTkin <= 0. ) 
814    {
815      G4cout<<"G4PAIPhotonModel::SampleSecondary e- deltaTkin = "<<deltaTkin<<G4endl;
816    }
817    if( deltaTkin <= 0.) return;
818
819    G4double deltaTotalMomentum = sqrt(deltaTkin*(deltaTkin + 2. * electron_mass_c2 ));
820    G4double totalMomentum      = sqrt(pSquare);
821    G4double costheta           = deltaTkin*(totalEnergy + electron_mass_c2)
822                                /(deltaTotalMomentum * totalMomentum);
823
824    if( costheta > 0.99999 ) costheta = 0.99999;
825    G4double sintheta = 0.0;
826    G4double sin2 = 1. - costheta*costheta;
827    if( sin2 > 0.) sintheta = sqrt(sin2);
828
829    //  direction of the delta electron
830 
831    G4double phi = twopi*G4UniformRand(); 
832    G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
833
834    G4ThreeVector deltaDirection(dirx,diry,dirz);
835    deltaDirection.rotateUz(direction);
836
837    // primary change
838
839    kineticEnergy -= deltaTkin;
840    G4ThreeVector dir = totalMomentum*direction - deltaTotalMomentum*deltaDirection;
841    direction = dir.unit();
842    fParticleChange->SetProposedMomentumDirection(direction);
843
844    // create G4DynamicParticle object for e- delta ray
845 
846    G4DynamicParticle* deltaRay = new G4DynamicParticle;
847    deltaRay->SetDefinition(G4Electron::Electron());
848    deltaRay->SetKineticEnergy( deltaTkin );
849    deltaRay->SetMomentumDirection(deltaDirection); 
850    vdp->push_back(deltaRay);
851
852  }
853  else    // secondary 'Cherenkov' photon
854  { 
855    G4double deltaTkin     = GetPostStepTransfer(fPAIphotonTable, fdNdxCutPhotonVector,
856                                                 iPlace,scaledTkin);
857
858    //  G4cout<<"PAIPhotonModel PhotonPostStepTransfer = "<<deltaTkin/keV<<" keV"<<G4endl ;
859
860    if( deltaTkin <= 0. )
861    {
862      G4cout<<"G4PAIPhotonModel::SampleSecondary gamma deltaTkin = "<<deltaTkin<<G4endl;
863    }
864    if( deltaTkin <= 0.) return;
865
866    G4double costheta = 0.; // G4UniformRand(); // VG: ??? for start only
867    G4double sintheta = sqrt((1.+costheta)*(1.-costheta));
868
869    //  direction of the 'Cherenkov' photon 
870    G4double phi = twopi*G4UniformRand(); 
871    G4double dirx = sintheta*cos(phi), diry = sintheta*sin(phi), dirz = costheta;
872
873    G4ThreeVector deltaDirection(dirx,diry,dirz);
874    deltaDirection.rotateUz(direction);
875
876    // primary change
877    kineticEnergy -= deltaTkin;
878
879    // create G4DynamicParticle object for photon ray
880 
881    G4DynamicParticle* photonRay = new G4DynamicParticle;
882    photonRay->SetDefinition( G4Gamma::Gamma() );
883    photonRay->SetKineticEnergy( deltaTkin );
884    photonRay->SetMomentumDirection(deltaDirection); 
885
886    vdp->push_back(photonRay);
887  }
888
889  fParticleChange->SetProposedKineticEnergy(kineticEnergy);
890}
891
892
893///////////////////////////////////////////////////////////////////////
894//
895// Returns post step PAI energy transfer > cut electron/photon energy according to passed
896// scaled kinetic energy of particle
897
898G4double 
899G4PAIPhotonModel::GetPostStepTransfer( G4PhysicsTable* pTable,
900                                       G4PhysicsLogVector* pVector,
901                                       G4int iPlace, G4double scaledTkin )
902{ 
903  // G4cout<<"G4PAIPhotonModel::GetPostStepTransfer"<<G4endl ;
904
905  G4int iTkin = iPlace+1, iTransfer;
906  G4double transfer = 0.0, position, dNdxCut1, dNdxCut2, E1, E2, W1, W2, W ;
907
908  dNdxCut1 = (*pVector)(iPlace) ; 
909
910  //  G4cout<<"iPlace = "<<iPlace<<endl ;
911
912  if(iTkin == fTotBin) // Fermi plato, try from left
913  {
914      position = dNdxCut1*G4UniformRand() ;
915
916      for( iTransfer = 0;
917 iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
918      {
919        if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
920      }
921      transfer = GetEnergyTransfer(pTable,iPlace,position,iTransfer);
922  }
923  else
924  {
925    dNdxCut2 = (*pVector)(iPlace+1) ; 
926    if(iTkin == 0) // Tkin is too small, trying from right only
927    {
928      position = dNdxCut2*G4UniformRand() ;
929
930      for( iTransfer = 0;
931  iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
932      {
933        if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
934      }
935      transfer = GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
936    } 
937    else // general case: Tkin between two vectors of the material
938    {
939      E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 
940      E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin)     ;
941      W  = 1.0/(E2 - E1) ;
942      W1 = (E2 - scaledTkin)*W ;
943      W2 = (scaledTkin - E1)*W ;
944
945      position = ( dNdxCut1*W1 + dNdxCut2*W2 )*G4UniformRand() ;
946
947        // G4cout<<position<<"\t" ;
948
949      G4int iTrMax1, iTrMax2, iTrMax;
950
951      iTrMax1 = G4int((*pTable)(iPlace)->GetVectorLength());
952      iTrMax2 = G4int((*pTable)(iPlace+1)->GetVectorLength());
953
954      if (iTrMax1 >= iTrMax2) iTrMax = iTrMax2;
955      else                    iTrMax = iTrMax1;
956
957      for( iTransfer = 0; iTransfer < iTrMax; iTransfer++ )
958      {
959          if( position >=
960          ( (*(*pTable)(iPlace))(iTransfer)*W1 +
961            (*(*pTable)(iPlace+1))(iTransfer)*W2) ) break ;
962      }
963      transfer = GetEnergyTransfer(pTable, iPlace, position, iTransfer);
964    }
965  } 
966  //  G4cout<<"PAIPhotonModel PostStepTransfer = "<<transfer/keV<<" keV"<<G4endl ;
967  if(transfer < 0.0 ) transfer = 0.0 ;
968  return transfer ;
969}
970
971///////////////////////////////////////////////////////////////////////
972//
973// Returns random PAI energy transfer according to passed
974// indexes of particle
975
976G4double
977G4PAIPhotonModel::GetEnergyTransfer( G4PhysicsTable* pTable, G4int iPlace, 
978                                     G4double position, G4int iTransfer )
979{ 
980  G4int iTransferMax;
981  G4double x1, x2, y1, y2, energyTransfer;
982
983  if(iTransfer == 0)
984  {
985    energyTransfer = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
986  } 
987  else
988  {
989    iTransferMax = G4int((*pTable)(iPlace)->GetVectorLength());
990
991    if ( iTransfer >= iTransferMax)  iTransfer = iTransferMax - 1;
992   
993    y1 = (*(*pTable)(iPlace))(iTransfer-1);
994    y2 = (*(*fPAItransferTable)(iPlace))(iTransfer);
995
996    x1 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1);
997    x2 = (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
998
999    if ( x1 == x2 )    energyTransfer = x2;
1000    else
1001    {
1002      if ( y1 == y2  ) energyTransfer = x1 + (x2 - x1)*G4UniformRand();
1003      else
1004      {
1005        energyTransfer = x1 + (position - y1)*(x2 - x1)/(y2 - y1);
1006      }
1007    }
1008  }
1009  return energyTransfer;
1010}
1011
1012///////////////////////////////////////////////////////////////////////
1013//
1014// Works like AlongStepDoIt method of process family
1015
1016
1017
1018
1019G4double G4PAIPhotonModel::SampleFluctuations( const G4Material* material,
1020                                         const G4DynamicParticle* aParticle,
1021                                               G4double&,
1022                                               G4double& step,
1023                                               G4double&)
1024{
1025  size_t jMat;
1026  for( jMat = 0 ;jMat < fMaterialCutsCoupleVector.size() ; ++jMat )
1027  {
1028    if( material == fMaterialCutsCoupleVector[jMat]->GetMaterial() ) break;
1029  }
1030  if(jMat == fMaterialCutsCoupleVector.size() && jMat > 0) jMat--;
1031
1032  fPAItransferTable = fPAIxscBank[jMat];
1033  fPAIphotonTable = fPAIphotonBank[jMat];
1034  fPAIplasmonTable = fPAIplasmonBank[jMat];
1035
1036  fdNdxCutVector   = fdNdxCutTable[jMat];
1037  fdNdxCutPhotonVector   = fdNdxCutPhotonTable[jMat];
1038  fdNdxCutPlasmonVector   = fdNdxCutPlasmonTable[jMat];
1039
1040  G4int iTkin, iPlace  ;
1041
1042  // G4cout<<"G4PAIPhotonModel::SampleFluctuations"<<G4endl ;
1043
1044  G4double loss, photonLoss, plasmonLoss, charge2 ;
1045 
1046
1047  G4double Tkin       = aParticle->GetKineticEnergy() ;
1048  G4double MassRatio  = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ;
1049  G4double charge     = aParticle->GetDefinition()->GetPDGCharge() ;
1050  charge2             = charge*charge ;
1051  G4double scaledTkin = Tkin*MassRatio ;
1052  G4double cof        = step*charge2;
1053
1054  for( iTkin = 0; iTkin <= fTotBin; iTkin++)
1055  {
1056    if(scaledTkin < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))   break ;
1057  }
1058  iPlace = iTkin - 1 ; 
1059  if( iPlace < 0 ) iPlace = 0;
1060
1061  photonLoss = GetAlongStepTransfer(fPAIphotonTable,fdNdxCutPhotonVector,
1062iPlace,scaledTkin,step,cof);
1063
1064  //  G4cout<<"PAIPhotonModel AlongStepPhotonLoss = "<<photonLoss/keV<<" keV"<<G4endl ;
1065
1066  plasmonLoss = GetAlongStepTransfer(fPAIplasmonTable,fdNdxCutPlasmonVector,
1067iPlace,scaledTkin,step,cof);
1068
1069  //  G4cout<<"PAIPhotonModel AlongStepPlasmonLoss = "<<plasmonLoss/keV<<" keV"<<G4endl ;
1070
1071  loss = photonLoss + plasmonLoss;
1072
1073  //  G4cout<<"PAIPhotonModel AlongStepLoss = "<<loss/keV<<" keV"<<G4endl ;
1074
1075  return loss;
1076}
1077
1078///////////////////////////////////////////////////////////////////////
1079//
1080// Returns along step PAI energy transfer < cut electron/photon energy according to passed
1081// scaled kinetic energy of particle and cof = step*charge*charge
1082
1083G4double 
1084G4PAIPhotonModel::GetAlongStepTransfer( G4PhysicsTable* pTable,
1085                                        G4PhysicsLogVector* pVector,
1086                                        G4int iPlace, G4double scaledTkin,G4double step,
1087                                        G4double cof )
1088{ 
1089  G4int iTkin = iPlace + 1, iTransfer;
1090  G4double loss = 0., position, E1, E2, W1, W2, W, dNdxCut1, dNdxCut2, meanNumber;
1091  G4double lambda, stepDelta, stepSum=0. ;
1092  G4long numOfCollisions=0;
1093  G4bool numb = true;
1094
1095  dNdxCut1 = (*pVector)(iPlace) ; 
1096
1097  //  G4cout<<"iPlace = "<<iPlace<<endl ;
1098
1099  if(iTkin == fTotBin) // Fermi plato, try from left
1100  {
1101    meanNumber = ((*(*pTable)(iPlace))(0) - dNdxCut1)*cof;
1102    if(meanNumber < 0.) meanNumber = 0. ;
1103    //  numOfCollisions = RandPoisson::shoot(meanNumber) ;
1104    if( meanNumber > 0.) lambda = step/meanNumber;
1105    else                 lambda = DBL_MAX;
1106    while(numb)
1107    {
1108      stepDelta = CLHEP::RandExponential::shoot(lambda);
1109      stepSum += stepDelta;
1110      if(stepSum >= step) break;
1111      numOfCollisions++;
1112    }   
1113   
1114    //     G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1115
1116    while(numOfCollisions)
1117    {
1118      position = dNdxCut1+
1119                 ((*(*pTable)(iPlace))(0) - dNdxCut1)*G4UniformRand() ;
1120
1121      for( iTransfer = 0;
1122   iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1123      {
1124        if(position >= (*(*pTable)(iPlace))(iTransfer)) break ;
1125      }
1126      loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1127      numOfCollisions-- ;
1128    }
1129  }
1130  else
1131  {
1132    dNdxCut2 = (*pVector)(iPlace+1) ; 
1133 
1134    if(iTkin == 0) // Tkin is too small, trying from right only
1135    {
1136      meanNumber = ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*cof;
1137      if( meanNumber < 0. ) meanNumber = 0. ;
1138      //  numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1139      if( meanNumber > 0.) lambda = step/meanNumber;
1140      else                 lambda = DBL_MAX;
1141      while(numb)
1142      {
1143        stepDelta = CLHEP::RandExponential::shoot(lambda);
1144        stepSum += stepDelta;
1145        if(stepSum >= step) break;
1146        numOfCollisions++;
1147      }   
1148
1149      //  G4cout<<"numOfCollisions = "<<numOfCollisions<<G4endl ;
1150
1151      while(numOfCollisions)
1152      {
1153        position = dNdxCut2+
1154                   ((*(*pTable)(iPlace+1))(0) - dNdxCut2)*G4UniformRand();
1155   
1156        for( iTransfer = 0;
1157   iTransfer < G4int((*pTable)(iPlace+1)->GetVectorLength()); iTransfer++ )
1158        {
1159          if(position >= (*(*pTable)(iPlace+1))(iTransfer)) break ;
1160        }
1161        loss += GetEnergyTransfer(pTable,iPlace+1,position,iTransfer);
1162        numOfCollisions-- ;
1163      }
1164    } 
1165    else // general case: Tkin between two vectors of the material
1166    {
1167      E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 
1168      E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin)     ;
1169       W = 1.0/(E2 - E1) ;
1170      W1 = (E2 - scaledTkin)*W ;
1171      W2 = (scaledTkin - E1)*W ;
1172
1173      // G4cout<<"(*(*pTable)(iPlace))(0) = "<<
1174      //   (*(*pTable)(iPlace))(0)<<G4endl ;
1175      // G4cout<<"(*(*pTable)(iPlace+1))(0) = "<<
1176      //     (*(*pTable)(iPlace+1))(0)<<G4endl ;
1177
1178      meanNumber=( ((*(*pTable)(iPlace))(0)-dNdxCut1)*W1 + 
1179                   ((*(*pTable)(iPlace+1))(0)-dNdxCut2)*W2 )*cof;
1180      if(meanNumber<0.0) meanNumber = 0.0;
1181      //  numOfCollisions = CLHEP::RandPoisson::shoot(meanNumber) ;
1182      if( meanNumber > 0.) lambda = step/meanNumber;
1183      else                 lambda = DBL_MAX;
1184      while(numb)
1185      {
1186        stepDelta = CLHEP::RandExponential::shoot(lambda);
1187        stepSum += stepDelta;
1188        if(stepSum >= step) break;
1189        numOfCollisions++;
1190      }   
1191
1192      //  G4cout<<"numOfCollisions = "<<numOfCollisions<<endl ;
1193
1194      while(numOfCollisions)
1195      {
1196        position = dNdxCut1*W1 + dNdxCut2*W2 +
1197                   ( ( (*(*pTable)(iPlace  ))(0) - dNdxCut1)*W1 + 
1198                   
1199                     ( (*(*pTable)(iPlace+1))(0) - dNdxCut2)*W2 )*G4UniformRand();
1200
1201        // G4cout<<position<<"\t" ;
1202
1203        for( iTransfer = 0;
1204    iTransfer < G4int((*pTable)(iPlace)->GetVectorLength()); iTransfer++ )
1205        {
1206          if( position >=
1207          ( (*(*pTable)(iPlace))(iTransfer)*W1 + 
1208            (*(*pTable)(iPlace+1))(iTransfer)*W2) )
1209          {
1210              break ;
1211          }
1212        }
1213        // loss += (*pTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
1214        loss += GetEnergyTransfer(pTable,iPlace,position,iTransfer);
1215        numOfCollisions-- ;   
1216      }
1217    }
1218  } 
1219
1220  return loss ;
1221
1222}
1223
1224//////////////////////////////////////////////////////////////////////
1225//
1226// Returns the statistical estimation of the energy loss distribution variance
1227//
1228
1229
1230G4double G4PAIPhotonModel::Dispersion( const G4Material* material, 
1231                                 const G4DynamicParticle* aParticle,
1232                                       G4double& tmax, 
1233                                       G4double& step       )
1234{
1235  G4double loss, sumLoss=0., sumLoss2=0., sigma2, meanLoss=0.;
1236  for(G4int i = 0 ; i < fMeanNumber; i++)
1237  {
1238    loss      = SampleFluctuations(material,aParticle,tmax,step,meanLoss);
1239    sumLoss  += loss;
1240    sumLoss2 += loss*loss;
1241  }
1242  meanLoss = sumLoss/fMeanNumber;
1243  sigma2   = meanLoss*meanLoss + (sumLoss2-2*sumLoss*meanLoss)/fMeanNumber;
1244  return sigma2;
1245}
1246
1247/////////////////////////////////////////////////////////////////////
1248
1249G4double G4PAIPhotonModel::MaxSecondaryEnergy( const G4ParticleDefinition* p,
1250                                                      G4double kinEnergy) 
1251{
1252  G4double tmax = kinEnergy;
1253  if(p == fElectron) tmax *= 0.5;
1254  else if(p != fPositron) { 
1255    G4double mass = p->GetPDGMass();
1256    G4double ratio= electron_mass_c2/mass;
1257    G4double gamma= kinEnergy/mass + 1.0;
1258    tmax = 2.0*electron_mass_c2*(gamma*gamma - 1.) /
1259                  (1. + 2.0*gamma*ratio + ratio*ratio);
1260  }
1261  return tmax;
1262}
1263
1264///////////////////////////////////////////////////////////////
1265
1266void G4PAIPhotonModel::DefineForRegion(const G4Region* r) 
1267{
1268  fPAIRegionVector.push_back(r);
1269}
1270
1271
1272//
1273//
1274/////////////////////////////////////////////////
1275
1276
1277
1278
1279
1280
Note: See TracBrowser for help on using the repository browser.