source: trunk/source/processes/hadronic/models/pre_equilibrium/exciton_model/src/G4PreCompoundProton.cc @ 1337

Last change on this file since 1337 was 1337, checked in by garnier, 14 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 9.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PreCompoundProton.cc,v 1.5 2010/04/09 14:06:17 vnivanch Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-01 $
29//
30// -------------------------------------------------------------------
31//
32// GEANT4 Class file
33//
34//
35// File name:     G4PreCompoundProton
36//
37// Author:         V.Lara
38//
39// Modified: 
40// 21.08.2008 J. M. Quesada added external choice of inverse cross section option
41// 21.08.2008 J. M. Quesada added external choice for superimposed Coulomb barrier
42//                          (if useSICB=true)
43//
44
45#include "G4PreCompoundProton.hh"
46
47G4ReactionProduct * G4PreCompoundProton::GetReactionProduct() const
48{
49  G4ReactionProduct * theReactionProduct = 
50    new G4ReactionProduct(G4Proton::ProtonDefinition());
51  theReactionProduct->SetMomentum(GetMomentum().vect());
52  theReactionProduct->SetTotalEnergy(GetMomentum().e());
53#ifdef PRECOMPOUND_TEST
54  theReactionProduct->SetCreatorModel("G4PrecompoundModel");
55#endif
56  return theReactionProduct;
57}
58
59G4double G4PreCompoundProton::GetRj(const G4int NumberParticles, const G4int NumberCharged)
60{
61  G4double rj = 0.0;
62  if(NumberParticles > 0) rj = static_cast<G4double>(NumberCharged)/static_cast<G4double>(NumberParticles);
63  return rj;
64}
65
66////////////////////////////////////////////////////////////////////////////////////
67//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
68//OPT=0 Dostrovski's parameterization
69//OPT=1 Chatterjee's paramaterization
70//OPT=2,4 Wellisch's parametarization
71//OPT=3 Kalbach's parameterization
72//
73G4double G4PreCompoundProton::CrossSection(const  G4double K)
74{
75  //G4cout<<" In G4PreCompoundProton OPTxs="<<OPTxs<<G4endl;
76  //G4cout<<" In G4PreCompoundProton useSICB="<<useSICB<<G4endl;
77
78  ResidualA=GetRestA();
79  ResidualZ=GetRestZ(); 
80  theA=GetA();
81  theZ=GetZ();
82  ResidualAthrd=std::pow(ResidualA,0.33333);
83  FragmentA=GetA()+GetRestA();
84  FragmentAthrd=std::pow(FragmentA,0.33333);
85
86  if (OPTxs==0) return GetOpt0(K);
87  else if( OPTxs==1) return GetOpt1(K);
88  else if( OPTxs==2|| OPTxs==4) return GetOpt2(K);
89  else if (OPTxs==3)  return GetOpt3(K);
90  else{
91    std::ostringstream errOs;
92    errOs << "BAD PROTON CROSS SECTION OPTION !!"  <<G4endl;
93    throw G4HadronicException(__FILE__, __LINE__, errOs.str());
94    return 0.;
95  }
96}
97
98// *********************** OPT=0 : Dostrovski's cross section  *****************************
99
100G4double G4PreCompoundProton::GetOpt0(const  G4double K)
101{
102  const G4double r0 = G4PreCompoundParameters::GetAddress()->Getr0();
103  // cross section is now given in mb (r0 is in mm) for the sake of consistency
104  //with the rest of the options
105  return 1.e+25*pi*(r0*ResidualAthrd)*(r0*ResidualAthrd)*GetAlpha()*(1.+GetBeta()/K);
106}
107//
108//------------
109//
110G4double G4PreCompoundProton::GetAlpha()
111{
112  G4double aZ = static_cast<G4double>(GetRestZ());
113  G4double C = 0.0;
114  if (aZ >= 70) 
115    {
116      C = 0.10;
117    } 
118  else 
119    {
120      C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
121    }
122  return 1.0 + C;
123}
124//
125//-------------------
126// 
127G4double G4PreCompoundProton::GetBeta() 
128{
129  return -GetCoulombBarrier();
130}
131//
132 
133//********************* OPT=1 : Chatterjee's cross section ************************
134//(fitting to cross section from Bechetti & Greenles OM potential)
135
136G4double G4PreCompoundProton::GetOpt1(const  G4double K)
137{
138  G4double Kc=K; 
139
140  // JMQ  xsec is set constat above limit of validity
141  if (K>50)  Kc=50;
142
143  G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs;
144  G4double p, p0, p1, p2,Ec,delta,q,r,ji;
145 
146  p0 = 15.72;
147  p1 = 9.65;
148  p2 = -449.0;
149  landa0 = 0.00437;
150  landa1 = -16.58;
151  mu0 = 244.7;
152  mu1 = 0.503;
153  nu0 = 273.1;
154  nu1 = -182.4;
155  nu2 = -1.872; 
156  delta=0.; 
157
158  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
159  p = p0 + p1/Ec + p2/(Ec*Ec);
160  landa = landa0*ResidualA + landa1;
161  mu = mu0*std::pow(ResidualA,mu1);
162  nu = std::pow(ResidualA,mu1)*(nu0 + nu1*Ec + nu2*(Ec*Ec));
163  q = landa - nu/(Ec*Ec) - 2*p*Ec;
164  r = mu + 2*nu/Ec + p*(Ec*Ec);
165
166  ji=std::max(Kc,Ec);
167  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
168  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
169  if (xs <0.0) {xs=0.0;}
170
171  return xs; 
172
173}
174
175//************* OPT=2 : Welisch's proton reaction cross section ************************
176
177G4double G4PreCompoundProton::GetOpt2(const  G4double K)
178{
179
180  G4double rnpro,rnneu,eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
181 
182  //This is redundant when the Coulomb  barrier is overimposed to all cross sections
183  //It should be kept when Coulomb barrier only imposed at OPTxs=2
184
185  if(!useSICB && K<=theCoulombBarrier) return xine_th=0.0;
186
187  eekin=K;
188  rnpro=ResidualZ;
189  rnneu=ResidualA-ResidualZ;
190  ekin=eekin/1000;
191  r0=1.36*1.e-15;
192  fac=pi*r0*r0;
193  b0=2.247-0.915*(1.-1./ResidualAthrd);
194  fac1=b0*(1.-1./ResidualAthrd);
195  fac2=1.;
196  if(rnneu > 1.5) fac2=std::log(rnneu);
197  xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
198  xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);   
199  ff1=0.70-0.0020*ResidualA ;
200  ff2=1.00+1/ResidualA;
201  ff3=0.8+18/ResidualA-0.002*ResidualA;
202  fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2))));
203  xine_th=xine_th*(1.+ff3*fac);
204  ff1=1.-1/ResidualA-0.001*ResidualA;
205  ff2=1.17-2.7/ResidualA-0.0014*ResidualA;
206  fac=-8.*ff1*(std::log10(ekin)+2.0*ff2);
207  fac=1./(1.+std::exp(fac));
208  xine_th=xine_th*fac;           
209  if (xine_th < 0.0){
210    std::ostringstream errOs;
211    G4cout<<"WARNING:  negative Wellisch cross section "<<G4endl; 
212    errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
213    errOs <<"  xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
214    throw G4HadronicException(__FILE__, __LINE__, errOs.str());
215  }
216  return xine_th;
217           
218}
219
220
221// *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
222G4double G4PreCompoundProton::GetOpt3(const  G4double K)
223{
224  //     ** p from  becchetti and greenlees (but modified with sub-barrier
225  //     ** correction function and xp2 changed from -449)
226
227  G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2;
228  G4double p, p0, p1, p2;
229  p0 = 15.72;
230  p1 = 9.65;
231  p2 = -300.;
232  landa0 = 0.00437;
233  landa1 = -16.58;
234  mu0 = 244.7;
235  mu1 = 0.503;
236  nu0 = 273.1;
237  nu1 = -182.4;
238  nu2 = -1.872;
239 
240  // parameters for  proton cross section refinement
241  G4double afit,bfit,a2,b2;
242  afit=-0.0785656;
243  bfit=5.10789;
244  a2= -0.00089076;
245  b2= 0.0231597; 
246 
247  G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig; 
248  G4double b,ecut,cut,ecut2,geom,elab;
249 
250 
251  G4double      flow = 1.e-18;
252  G4double       spill= 1.e+18; 
253 
254 
255 
256  if (ResidualA <= 60.)  signor = 0.92;
257  else if (ResidualA < 100.) signor = 0.8 + ResidualA*0.002;
258 
259 
260  ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
261  ecsq = ec * ec;
262  p = p0 + p1/ec + p2/ecsq;
263  landa = landa0*ResidualA + landa1;
264  a = std::pow(ResidualA,mu1);
265  mu = mu0 * a;
266  nu = a* (nu0+nu1*ec+nu2*ecsq);
267 
268  c =std::min(3.15,ec*0.5);
269  w = 0.7 * c / 3.15; 
270 
271  xnulam = nu / landa;
272  if (xnulam > spill) xnulam=0.;
273  if (xnulam >= flow) etest =std::sqrt(xnulam) + 7.;
274 
275  a = -2.*p*ec + landa - nu/ecsq;
276  b = p*ecsq + mu + 2.*nu/ec;
277  ecut = 0.;
278  cut = a*a - 4.*p*b;
279  if (cut > 0.) ecut = std::sqrt(cut);
280  ecut = (ecut-a) / (p+p);
281  ecut2 = ecut;
282//JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
283//ecut<0 means that there is no cut with energy axis, i.e. xs is set to 0 bellow minimum
284//  if (cut < 0.) ecut2 = ecut - 2.;
285  if (cut < 0.) ecut2 = ecut;
286  elab = K * FragmentA / ResidualA;
287  sig = 0.;
288  if (elab <= ec) { //start for E<Ec
289    if (elab > ecut2)  sig = (p*elab*elab+a*elab+b) * signor;
290   
291    signor2 = (ec-elab-c) / w;
292    signor2 = 1. + std::exp(signor2);
293    sig = sig / signor2;
294  }              //end for E<=Ec
295  else{           //start for  E>Ec
296    sig = (landa*elab+mu+nu/elab) * signor;
297    geom = 0.;
298   
299    if (xnulam < flow || elab < etest) 
300      {
301        if (sig <0.0) {sig=0.0;}
302        return sig;
303      }
304    geom = std::sqrt(theA*K);
305    geom = 1.23*ResidualAthrd + ra + 4.573/geom;
306    geom = 31.416 * geom * geom;
307    sig = std::max(geom,sig);
308   
309  }   //end for E>Ec
310
311  return sig;
312}
313
314//   ************************** end of cross sections *******************************
315
316
317
Note: See TracBrowser for help on using the repository browser.