source: trunk/source/processes/hadronic/models/pre_equilibrium/exciton_model/src/G4PreCompoundProton.cc @ 1340

Last change on this file since 1340 was 1340, checked in by garnier, 14 years ago

update ti head

File size: 8.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4PreCompoundProton.cc,v 1.6 2010/08/28 15:16:55 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-03-ref-09 $
28//
29// -------------------------------------------------------------------
30//
31// GEANT4 Class file
32//
33//
34// File name:     G4PreCompoundProton
35//
36// Author:         V.Lara
37//
38// Modified: 
39// 21.08.2008 J. M. Quesada added external choice of inverse cross section option
40// 21.08.2008 J. M. Quesada added external choice for superimposed Coulomb
41//                          barrier (if useSICB=true)
42// 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
43//                         use int Z and A and cleanup
44//
45
46#include "G4PreCompoundProton.hh"
47#include "G4Proton.hh"
48
49G4PreCompoundProton::G4PreCompoundProton()
50  : G4PreCompoundNucleon(G4Proton::Proton(), &theProtonCoulombBarrier)
51{}
52
53G4PreCompoundProton::~G4PreCompoundProton()
54{}
55
56G4double G4PreCompoundProton::GetRj(G4int nParticles, G4int nCharged)
57{
58  G4double rj = 0.0;
59  if(nParticles > 0) { 
60    rj = static_cast<G4double>(nCharged)/static_cast<G4double>(nParticles);
61  }
62  return rj;
63}
64
65////////////////////////////////////////////////////////////////////////////////////
66//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
67//OPT=0 Dostrovski's parameterization
68//OPT=1 Chatterjee's paramaterization
69//OPT=2,4 Wellisch's parametarization
70//OPT=3 Kalbach's parameterization
71//
72G4double G4PreCompoundProton::CrossSection(G4double K)
73{
74  ResidualA = GetRestA();
75  ResidualZ = GetRestZ(); 
76  theA = GetA();
77  theZ = GetZ();
78  ResidualAthrd = ResidualA13();
79  FragmentA = theA + ResidualA;
80  FragmentAthrd = g4pow->Z13(FragmentA);
81
82  if (OPTxs==0) { return GetOpt0(K); }
83  else if( OPTxs==1) { return GetOpt1(K); }
84  else if( OPTxs==2|| OPTxs==4) { return GetOpt2(K); }
85  else if (OPTxs==3)  { return GetOpt3(K); }
86  else{
87    std::ostringstream errOs;
88    errOs << "BAD PROTON CROSS SECTION OPTION !!"  <<G4endl;
89    throw G4HadronicException(__FILE__, __LINE__, errOs.str());
90    return 0.;
91  }
92}
93
94G4double G4PreCompoundProton::GetAlpha()
95{
96  G4int aZ = ResidualZ;
97  G4double C = 0.0;
98  if (aZ >= 70) 
99    {
100      C = 0.10;
101    } 
102  else 
103    {
104      C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
105    }
106  return 1.0 + C;
107}
108
109G4double G4PreCompoundProton::GetBeta() 
110{
111  return -GetCoulombBarrier();
112}
113 
114//********************* OPT=1 : Chatterjee's cross section *********************
115//(fitting to cross section from Bechetti & Greenles OM potential)
116
117G4double G4PreCompoundProton::GetOpt1(G4double K)
118{
119  G4double Kc=K; 
120
121  // JMQ  xsec is set constat above limit of validity
122  if (K > 50*MeV) { Kc = 50*MeV; }
123
124  G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2,xs;
125  G4double p, p0, p1, p2,Ec,delta,q,r,ji;
126 
127  p0 = 15.72;
128  p1 = 9.65;
129  p2 = -449.0;
130  landa0 = 0.00437;
131  landa1 = -16.58;
132  mu0 = 244.7;
133  mu1 = 0.503;
134  nu0 = 273.1;
135  nu1 = -182.4;
136  nu2 = -1.872; 
137  delta=0.; 
138
139  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
140  p = p0 + p1/Ec + p2/(Ec*Ec);
141  landa = landa0*ResidualA + landa1;
142
143  G4double resmu1 = g4pow->powZ(ResidualA,mu1); 
144  mu = mu0*resmu1;
145  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
146  q = landa - nu/(Ec*Ec) - 2*p*Ec;
147  r = mu + 2*nu/Ec + p*(Ec*Ec);
148
149  ji=std::max(Kc,Ec);
150  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
151  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
152  if (xs <0.0) {xs=0.0;}
153
154  return xs; 
155}
156
157//************* OPT=2 : Welisch's proton reaction cross section ***************
158
159G4double G4PreCompoundProton::GetOpt2(G4double K)
160{
161
162  G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
163 
164  // This is redundant when the Coulomb  barrier is overimposed to all
165  // cross sections
166  // It should be kept when Coulomb barrier only imposed at OPTxs=2
167
168  if(!useSICB && K<=theCoulombBarrier) { return 0.0; }
169
170  eekin=K;
171  G4int rnneu=ResidualA-ResidualZ;
172  ekin=eekin/1000;
173  r0=1.36*1.e-15;
174  fac=pi*r0*r0;
175  b0=2.247-0.915*(1.-1./ResidualAthrd);
176  fac1=b0*(1.-1./ResidualAthrd);
177  fac2=1.;
178  if(rnneu > 1.5) { fac2 = g4pow->logZ(rnneu); }
179  xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
180  xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);   
181  ff1=0.70-0.0020*ResidualA;
182  ff2=1.00+1/ResidualA;
183  ff3=0.8+18/ResidualA-0.002*ResidualA;
184  fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2))));
185  xine_th=xine_th*(1.+ff3*fac);
186  ff1=1.-1/ResidualA-0.001*ResidualA;
187  ff2=1.17-2.7/ResidualA-0.0014*ResidualA;
188  fac=-8.*ff1*(std::log10(ekin)+2.0*ff2);
189  fac=1./(1.+std::exp(fac));
190  xine_th=xine_th*fac;           
191  if (xine_th < 0.0){
192    std::ostringstream errOs;
193    G4cout<<"WARNING:  negative Wellisch cross section "<<G4endl; 
194    errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
195    errOs <<"  xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
196    throw G4HadronicException(__FILE__, __LINE__, errOs.str());
197  }
198  return xine_th;
199}
200
201// *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
202G4double G4PreCompoundProton::GetOpt3(const  G4double K)
203{
204  //     ** p from  becchetti and greenlees (but modified with sub-barrier
205  //     ** correction function and xp2 changed from -449)
206
207  G4double landa, landa0, landa1, mu, mu0, mu1,nu, nu0, nu1, nu2;
208  G4double p, p0, p1, p2;
209  p0 = 15.72;
210  p1 = 9.65;
211  p2 = -300.;
212  landa0 = 0.00437;
213  landa1 = -16.58;
214  mu0 = 244.7;
215  mu1 = 0.503;
216  nu0 = 273.1;
217  nu1 = -182.4;
218  nu2 = -1.872;
219 
220  // parameters for  proton cross section refinement
221  G4double afit,bfit,a2,b2;
222  afit=-0.0785656;
223  bfit=5.10789;
224  a2= -0.00089076;
225  b2= 0.0231597; 
226 
227  G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig; 
228  G4double b,ecut,cut,ecut2,geom,elab;
229   
230  G4double      flow = 1.e-18;
231  G4double       spill= 1.e+18; 
232   
233  if (ResidualA <= 60.)  { signor = 0.92; }
234  else if (ResidualA < 100.) { signor = 0.8 + ResidualA*0.002; }
235 
236  ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
237  ecsq = ec * ec;
238  p = p0 + p1/ec + p2/ecsq;
239  landa = landa0*ResidualA + landa1;
240  a = g4pow->powZ(ResidualA,mu1);
241  mu = mu0 * a;
242  nu = a* (nu0+nu1*ec+nu2*ecsq);
243 
244  c =std::min(3.15,ec*0.5);
245  w = 0.7 * c / 3.15; 
246 
247  xnulam = nu / landa;
248  if (xnulam > spill) { xnulam=0.; }
249  if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
250 
251  a = -2.*p*ec + landa - nu/ecsq;
252  b = p*ecsq + mu + 2.*nu/ec;
253  ecut = 0.;
254  cut = a*a - 4.*p*b;
255  if (cut > 0.) { ecut = std::sqrt(cut); }
256  ecut = (ecut-a) / (p+p);
257  ecut2 = ecut;
258  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
259  // ecut<0 means that there is no cut with energy axis, i.e. xs is set
260  // to 0 bellow minimum
261  //  if (cut < 0.) ecut2 = ecut - 2.;
262  if (cut < 0.) { ecut2 = ecut; }
263  elab = K * FragmentA / ResidualA;
264  sig = 0.;
265  if (elab <= ec) { //start for E<Ec
266    if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
267   
268    signor2 = (ec-elab-c) / w;
269    signor2 = 1. + std::exp(signor2);
270    sig = sig / signor2;
271  }              //end for E<=Ec
272  else{           //start for  E>Ec
273    sig = (landa*elab+mu+nu/elab) * signor;
274    geom = 0.;
275   
276    if (xnulam < flow || elab < etest) 
277      {
278        if (sig <0.0) {sig=0.0;}
279        return sig;
280      }
281    geom = std::sqrt(theA*K);
282    geom = 1.23*ResidualAthrd + ra + 4.573/geom;
283    geom = 31.416 * geom * geom;
284    sig = std::max(geom,sig);
285   
286  }   //end for E>Ec
287  return sig;
288}
Note: See TracBrowser for help on using the repository browser.