Ignore:
Timestamp:
Jan 8, 2010, 3:02:48 PM (16 years ago)
Author:
garnier
Message:

update to geant4.9.3

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/examples/extended/radioactivedecay/exrdm/README

    r807 r1230  
    77                       --------------------
    88
    9   The exRDM is created to show how to use the G4RadioactiveDecay process to simulate the decays of radioactive
    10   isotopes as well as the induced radioactivity resulted from nuclear interactions. In the example a simple
    11   geometry consists of a cylindric target placed in the centre of a tube shaped detector is used. Various primary event
    12   generation and tallying options are available. More documentations are available at
     9  The exRDM is created to show how to use the G4RadioactiveDecay process to simulate the decays of
     10  radioactive isotopes as well as the induced radioactivity resulted from nuclear interactions.
     11
     12  In this example a simple geometry consists of a cylindric target placed in the centre of a tube detector
     13  is constructed. Various primary event generation and tallying options are available. Further documentations
     14  are available at
    1315
    1416          http://reat.space.qinetiq.com/septimess/exrdm
     
    3133                  5 cm long. The default material is "Germanium".
    3234
    33      The user can change the target/detector size and material at the at the "PreIni" state, using the commands under
     35     The user can change the target/detector size and material at the at the "PreIni" state, using the
     36     commands in the directory
    3437                 
    3538                /exrdm/det
    36 
    3739
    3840  2. PHYSICS
     
    5860                /grdm/selectVolume Target
    5961
    60 
    61 
    6262       - Hadronic processes:
    6363          Hadronic processes are not invoked by default. They can be activated by the user at the "PreIni"
    64           state of the execution via the command
     64          state via the command
    6565
    6666                /exrdm/phys/SelectPhysics
     
    7272                "QGSP_BERT", "QGSP_BIC", "QGSP_HP", "LHEP_BERT", "LHEP_BERT_HP", "LHEP_BIC",
    7373                "LHEP_BIC_HP".
    74 
    7574
    7675  3. EVENT:
     
    8483  4. DETECTOR RESPONSE:
    8584
    86      No Geant4 HITS and SD are defined in this example. All the relevant information of the simulation is extracted
    87      at the "UserSteppingAction" stage, if the variable "G4ANALYSIS_USE" is defined. These include:
     85     No Geant4 HITS and SD are defined in this example. If the variable "G4ANALYSIS_USE" is defined, all
     86     the relevant information of the simulation is collected  at the "UserSteppingAction" stage. These
     87     include:
    8888
    8989       - Emission particles in the RadioactiveDecay process:
     
    112112  6. ANALYSIS:
    113113
    114      This example implements an AIDA-compliant analysis system as well as the ROOT file format for
    115      histograms and ntuples. If the the user has an AIDA-compliant tool such as
    116      AIDAJNI, ANAPHE, or PI installed on his/her system, the analysis part of this example can
     114     This example implements an AIDA-compliant analysis system as well as the ROOT system, for accumulating
     115     and output histograms and ntuples. If the the user has an AIDA-compliant tool such as
     116     AIDAJNI, ANAPHE, OpenScientist or PI installed, the analysis part of this example can
    117117     be activated by
    118118       
    119         setenv G4ANALYSIS_USE_AIDA 1
    120 
    121      before building the executable.  The user can also add the "root" file format option by define
     119        setenv G4ANALYSIS_USE 1
     120
     121     before building the executable. 
     122
     123     The user can also use the executable with the ROOT system, if it is available. This is done by
    122124     
    123        setenv G4ANALYSIS_USE_RROT 1
     125       setenv G4ANALYSIS_USE_ROOT 1
    124126       
    125      before the compilation.
    126 
    127      At the completion of a simulation run a file "exrdm.root" by default is produced which contains
    128      these data structures. The user can change the name of this output file with the command
     127     again before the compilation. The AIDA and ROOT systems can be used individually, or in parallel
     128     at the same time!
     129
     130     If no analysis system is activated, there is no output file produced apart from the screen dump.
     131     A file called "exrdm.aida" is produced by default for AIDA system and "exrdm.root" if the ROOT
     132     system is selected.
     133 
     134     The user can change the name of this output file with the command
    129135
    130136        /histo/fileName new-filename
    131137
    132      The output file by default is in "root" format and can be analysed offline using the ROOT tool,
    133      which allows the histograms and ntuples to examined, manipulated, saved and printed.
    134 
    135      User can also change the output file format to "hbook"  or "xml" using the commands
     138     The output AIDA file by default is in xml format. The AIDA system allows the use of other file format
     139     such as "root" and "hbook". User can change the output format to "hbook"  or "root" using the command
     140     /histo/fileType.e.g.
    136141       
    137142        /histo/fileType hbook 
    138         /histo/fileType xml
     143        /histo/fileType root
    139144     
    140      The output file, in "xml" or "hbook" or "root" format, conatins the 3 ntuples (100,200,300) whose details have been
    141      described in section 4. In addition, there are 7 histograms in the file:
     145     When "root" format is selected for the AIDA system, the output AIDA file name is changed to
     146     fileName_aida.root. This is to separate it from the the ROOT system output file fileName.root, in case
     147     both systems are used.
     148   
     149     The output file, in "aida" or "hbook" or "root" format, conatins the 3 ntuples (100,200,300) which have
     150     been described in section 4. In addition, there are 7 histograms in the file:
    142151
    143152        histogram 10: The Pulse Height Spectrum (PHS) of the target.
     
    153162        /histo/setHisto
    154163
    155      It is assumed the detector and target pulses both have an integration time of 1 micro-second, and the
    156      coincidence gate is 2 microsecond wide. The target and detctor have a threshold of 10 keV in the
    157      anti-/coincidence modes.       
     164     It is assumed the detector and target pulses both have an integration time of 1 microsecond, and the
     165     gate is 2 microsecond for the coincidence spectrum. The target and detctor have a threshold of 10 keV
     166     in the anti-/coincidence modes.       
    158167
    159168     Histograms 10-15 were derived from the same data stored in ntuple-300(the energy depositions), while
    160169     Histogram 16 is obtained with data in ntuple-100 (the emission particles). The user should be able to
    161      reproduce these histograms, or new histograms, with the ntuple data in an analyis tool such as JAS3.
    162        
     170     reproduce these histograms, or new histograms, with the ntuple data in an off-line analyis tool.
    163171
    164172  7. GETTING STARTED:
     
    167175     example by
    168176
    169         setenv G4ANALYSIS_USE_AIDA 1
    170  
    171      in addition if you want to add the ROOT file format, do
     177        setenv G4ANALYSIS_USE 1
     178 
     179     in addition if you want to add the ROOT link to the ROOT system, do
    172180       
    173181        setenv G4ANALYSIS_USE_ROOT 1
    174182
    175      otherwise make sure the G4ANALYSIS_USE_AIDA and G4ANALYSIS_USE_ROOT are not definded
    176  
    177         unsetenv G4ANALYSIS_USE_AIDA
     183     Otherwise make sure the G4ANALYSIS_USE and G4ANALYSIS_USE_ROOT are not definded
     184 
     185        unsetenv G4ANALYSIS_USE
    178186        unsetenv G4ANALYSIS_USE_ROOT
    179187         
     
    184192         gmake
    185193
    186      gmake will create tmp and bin directories in your $G4TMP and $G4BIN directories.
     194     Depends on the setup, gmake will create tmp and bin directories in your $G4TMP and $G4BIN directories.
    187195     The executable, named exRDM, will be in $G4BIN/$G4SYSTEM/ directory.
    188196
     
    191199         $G4BIN/$G4SYSTEM/exRDM exrdm.in
    192200
    193      If all goes well, the execution shall be terminated in a few seconds. If G4ANALYSIS_USE_ROOT is
    194      defined, there will be a proton.root file in the current directory.
    195 
    196      One can use ROOT to exam the file.
     201     If all goes well, the execution shall be terminated in a few seconds. If G4ANALYSIS_USE is defined, one
     202     should see a "proton.aida" file created. If G4ANALYSIS_USE_ROOT is defined, there will be
     203     a proton.root file in the same directory.
    197204
    198205 8. FURTHER EXAMPLES:
    199206
    200     There are a number of g4mac files in the ./macros subdirectory, to show the features of the G4RadioactiveDecay
    201     process. Most of them will lead to the creation of an aida file in the same name of the micro file, which can
    202     be examed and analysed with an analysis tool such as ROOT.
     207    There are a number of g4mac files in the ./macros subdirectory, to show the features of the
     208    G4RadioactiveDecay process. Most of them will lead to the creation of an aida file in the same name
     209    of the micro file, which can be examed and analysed with an analysis tool such as OpenScientist ,or JAS3.
    203210 
    204211        vrml.mac:  to visulise the geometry and the incident of one 100 MeV Cf240 isotope and its decay. A vrml
Note: See TracChangeset for help on using the changeset viewer.