| [385] | 1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 2 | \NeedsTeXFormat{LaTeX2e} | 
|---|
|  | 3 | \documentclass[12pt,a4paper]{article} | 
|---|
|  | 4 |  | 
|---|
|  | 5 | %-- used packages ------------------------------------------------------ | 
|---|
|  | 6 |  | 
|---|
|  | 7 | \usepackage{cite} | 
|---|
|  | 8 | \usepackage{graphicx} | 
|---|
|  | 9 | \usepackage{epsfig} | 
|---|
|  | 10 | \usepackage{amssymb} | 
|---|
|  | 11 | \usepackage{amsmath} | 
|---|
|  | 12 | \usepackage{latexsym} | 
|---|
|  | 13 |  | 
|---|
|  | 14 |  | 
|---|
|  | 15 | %-- page parameters ------------------------------------------------- | 
|---|
|  | 16 |  | 
|---|
|  | 17 | \jot = 1.5ex | 
|---|
|  | 18 | \parskip 5pt plus 1pt | 
|---|
|  | 19 | %\parindent 0pt | 
|---|
|  | 20 | \evensidemargin -0.1in   \oddsidemargin  -0.1in | 
|---|
|  | 21 | \textwidth  6.5in       \textheight 9.4in | 
|---|
|  | 22 | \topmargin -.8cm        \headsep    1.0cm | 
|---|
|  | 23 |  | 
|---|
|  | 24 | %-- command (re)definitions ----------------------------------------- | 
|---|
|  | 25 |  | 
|---|
|  | 26 | \newcommand{\capdef}{} | 
|---|
|  | 27 | %\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}% | 
|---|
|  | 28 | %       \caption[#1]{{\itshape #2}}} | 
|---|
|  | 29 | \newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}% | 
|---|
|  | 30 | \caption[#1]{{\footnotesize #2}}} | 
|---|
|  | 31 | \makeatletter | 
|---|
|  | 32 | \renewcommand{\fnum@table}{\textbf{\tablename~\thetable}} | 
|---|
|  | 33 | \renewcommand{\fnum@figure}{\textbf{\figurename~\thefigure}} | 
|---|
|  | 34 | \makeatother | 
|---|
|  | 35 | \def\ltap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$<$}\ } | 
|---|
|  | 36 | \def\gtap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$>$}\ } | 
|---|
|  | 37 |  | 
|---|
|  | 38 | \newcounter{myenumi} | 
|---|
|  | 39 | \newcommand{\myitem}{\refstepcounter{myenumi}\item} | 
|---|
|  | 40 | \renewcommand{\themyenumi}{\roman{myenumi}} | 
|---|
|  | 41 | \newenvironment{mylist}{% | 
|---|
|  | 42 | \setcounter{myenumi}{0} | 
|---|
|  | 43 | \begin{list}{\textit{\themyenumi)}}{% | 
|---|
|  | 44 | \setlength{\topsep}{0.2\baselineskip}% | 
|---|
|  | 45 | \setlength{\partopsep}{-\topsep}% | 
|---|
|  | 46 | \setlength{\itemsep}{\topsep}% | 
|---|
|  | 47 | \setlength{\parsep}{0\baselineskip}% | 
|---|
|  | 48 | \setlength{\leftmargin}{0em}% | 
|---|
|  | 49 | \setlength{\listparindent}{\parindent}% | 
|---|
|  | 50 | \setlength{\itemindent}{2.5em}% | 
|---|
|  | 51 | \setlength{\labelwidth}{1.5em}% | 
|---|
|  | 52 | \setlength{\labelsep}{0.75em}}}% | 
|---|
|  | 53 | {\end{list}} | 
|---|
|  | 54 |  | 
|---|
|  | 55 | \newlength{\myem} | 
|---|
|  | 56 | \settowidth{\myem}{m} | 
|---|
|  | 57 | \newcommand{\sep}[1]{#1} | 
|---|
|  | 58 | \newcounter{mysubequation}[equation] | 
|---|
|  | 59 | \renewcommand{\themysubequation}{\alph{mysubequation}} | 
|---|
|  | 60 | \newcommand{\mytag}{\stepcounter{mysubequation}% | 
|---|
|  | 61 | \tag{\theequation\protect\sep{\themysubequation}}} | 
|---|
|  | 62 | \newcommand{\globallabel}[1]{\refstepcounter{equation}\label{#1}} | 
|---|
|  | 63 |  | 
|---|
|  | 64 | \makeatletter | 
|---|
|  | 65 | \renewcommand{\section}{\@startsection{section}{1}{0em}{-\baselineskip}% | 
|---|
|  | 66 | {\baselineskip}{\normalfont\large\bfseries}} | 
|---|
|  | 67 | \renewcommand{\subsection}% | 
|---|
|  | 68 | {\@startsection{subsection}{2}{0em}{-0.7\baselineskip}% | 
|---|
|  | 69 | {0.7\baselineskip}{\normalfont\bfseries}} | 
|---|
|  | 70 | \makeatother | 
|---|
|  | 71 |  | 
|---|
|  | 72 |  | 
|---|
|  | 73 | %%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 74 | % definitions | 
|---|
|  | 75 | %%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 76 | \newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}} | 
|---|
|  | 77 | \newcommand{\etal}{\textit{et al.}} | 
|---|
|  | 78 | \newcommand{\stheta}{\ensuremath{\sin^22\theta_{13}}} | 
|---|
|  | 79 | \newcommand{\BB}{$\beta$B} | 
|---|
|  | 80 | \newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{31})}} | 
|---|
|  | 81 | \newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}} | 
|---|
|  | 82 | \newcommand{\thetatt}{\ensuremath{\theta_{23}}} | 
|---|
|  | 83 |  | 
|---|
|  | 84 | \def\nubar{$\overline{\nu}\ $} | 
|---|
|  | 85 | \def\nue{\ensuremath{\nu_{e}}} | 
|---|
|  | 86 | \def\nubare{\ensuremath{\overline{\nu}_{e}}} | 
|---|
|  | 87 | \def\nubarecc{$\overline{\nu}_{e}^{CC}\ $} | 
|---|
|  | 88 | \def\numu{\ensuremath{\nu_{\mu}\ }} | 
|---|
|  | 89 | \def\nubarmu{\ensuremath{\overline{\nu}_{\mu}}} | 
|---|
|  | 90 | \def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $} | 
|---|
|  | 91 | \def\nutau{\ensuremath{\nu_{\tau}\ }} | 
|---|
|  | 92 | \def\nubartau{\ensuremath{\overline{\nu}_{\tau}}} | 
|---|
|  | 93 | \newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}} | 
|---|
|  | 94 | \newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}} | 
|---|
|  | 95 | \newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}} | 
|---|
|  | 96 | \newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}} | 
|---|
|  | 97 | \newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}} | 
|---|
|  | 98 | \newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}} | 
|---|
|  | 99 |  | 
|---|
|  | 100 | \newcommand{\He}{\ensuremath{^6{\mathrm{He}}}} | 
|---|
|  | 101 | \newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}}}} | 
|---|
|  | 102 | \def\Li{^6{\mathrm{Li}}} | 
|---|
|  | 103 | \def\anue{\overline{{\mathrm\nu}}_{\mathrm e}} | 
|---|
|  | 104 | \def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}} | 
|---|
|  | 105 | \newcommand{\thetaot}{\ensuremath{\theta_{13}}\,} | 
|---|
|  | 106 | \newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}} | 
|---|
|  | 107 | \newcommand{\nueovernumu}{\ensuremath{\nue/\numu}} | 
|---|
|  | 108 |  | 
|---|
|  | 109 |  | 
|---|
|  | 110 |  | 
|---|
|  | 111 | \begin{document} | 
|---|
|  | 112 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 113 | %%%%                     Title-page                              %%%% | 
|---|
|  | 114 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 115 |  | 
|---|
|  | 116 | %\begin{titlepage} | 
|---|
|  | 117 |  | 
|---|
|  | 118 | % the footnote symbols are only redefined for the title page ! | 
|---|
|  | 119 | \renewcommand{\thefootnote}{\alph{footnote}} | 
|---|
|  | 120 |  | 
|---|
|  | 121 | \begin{flushright} | 
|---|
|  | 122 | LAL-06-35\\ | 
|---|
|  | 123 | IC/2006/011\\ | 
|---|
|  | 124 | SISSA 16/2006/EP\\ | 
|---|
|  | 125 | \end{flushright} | 
|---|
|  | 126 |  | 
|---|
|  | 127 | \vspace*{1cm} | 
|---|
|  | 128 |  | 
|---|
|  | 129 | \renewcommand{\thefootnote}{\fnsymbol{footnote}} | 
|---|
|  | 130 | \setcounter{footnote}{-1} | 
|---|
|  | 131 |  | 
|---|
|  | 132 | {\begin{center} | 
|---|
|  | 133 | {\Large\textbf{ | 
|---|
|  | 134 | Physics potential of the CERN--MEMPHYS\\[2mm] | 
|---|
|  | 135 | neutrino oscillation project} | 
|---|
|  | 136 | } | 
|---|
|  | 137 | \end{center}} | 
|---|
|  | 138 |  | 
|---|
|  | 139 | \vspace*{.8cm} | 
|---|
|  | 140 |  | 
|---|
|  | 141 | \begin{center} {\bf | 
|---|
|  | 142 | J.-E.\ Campagne$^a$, | 
|---|
|  | 143 | M.\ Maltoni$^b$, | 
|---|
|  | 144 | M.\ Mezzetto$^c$, and | 
|---|
|  | 145 | T.\ Schwetz$^d$} | 
|---|
|  | 146 | \end{center} | 
|---|
|  | 147 |  | 
|---|
|  | 148 | {\it | 
|---|
|  | 149 | \begin{center} | 
|---|
|  | 150 | $^a$Laboratoire de l'Acc\'el\'erateur Lin\'eaire, | 
|---|
|  | 151 | IN2P3-CNRS and Universit\'e PARIS-SUD 11\\ | 
|---|
|  | 152 | Centre Scientifique d'Orsay-B\^at.\ 200-B.P.\ 34, | 
|---|
|  | 153 | 91898 Orsay Cedex, France\\[2mm] | 
|---|
|  | 154 | % | 
|---|
|  | 155 | $^b$International Centre for Theoretical Physics, | 
|---|
|  | 156 | Strada Costiera 11, 31014 Trieste, Italy\\[2mm] | 
|---|
|  | 157 | % | 
|---|
|  | 158 | $^c$Istituto Nazionale Fisica Nucleare, Sezione di Padova, | 
|---|
|  | 159 | Via Marzolo 8, 35100 Padova, Italy\\[2mm] | 
|---|
|  | 160 | % | 
|---|
|  | 161 | $^d$Scuola Internazionale Superiore di Studi Avanzati, | 
|---|
|  | 162 | Via Beirut 2--4, 34014 Trieste, Italy | 
|---|
|  | 163 | \end{center}} | 
|---|
|  | 164 |  | 
|---|
|  | 165 | \vspace*{0.5cm} | 
|---|
|  | 166 |  | 
|---|
|  | 167 |  | 
|---|
|  | 168 | \begin{abstract} | 
|---|
|  | 169 | We consider the physics potential of CERN based neutrino oscillation | 
|---|
|  | 170 | experiments consisting of a Beta Beam (\BB) and a Super Beam (SPL) | 
|---|
|  | 171 | sending neutrinos to MEMPHYS, a 440~kt water \v{C}erenkov detector at | 
|---|
|  | 172 | Fr\'ejus, at a distance of 130~km from CERN. The $\theta_{13}$ | 
|---|
|  | 173 | discovery reach and the sensitivity to CP violation are investigated, | 
|---|
|  | 174 | including a detailed discussion of parameter degeneracies and | 
|---|
|  | 175 | systematical errors. For SPL sensitivities similar to the ones of the | 
|---|
|  | 176 | phase~II of the T2K experiment (T2HK) are obtained, whereas the \BB\ | 
|---|
|  | 177 | may reach significantly better sensitivities, depending on the | 
|---|
|  | 178 | achieved number of total ion decays.  The results for the | 
|---|
|  | 179 | CERN--MEMPHYS experiments are less affected by systematical | 
|---|
|  | 180 | uncertainties than T2HK. | 
|---|
|  | 181 | % | 
|---|
|  | 182 | We point out that by a combination of data from \BB\ and SPL a | 
|---|
|  | 183 | measurement with antineutrinos is not necessary and hence the same | 
|---|
|  | 184 | physics results can be obtained within about half of the measurement time | 
|---|
|  | 185 | compared to one single experiment. | 
|---|
|  | 186 | % | 
|---|
|  | 187 | Furthermore, it is shown how including data from atmospheric neutrinos in | 
|---|
|  | 188 | the MEMPHYS detector allows to resolve parameter degeneracies and, in | 
|---|
|  | 189 | particular, provides sensitivity to the neutrino mass hierarchy and | 
|---|
|  | 190 | the octant of $\theta_{23}$. | 
|---|
|  | 191 | %\pacs{14.60.Pq, 14.60.Lm} | 
|---|
|  | 192 | \end{abstract} | 
|---|
|  | 193 |  | 
|---|
|  | 194 | \renewcommand{\thefootnote}{\arabic{footnote}} | 
|---|
|  | 195 | \setcounter{footnote}{0} | 
|---|
|  | 196 |  | 
|---|
|  | 197 | \newpage | 
|---|
|  | 198 | %\tableofcontents | 
|---|
|  | 199 |  | 
|---|
|  | 200 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 201 | \section{Introduction} | 
|---|
|  | 202 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 203 |  | 
|---|
|  | 204 | In recent years strong evidence for neutrino oscillations has been | 
|---|
|  | 205 | obtained in solar~\cite{solar}, atmospheric~\cite{sk-atm}, | 
|---|
|  | 206 | reactor~\cite{Araki:2004mb}, and accelerator~\cite{Aliu:2004sq} | 
|---|
|  | 207 | neutrino experiments. The very near future of long-baseline (LBL) | 
|---|
|  | 208 | neutrino experiments is devoted to the study of the oscillation | 
|---|
|  | 209 | mechanism in the range of $\Delta m^2_{31} \approx 2.4\times10^{-3} \: | 
|---|
|  | 210 | \mathrm{eV}^2$ indicated by atmospheric neutrinos using conventional | 
|---|
|  | 211 | $\nu_\mu$ beams.  Similar as in the K2K experiment in | 
|---|
|  | 212 | Japan~\cite{Aliu:2004sq}, the presently running MINOS experiment in | 
|---|
|  | 213 | the USA~\cite{MINOS} uses a low energy beam to measure $\Delta m^2_{31}$ by | 
|---|
|  | 214 | observing the $\nu_\mu\rightarrow\nu_\mu$ disappearance probability, | 
|---|
|  | 215 | while the forthcoming OPERA~\cite{OPERA} experiment will be able to | 
|---|
|  | 216 | detect $\nu_\tau$ appearance within the high energy CERN--Gran Sasso | 
|---|
|  | 217 | beam~\cite{CNGS}. | 
|---|
|  | 218 | % | 
|---|
|  | 219 | If we do not consider the LSND anomaly~\cite{LSND} that will be | 
|---|
|  | 220 | further studied soon by the MiniBooNE experiment~\cite{MINIBOONE}, all | 
|---|
|  | 221 | data can be accommodated within the three flavor scenario (see | 
|---|
|  | 222 | Refs.~\cite{FOGLILISI05,Maltoni:2004ei} for recent global analyses), | 
|---|
|  | 223 | and neutrino oscillations are described by two neutrino mass-squared | 
|---|
|  | 224 | differences ($\Delta m^2_{21}$ and $\Delta m^2_{31}$) and the $3\times | 
|---|
|  | 225 | 3$ unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing | 
|---|
|  | 226 | matrix~\cite{PMNS} with three angles | 
|---|
|  | 227 | ($\theta_{12}$,$\theta_{13}$,$\theta_{23}$) and one Dirac CP phase | 
|---|
|  | 228 | $\delCP$. | 
|---|
|  | 229 |  | 
|---|
|  | 230 | Future tasks of neutrino physics are an improved sensitivity to the | 
|---|
|  | 231 | last unknown mixing angle, $\theta_{13}$, to explore the CP violation | 
|---|
|  | 232 | mechanism in the leptonic sector, and to determine the sign of $\Delta | 
|---|
|  | 233 | m^2_{31}$ which describes the type of the neutrino mass hierarchy | 
|---|
|  | 234 | (normal, $\Delta m^2_{31} > 0$ or inverted, $\Delta m^2_{31} < 0$). | 
|---|
|  | 235 | % | 
|---|
|  | 236 | The present upper bound on $\theta_{13}$ is dominated by the | 
|---|
|  | 237 | constraint from the Chooz reactor experiment~\cite{CHOOZ}. A global | 
|---|
|  | 238 | analysis of all data yields $\sin^22\theta_{13}<0.082$ at | 
|---|
|  | 239 | 90\%~CL~\cite{Maltoni:2004ei}. A main purpose of upcoming reactor and | 
|---|
|  | 240 | accelerator experiments is to improve this bound or to reveal a finite | 
|---|
|  | 241 | value of $\theta_{13}$. In reactor experiments, one uses $\bar{\nu}_e$ | 
|---|
|  | 242 | in disappearance mode and the sensitivity is increased with respect to | 
|---|
|  | 243 | present experiments by the use of a near detector close to the | 
|---|
|  | 244 | reactor~\cite{Wpaper}. In accelerator experiments, the first | 
|---|
|  | 245 | generation of so-called Super Beams with sub-mega watt proton drivers | 
|---|
|  | 246 | such as T2K (phase-I)~\cite{T2K} and NO$\nu$A~\cite{Ayres:2004js}, the | 
|---|
|  | 247 | appearance channel $\nu_\mu\to\nu_e$ is explored. This next generation | 
|---|
|  | 248 | of reactor and Super Beam experiments will reach sensitivities of the | 
|---|
|  | 249 | order of $\sin^22\theta_{13} \lesssim 0.01$ ($90\%$~CL) within a time | 
|---|
|  | 250 | scale of several years~\cite{Huber:2003pm}. | 
|---|
|  | 251 | % | 
|---|
|  | 252 | Beyond this medium term program, there are several projects on how to | 
|---|
|  | 253 | enter the high precision age in neutrino oscillations and to attack | 
|---|
|  | 254 | the ultimate goals like the discovery of leptonic CP violation or the | 
|---|
|  | 255 | determination of the neutrino mass hierarchy. In accelerator | 
|---|
|  | 256 | experiments, one can extend the Super Beam concept by moving to | 
|---|
|  | 257 | multi-mega watt proton drivers~\cite{T2K,Albrow:2005kw,SPL,BNLHS} or | 
|---|
|  | 258 | apply novel technologies, such as neutrino beams from decaying ions | 
|---|
|  | 259 | (so-called Beta Beams)~\cite{zucchelli,Albright:2004iw} or from | 
|---|
|  | 260 | decaying muons (so-called Neutrino | 
|---|
|  | 261 | Factories)~\cite{Albright:2004iw,Blondel:2004ae}. | 
|---|
|  | 262 |  | 
|---|
|  | 263 | In this work we focus on possible future neutrino oscillation | 
|---|
|  | 264 | facilities hosted at CERN, namely a multi-mega watt Super Beam | 
|---|
|  | 265 | experiment based on a Super Proton Linac (SPL)~\cite{Campagne:2004wt} | 
|---|
|  | 266 | and a $\gamma = 100$ Beta Beam | 
|---|
|  | 267 | (\BB)~\cite{Mezzetto:2003ub}. These experiments will search for | 
|---|
|  | 268 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to | 
|---|
|  | 269 | \stackrel{\scriptscriptstyle(-)}{\nu}_e$ and | 
|---|
|  | 270 | $\stackrel{\scriptscriptstyle (-)}{\nu}_e \to | 
|---|
|  | 271 | \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ appearance, respectively, | 
|---|
|  | 272 | by sending the neutrinos to a mega ton scale water \v{C}erenkov | 
|---|
|  | 273 | detector (MEMPHYS)~\cite{memphys}, located at a distance of 130~km from | 
|---|
|  | 274 | CERN under the Fr\'ejus mountain. Similar detectors are under | 
|---|
|  | 275 | consideration also in the US (UNO~\cite{UNO}) and in Japan | 
|---|
|  | 276 | (Hyper-K~\cite{T2K,Nakamura:2003hk}). | 
|---|
|  | 277 | % | 
|---|
|  | 278 | We perform a detailed analysis of the SPL and \BB\ physics | 
|---|
|  | 279 | potential, discussing the discovery reach for $\theta_{13}$ and | 
|---|
|  | 280 | leptonic CP violation. In addition we consider the possibility to | 
|---|
|  | 281 | resolve parameter degeneracies in the LBL data by using the | 
|---|
|  | 282 | atmospheric neutrinos available in the mega ton | 
|---|
|  | 283 | detector~\cite{Huber:2005ep}. This leads to a sensitivity to the | 
|---|
|  | 284 | neutrino mass hierarchy of the CERN--MEMPHYS experiments, despite the | 
|---|
|  | 285 | rather short baseline. | 
|---|
|  | 286 | % | 
|---|
|  | 287 | The physics performances of \BB\ and SPL are compared to the ones | 
|---|
|  | 288 | obtainable at the second phase of the T2K experiment in Japan, which | 
|---|
|  | 289 | is based on an upgraded version of the original T2K beam and the | 
|---|
|  | 290 | Hyper-K detector (T2HK)~\cite{T2K}. | 
|---|
|  | 291 |  | 
|---|
|  | 292 | The outline of the paper is as follows.  In Sec.~\ref{sec:analysis} we | 
|---|
|  | 293 | summarize the main characteristics of the \BB, SPL, and T2HK | 
|---|
|  | 294 | experiments and give general details of the physics analysis methods, | 
|---|
|  | 295 | whereas in Sec.~\ref{sec:experiments} we describe in some detail the | 
|---|
|  | 296 | MEMPHYS detector, the \BB, and the SPL Super Beam. In | 
|---|
|  | 297 | Sec.~\ref{sec:degeneracies} we review the problem of parameter | 
|---|
|  | 298 | degeneracies and discuss its implications for the experiments under | 
|---|
|  | 299 | consideration. In Sec.~\ref{sec:sensitivities} we present the | 
|---|
|  | 300 | sensitivities to the ``atmospheric parameters'' $\theta_{23}$ and | 
|---|
|  | 301 | $\Delta m^2_{31}$, the $\theta_{13}$ discovery potential, and the | 
|---|
|  | 302 | sensitivity to CP violation. We also investigate in some detail the | 
|---|
|  | 303 | impact of systematical errors. In Sec.~\ref{sec:synergies} we discuss | 
|---|
|  | 304 | synergies which are offered by the CERN--MEMPHYS facilities.  We | 
|---|
|  | 305 | point out advantages of the case when \BB\ and SPL are available | 
|---|
|  | 306 | simultaneously, and we consider the use of atmospheric neutrino data in | 
|---|
|  | 307 | MEMPHYS in combination with the LBL experiments. Our results are | 
|---|
|  | 308 | summarized in Sec.~\ref{sec:conclusions}. | 
|---|
|  | 309 |  | 
|---|
|  | 310 |  | 
|---|
|  | 311 |  | 
|---|
|  | 312 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 313 | \section{Experiments overview and analysis methods} | 
|---|
|  | 314 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 315 | \label{sec:analysis} | 
|---|
|  | 316 |  | 
|---|
|  | 317 | In this section we give the most important experimental parameters | 
|---|
|  | 318 | which we adopt for the simulation of the CERN--MEMPHYS experiments | 
|---|
|  | 319 | \BB\ and SPL, as well as for the T2HK experiment in Japan. These | 
|---|
|  | 320 | parameters are summarized in Tab.~\ref{tab:setups}. For all | 
|---|
|  | 321 | experiments the detector mass is 440~kt, and the running time is 10 | 
|---|
|  | 322 | years, with a division in neutrino and antineutrino running time in | 
|---|
|  | 323 | such a way that roughly an equal number of events is obtained. We | 
|---|
|  | 324 | always use the total available information from appearance as well as | 
|---|
|  | 325 | disappearance channels including the energy spectrum. For all three | 
|---|
|  | 326 | experiments we adopt rather optimistic values for the systematical | 
|---|
|  | 327 | uncertainties of 2\% as default values, but we also consider the case | 
|---|
|  | 328 | when systematics are increased to 5\%. These errors are uncorrelated | 
|---|
|  | 329 | between the various signal channels (neutrinos and antineutrinos), and | 
|---|
|  | 330 | between signals and backgrounds. | 
|---|
|  | 331 |  | 
|---|
|  | 332 | \begin{table} | 
|---|
|  | 333 | \centering | 
|---|
|  | 334 | \begin{tabular}{lcc@{\qquad\qquad}c} | 
|---|
|  | 335 | \hline\noalign{\smallskip} | 
|---|
|  | 336 | & \BB & SPL & T2HK \\ | 
|---|
|  | 337 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 338 | Detector mass & 440~kt & 440~kt & 440~kt\\ | 
|---|
|  | 339 | Baseline      & 130 km & 130 km & 295 km \\ | 
|---|
|  | 340 | Running time ($\nu + \bar\nu$) | 
|---|
|  | 341 | & 5 + 5 yr & 2 + 8 yr & 2 + 8 yr \\ | 
|---|
|  | 342 | Beam intensity  & $5.8\,(2.2) \cdot 10^{18}$ He (Ne) dcys/yr & 4 MW & 4 MW\\ | 
|---|
|  | 343 | Systematics on signal  & 2\% & 2\% & 2\%\\ | 
|---|
|  | 344 | Systematics on backgr. & 2\% & 2\% & 2\%\\ | 
|---|
|  | 345 | \noalign{\smallskip}\hline | 
|---|
|  | 346 | \end{tabular} | 
|---|
|  | 347 | \mycaption{Summary of default parameters used for the simulation of the | 
|---|
|  | 348 | \BB, SPL, and T2HK experiments.\label{tab:setups}} | 
|---|
|  | 349 | \end{table} | 
|---|
|  | 350 |  | 
|---|
|  | 351 | A more detailed description of the CERN--MEMPHYS experiments is given | 
|---|
|  | 352 | in Sec.~\ref{sec:experiments}. For the T2HK simulation we use the | 
|---|
|  | 353 | setup provided by GLoBES~\cite{Globes} based on | 
|---|
|  | 354 | Ref.~\cite{Huber:2002mx}, which follows closely the LOI~\cite{T2K}. In | 
|---|
|  | 355 | order to allow a fair comparison we introduce the following changes | 
|---|
|  | 356 | with respect to the configuration used in Ref.~\cite{Huber:2002mx}: | 
|---|
|  | 357 | The fiducial mass is set to 440~kt, the systematical errors on the | 
|---|
|  | 358 | background and on the $\nu_e$ and $\bar\nu_e$ appearance signals is | 
|---|
|  | 359 | set to 2\%, and we use a total running time of 10 years, divided into | 
|---|
|  | 360 | 2 years of data taking with neutrinos and 8 years with | 
|---|
|  | 361 | antineutrinos. We include an additional background from the | 
|---|
|  | 362 | $\bar\nu_\mu \to \bar\nu_e$ ($\nu_\mu \to \nu_e$) channel in the | 
|---|
|  | 363 | neutrino (antineutrino) mode. Furthermore, we use | 
|---|
|  | 364 | the same CC detection cross section as for the \BB/SPL | 
|---|
|  | 365 | analysis~\cite{Nuance}. For more details see | 
|---|
|  | 366 | Refs.~\cite{T2K,Huber:2002mx}. | 
|---|
|  | 367 |  | 
|---|
|  | 368 | \begin{table} | 
|---|
|  | 369 | \centering | 
|---|
|  | 370 | \begin{tabular}{lcccccc} | 
|---|
|  | 371 | \hline\noalign{\smallskip} | 
|---|
|  | 372 | & \centre{2}{\BB} & \centre{2}{SPL} & \centre{2}{T2HK} \\ | 
|---|
|  | 373 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 374 | & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$\\ | 
|---|
|  | 375 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 376 | % | 
|---|
|  | 377 | appearance $\nu$ & & & & & & \\ | 
|---|
|  | 378 | background       & \centre{2}{143} &\centre{2}{622} &\centre{2}{898}\\ | 
|---|
|  | 379 | $\stheta=0$      & \centre{2}{28}  &\centre{2}{51}  &\centre{2}{83}  \\ | 
|---|
|  | 380 | $\stheta=10^{-3}$&    76  &   88   &   105  &   14  &   178 &    17  \\ | 
|---|
|  | 381 | $\stheta=10^{-2}$&   326  &  365   &   423  &  137  &   746 &   238  \\ | 
|---|
|  | 382 | % | 
|---|
|  | 383 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 384 | % | 
|---|
|  | 385 | appearance $\bar\nu$ & & & & & & \\ | 
|---|
|  | 386 | background       & \centre{2}{157} &\centre{2}{640} &\centre{2}{1510}\\ | 
|---|
|  | 387 | $\stheta=0$      & \centre{2}{31}  &\centre{2}{57}  &\centre{2}{93}  \\ | 
|---|
|  | 388 | $\stheta=10^{-3}$&    83  &   12   &   102  &  146  &   192 &   269  \\ | 
|---|
|  | 389 | $\stheta=10^{-2}$&   351  &  126   &   376  &  516  &   762 &  1007  \\ | 
|---|
|  | 390 | % | 
|---|
|  | 391 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 392 | % | 
|---|
|  | 393 | disapp. $\nu$ &\centre{2}{100315}&\centre{2}{21653}&\centre{2}{24949}\\ | 
|---|
|  | 394 | background    & \centre{2}{6}   &\centre{2}{1}    &\centre{2}{444}\\ | 
|---|
|  | 395 | disapp. $\bar\nu$&\centre{2}{84125}&\centre{2}{18321}&\centre{2}{34650}\\ | 
|---|
|  | 396 | background       &\centre{2}{5}    &\centre{2}{1}    &\centre{2}{725}\\ | 
|---|
|  | 397 | \noalign{\smallskip}\hline | 
|---|
|  | 398 | % | 
|---|
|  | 399 | \end{tabular} | 
|---|
|  | 400 | \mycaption{Number of events for appearance and disappearance signals | 
|---|
|  | 401 | and backgrounds for the \BB, SPL, and T2HK experiments as | 
|---|
|  | 402 | defined in Tab.~\ref{tab:setups}. For the appearance signals the | 
|---|
|  | 403 | event numbers are given for several values of $\stheta$ and $\delCP | 
|---|
|  | 404 | = 0$ and $\pi/2$. The background as well as the disappearance event | 
|---|
|  | 405 | numbers correspond to $\theta_{13}=0$. For the other oscillation | 
|---|
|  | 406 | parameters the values of Eq.~(\ref{eq:default-params}) are | 
|---|
|  | 407 | used.\label{tab:events}} | 
|---|
|  | 408 | \end{table} | 
|---|
|  | 409 |  | 
|---|
|  | 410 | In Tab.~\ref{tab:events} we give the number of signal and background | 
|---|
|  | 411 | events for the experiment setups as defined in Tab.~\ref{tab:setups}. | 
|---|
|  | 412 | For the appearance channels ($\stackrel{\scriptscriptstyle (-)}{\nu}_e | 
|---|
|  | 413 | \to \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ for the \BB\ and | 
|---|
|  | 414 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to | 
|---|
|  | 415 | \stackrel{\scriptscriptstyle(-)}{\nu}_e$ for SPL and T2HK) we give the | 
|---|
|  | 416 | signal events for various values of $\theta_{13}$ and $\delCP$. The | 
|---|
|  | 417 | ``signal'' events for $\theta_{13} = 0$ are appearance events induced by | 
|---|
|  | 418 | the oscillations with $\Delta m^2_{21}$. The value $\stheta = 10^{-3}$ | 
|---|
|  | 419 | corresponds roughly to the sensitivity limit for the considered | 
|---|
|  | 420 | experiments, whereas $\stheta = 10^{-2}$ gives a good sensitivity | 
|---|
|  | 421 | to CP violation. This can be appreciated by comparing the values of | 
|---|
|  | 422 | $\nu$ and $\bar\nu$ appearance events for $\delCP = 0$ and $\pi/2$. In | 
|---|
|  | 423 | the table the background to the appearance signal is given for | 
|---|
|  | 424 | $\theta_{13} = 0$. Note that in general the number of background | 
|---|
|  | 425 | events depends also on the oscillation parameters, since also the | 
|---|
|  | 426 | background neutrinos in the beam oscillate. This effect is | 
|---|
|  | 427 | consistently taken into account in the analysis, however, for the | 
|---|
|  | 428 | parameter values in the table the change in the background events due | 
|---|
|  | 429 | to oscillations is only of the order of a few events. | 
|---|
|  | 430 |  | 
|---|
|  | 431 | The physics analysis is performed with the GLoBES open source | 
|---|
|  | 432 | software~\cite{Globes}, which provides a convenient tool to simulate | 
|---|
|  | 433 | long-baseline experiments and compare different facilities in a | 
|---|
|  | 434 | unified framework. The experiment definition (AEDL) files for the \BB\ | 
|---|
|  | 435 | and SPL simulation with GLoBES are available at Ref.~\cite{ISSpage} | 
|---|
|  | 436 | {\bf *** to be updated! ***}. In the analysis parameter degeneracies | 
|---|
|  | 437 | and correlations are fully taken into account and in general all | 
|---|
|  | 438 | oscillation parameters are varied in the fit. | 
|---|
|  | 439 | % | 
|---|
|  | 440 | To simulate the ``data'' we adopt the following | 
|---|
|  | 441 | set of ``true values'' for the oscillation parameters: | 
|---|
|  | 442 | % | 
|---|
|  | 443 | \begin{equation}\label{eq:default-params} | 
|---|
|  | 444 | \begin{array}{l@{\qquad}l} | 
|---|
|  | 445 | \Delta m^2_{31} = +2.4 \times 10^{-3}~\mathrm{eV}^2\,, & | 
|---|
|  | 446 | \sin^2\theta_{23} = 0.5\,,\\ | 
|---|
|  | 447 | \Delta m^2_{21} = 7.9 \times 10^{-5}~\mathrm{eV}^2 \,,& | 
|---|
|  | 448 | \sin^2\theta_{12} = 0.3 \,, | 
|---|
|  | 449 | \end{array} | 
|---|
|  | 450 | \end{equation} | 
|---|
|  | 451 | % | 
|---|
|  | 452 | and we include a prior knowledge of these values with an accuracy of | 
|---|
|  | 453 | 10\% for $\theta_{12}$, $\theta_{23}$, $\Delta m^2_{31}$, and 4\% for | 
|---|
|  | 454 | $\Delta m^2_{21}$ at 1$\sigma$. These values and accuracies are | 
|---|
|  | 455 | motivated by recent global fits to neutrino oscillation | 
|---|
|  | 456 | data~\cite{FOGLILISI05,Maltoni:2004ei}, and they are always used | 
|---|
|  | 457 | except where explicitly stated otherwise. | 
|---|
|  | 458 |  | 
|---|
|  | 459 |  | 
|---|
|  | 460 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 461 | \section{The CERN--MEMPHYS experiments} | 
|---|
|  | 462 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 463 | \label{sec:experiments} | 
|---|
|  | 464 |  | 
|---|
|  | 465 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 466 | \subsection{The MEMPHYS detector} | 
|---|
|  | 467 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 468 |  | 
|---|
|  | 469 | MEMPHYS (MEgaton Mass PHYSics)~\cite{memphys} is a mega ton class | 
|---|
|  | 470 | water \v{C}erenkov detector in the straight extrapolation of | 
|---|
|  | 471 | Super-Kamiokande, located at Fr\'ejus, at a distance of 130~km from | 
|---|
|  | 472 | CERN. It is an alternative design of the UNO~\cite{UNO} and | 
|---|
|  | 473 | Hyper-Kamiokande~\cite{Nakamura:2003hk} detectors and shares the same | 
|---|
|  | 474 | physics case, both from the non-accelerator domain (nucleon decay, | 
|---|
|  | 475 | super nova neutrino detection, solar neutrinos, atmospheric neutrinos) | 
|---|
|  | 476 | and from the accelerator domain which is the subject of this paper. A | 
|---|
|  | 477 | recent civil engineering pre-study to envisage the possibly of large | 
|---|
|  | 478 | cavity excavation located under the Fr\'ejus mountain (4800~m.e.w.) | 
|---|
|  | 479 | near the present Modane underground laboratory has been undertaken. | 
|---|
|  | 480 | The main result of this pre-study is that MEMPHYS may be built with | 
|---|
|  | 481 | present techniques as a modular detector consisting of several shafts, | 
|---|
|  | 482 | each with 65~m in diameter, 65~m in height for the total water | 
|---|
|  | 483 | containment. A schematic view of the layout is shown in | 
|---|
|  | 484 | Fig.~\ref{fig:MEMPHYS}. For the present study we have chosen a | 
|---|
|  | 485 | fiducial mass of 440~kt which means 3 shafts and an inner detector of | 
|---|
|  | 486 | 57~m in diameter and 57~m in height.  Each inner detector may be | 
|---|
|  | 487 | equipped with photo detectors (81000 per shaft) with a 30\% | 
|---|
|  | 488 | geometrical coverage and the same photo-statistics of Super-Kamiokande | 
|---|
|  | 489 | (with a 40\% coverage). In principle up to 5 shafts are possible, | 
|---|
|  | 490 | corresponding to a fiducial mass of 730~kt. | 
|---|
|  | 491 | % | 
|---|
|  | 492 | The Fr\'ejus site offers a natural protection against cosmic rays by a | 
|---|
|  | 493 | factor $10^6$. If not mentioned otherwise, the event selection and | 
|---|
|  | 494 | particle identification are the Super-Kamiokande algorithms results. | 
|---|
|  | 495 |  | 
|---|
|  | 496 | \begin{figure} | 
|---|
|  | 497 | \centering | 
|---|
|  | 498 | \includegraphics[width=0.65\textwidth]{./fig1.eps} | 
|---|
|  | 499 | \mycaption{\label{fig:MEMPHYS}Sketch of the MEMPHYS detector under the | 
|---|
|  | 500 | Fr\'ejus mountain.} | 
|---|
|  | 501 | \end{figure} | 
|---|
|  | 502 |  | 
|---|
|  | 503 |  | 
|---|
|  | 504 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 505 | \subsection{The $\gamma = 100\times100$ baseline Beta Beam} | 
|---|
|  | 506 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 507 |  | 
|---|
|  | 508 | The concept of a Beta Beam (\BB) has been introduced by P.~Zucchelli | 
|---|
|  | 509 | in Ref.~\cite{zucchelli}. Neutrinos are produced by the decay of | 
|---|
|  | 510 | radioactive isotopes which are stored in a decay ring. An important | 
|---|
|  | 511 | parameter is the relativistic gamma factor of the ions, which | 
|---|
|  | 512 | determines the energy of the emitted neutrinos. \BB\ performances have | 
|---|
|  | 513 | been computed previously for $\gamma(\He)= 66$~\cite{Mezzetto:2003ub}, | 
|---|
|  | 514 | 100~\cite{MyNufact04,Donini:2004hu,JJHigh2}, 150~\cite{JJHigh2}, | 
|---|
|  | 515 | 200~\cite{LindnerBB}, 350~\cite{JJHigh2}, | 
|---|
|  | 516 | 500~\cite{JJHigh1,LindnerBB}, 1000~\cite{LindnerBB}, | 
|---|
|  | 517 | 2000~\cite{JJHigh1}, 2488~\cite{Terranova}. Reviews can be found in | 
|---|
|  | 518 | Ref.~\cite{BB-Reviews}, the physics potential of a very low gamma \BB\ | 
|---|
|  | 519 | has been studied in Ref.~\cite{Volpe}. Performances of a \BB\ with | 
|---|
|  | 520 | $\gamma > 150$ are extremely promising, however, they are neither | 
|---|
|  | 521 | based on an existing accelerator complex nor on a robust estimation of | 
|---|
|  | 522 | the ion decay rates. For a CERN based \BB, fluxes have been estimated | 
|---|
|  | 523 | in Ref.~\cite{Lindroos} and a design study is in progress for the | 
|---|
|  | 524 | facility \cite{Eurisol}. In this work we assume an integrated flux of | 
|---|
|  | 525 | neutrinos in 10 years, corresponding to $5.8\cdot 10^{19}$ useful \He\ | 
|---|
|  | 526 | decays and $2.2 \cdot 10^{19}$ useful \Ne\ decays. These fluxes have | 
|---|
|  | 527 | been assumed in all the physics papers quoted above, and they are two | 
|---|
|  | 528 | times higher than the baseline fluxes computed in | 
|---|
|  | 529 | Ref.~\cite{Lindroos}. These latter fluxes suffer for the known | 
|---|
|  | 530 | limitations of the PS and SPS synchrotrons at CERN, ways to improve | 
|---|
|  | 531 | them have been delineated in Ref.~\cite{Lindroos-Optimization}. | 
|---|
|  | 532 |  | 
|---|
|  | 533 | The infrastructure available at CERN as well as the MEMPHYS | 
|---|
|  | 534 | location at a distance of 130~km suggest a $\gamma$-factor of about | 
|---|
|  | 535 | $100$. Such a value implies a mean neutrino energy of 400~MeV, which | 
|---|
|  | 536 | leads to the oscillation maximum at about 200~km for $\Delta m^2_{31} | 
|---|
|  | 537 | = 2.4\times 10^{-3}$~eV$^2$.  We have checked that the performance at | 
|---|
|  | 538 | the somewhat shorter baseline of 130~km is rather similar to the one | 
|---|
|  | 539 | at the oscillation maximum. Moreover, the purpose of this paper is to | 
|---|
|  | 540 | estimate the physics potential for a realistic set-up and not to study | 
|---|
|  | 541 | the optimization of the \BB\ regardless of any logistic consideration | 
|---|
|  | 542 | (see, e.g., Refs.~\cite{LindnerBB,JJHigh2} for such optimization | 
|---|
|  | 543 | studies). | 
|---|
|  | 544 |  | 
|---|
|  | 545 | \begin{figure}[!t] | 
|---|
|  | 546 | \centering | 
|---|
|  | 547 | \includegraphics[width=0.65\textwidth]{./fig2.eps} | 
|---|
|  | 548 | \mycaption{\label{fig:QE-Energy} Energy resolution for \nue\ | 
|---|
|  | 549 | interactions in the 200--300~MeV energy range. The quantitiy | 
|---|
|  | 550 | displayed is the difference between the reconstructed and the true | 
|---|
|  | 551 | neutrino energy.} | 
|---|
|  | 552 | \end{figure} | 
|---|
|  | 553 |  | 
|---|
|  | 554 | The signal events from the $\nu_e \to \nu_\mu$ neutrino and | 
|---|
|  | 555 | antineutrino appearance channels in the \BB\ are \numu charged current | 
|---|
|  | 556 | (CC) events. The Nuance v3r503 Monte Carlo code~\cite{Nuance} is used | 
|---|
|  | 557 | to generate signal events. The selection for these events is based on | 
|---|
|  | 558 | standard Super-Kamiokande particle identification algorithms.  The | 
|---|
|  | 559 | muon identification is reinforced by asking for the detection of the | 
|---|
|  | 560 | Michel decay electron. | 
|---|
|  | 561 | % | 
|---|
|  | 562 | The neutrino energy is reconstructed by smearing momentum and | 
|---|
|  | 563 | direction of the charged lepton with the Super-Kamiokande resolution | 
|---|
|  | 564 | functions, and applying quasi-elastic (QE) kinematics assuming the | 
|---|
|  | 565 | known incoming neutrino direction. Energy reconstruction in the \BB\ | 
|---|
|  | 566 | energy range is remarkably powerful, and the contamination of non-QE | 
|---|
|  | 567 | events very small, as shown in Fig.~\ref{fig:QE-Energy}. | 
|---|
|  | 568 | % | 
|---|
|  | 569 | As pointed out in Ref.~\cite{JJHigh2}, it is necessary to use a | 
|---|
|  | 570 | migration matrix for the neutrino energy reconstruction to properly | 
|---|
|  | 571 | handle Fermi motion smearing and the non-QE event contamination.  We | 
|---|
|  | 572 | use 100 MeV bins for the reconstructed energy and 40 MeV bins for the | 
|---|
|  | 573 | true neutrino energy.  Four migration matrices (for | 
|---|
|  | 574 | $\nu_e,\bar\nu_e,\nu_\mu,\bar\nu_\mu$) are applied to signal events as | 
|---|
|  | 575 | well as backgrounds.  As shown in Ref.~\cite{MezzettoNuFact05} the | 
|---|
|  | 576 | migration matrix approximation has a visible (though small) effect for | 
|---|
|  | 577 | example in the leptonic CP violation discovery potential. | 
|---|
|  | 578 |  | 
|---|
|  | 579 | \begin{table}[t] | 
|---|
|  | 580 | \centering | 
|---|
|  | 581 | \begin{tabular}{l@{\qquad}rrr@{\qquad}rrr} | 
|---|
|  | 582 | \hline\noalign{\smallskip} | 
|---|
|  | 583 | & \multicolumn{3}{ c }{\Ne} & \multicolumn{3}{c}{\He} \\ | 
|---|
|  | 584 | \hline\noalign{\smallskip} | 
|---|
|  | 585 | & \numu CC & $\pi^+$ & $\pi^-$ & \nubarmu CC & $\pi^+$ & $\pi^-$ \\ | 
|---|
|  | 586 | \hline\noalign{\smallskip} | 
|---|
|  | 587 | Generated ev.\ & 115367   &  557   &  341 & 101899 &  674   &  400 \\ | 
|---|
|  | 588 | Particle ID    &  95717   &  204   &  100 & 85285  &  240   &  118 \\ | 
|---|
|  | 589 | Decay          &  61347   &  107   &    8 & 69242  &  120   &    8 \\ | 
|---|
|  | 590 | \hline\noalign{\smallskip} | 
|---|
|  | 591 | \end{tabular} | 
|---|
|  | 592 | \mycaption{\label{tab:sigbck} Events for the \BB\ in a 4400~kt~yr | 
|---|
|  | 593 | exposure.  \numu(\nubarmu) CC events are computed assuming full | 
|---|
|  | 594 | oscillations ($P_{\nu_e\to\nu_\mu} = 1$), and pion backgrounds are | 
|---|
|  | 595 | computed from \nue(\nubare) CC+NC events. In the rows we give the | 
|---|
|  | 596 | number events generated within the fiducial volume (``Generated | 
|---|
|  | 597 | ev.''), after muon particle identification (``Particle ID''), and | 
|---|
|  | 598 | after applying a further identification requiring the detection of | 
|---|
|  | 599 | the Michel electron (``Decay''). } | 
|---|
|  | 600 | \end{table} | 
|---|
|  | 601 |  | 
|---|
|  | 602 |  | 
|---|
|  | 603 | Backgrounds from charged pions and atmospheric neutrinos are computed | 
|---|
|  | 604 | with the identical analysis chain as signal events. | 
|---|
|  | 605 | Charged pions generated in NC events (or in NC-like events where the | 
|---|
|  | 606 | leading electron goes undetected) are the main source of background for | 
|---|
|  | 607 | the experiment. To compute this background inclusive NC and CC events | 
|---|
|  | 608 | have been generated with the \BB\ spectrum. Events have been selected | 
|---|
|  | 609 | where the only visible track is a charged pion above the \v{C}erenkov | 
|---|
|  | 610 | threshold. Particle identification efficiencies have been applied to | 
|---|
|  | 611 | those particles. The probability for a pion to survive in water until | 
|---|
|  | 612 | its decay has been computed with Geant~3.21 and cross-checked with a | 
|---|
|  | 613 | Fluka~2003 simulation. This probability is different for positive and | 
|---|
|  | 614 | negative pions, the latter having a higher probability to be absorbed | 
|---|
|  | 615 | before decaying. The surviving events are background, and the | 
|---|
|  | 616 | reconstructed neutrino energy is computed misidentifying these pions | 
|---|
|  | 617 | as muons. Event rates are reported in Tab.~\ref{tab:sigbck}. From | 
|---|
|  | 618 | these numbers it becomes evident that requiring the detection of the | 
|---|
|  | 619 | Michel electron provides an efficient cut to eliminate the pion | 
|---|
|  | 620 | background. | 
|---|
|  | 621 | % | 
|---|
|  | 622 | These background rates are significantly smaller than quoted in | 
|---|
|  | 623 | Ref.~\cite{MyNufact04}, where pion decays were computed with the | 
|---|
|  | 624 | same probabilities as for muons and they are slightly different | 
|---|
|  | 625 | from those quoted in Ref.~\cite{ MezzettoNuFact05}, where an | 
|---|
|  | 626 | older version of Nuance had been used. | 
|---|
|  | 627 | % | 
|---|
|  | 628 | The numbers of Tab.~\ref{tab:sigbck} have been cross-checked by | 
|---|
|  | 629 | comparing the Nuance and Neugen~\cite{Neugen} event | 
|---|
|  | 630 | generators, finding a fair agreement in background rates and energy shape. | 
|---|
|  | 631 |  | 
|---|
|  | 632 | Also atmospheric neutrinos can constitute an important source of | 
|---|
|  | 633 | background~\cite{zucchelli,JJHigh2,JJHigh1,MezzettoNuFact05}. This | 
|---|
|  | 634 | background can be suppressed only by keeping a very short duty cycle | 
|---|
|  | 635 | ($2.2 \cdot 10^{-3}$ is the target value for the \BB\ design study), | 
|---|
|  | 636 | and this in turn is one of the most challenging bounds on the design | 
|---|
|  | 637 | of the Beta Beam complex. Following Ref.~\cite{MezzettoNuFact05} we | 
|---|
|  | 638 | include the atmospheric neutrino background based on a Monte Carlo | 
|---|
|  | 639 | simulation using Nuance. Events are reconstructed as if they were | 
|---|
|  | 640 | signal neutrino events. We estimate that 5 events/year would survive | 
|---|
|  | 641 | the analysis chain in a full solar year (the \BB\ should run for about | 
|---|
|  | 642 | 1/3 of this period) and include these events as backgrounds in the | 
|---|
|  | 643 | analysis. Under these circumstances, the present value of the \BB\ | 
|---|
|  | 644 | duty cycle seems to be an overkill, it could be reduced by a factor 5 | 
|---|
|  | 645 | at least, see also Ref.~\cite{MezzettoNuFact05} for a discussion of | 
|---|
|  | 646 | the effect of a higher duty cycle. | 
|---|
|  | 647 |  | 
|---|
|  | 648 |  | 
|---|
|  | 649 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 650 | \subsection{The $3.5$-GeV SPL Super Beam} | 
|---|
|  | 651 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 652 |  | 
|---|
|  | 653 | In the Conceptual Design Report~1 (CDR1) the foreseen Super Proton | 
|---|
|  | 654 | Linac (SPL)~\cite{SPL} has been optimized to provide the protons | 
|---|
|  | 655 | for the muon production in the context of a Neutrino Factory. | 
|---|
|  | 656 | % | 
|---|
|  | 657 | Recently, in Ref.~\cite{Campagne:2004wt} a new optimization of the | 
|---|
|  | 658 | beam energy as well as the secondary particle focusing and decay has | 
|---|
|  | 659 | been undertaken considering a Super Beam searching for $\nu_\mu | 
|---|
|  | 660 | \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ | 
|---|
|  | 661 | appearance as well as $\nu_\mu$, $\bar\nu_\mu$ disappearance in a mega | 
|---|
|  | 662 | ton scale water \v{C}erenkov detector. In particular, a full | 
|---|
|  | 663 | simulation of the beam line from the proton on target interaction up | 
|---|
|  | 664 | to the secondary particle decay tunnel has been performed. The proton | 
|---|
|  | 665 | on a liquid mercury target (30~cm long, $7.5$~mm radius, 13.546 | 
|---|
|  | 666 | density) has been simulated with FLUKA~2002.4~\cite{FLUKA} while the | 
|---|
|  | 667 | horn focusing system and the decay tunnel simulation has been | 
|---|
|  | 668 | preformed with GEANT~3.21~\cite{GEANT}.\footnote{Although there are | 
|---|
|  | 669 | differences between the predicted pion and kaon productions as a | 
|---|
|  | 670 | function of proton kinetic energy with FLUKA~2002.4 and 2005.6, the | 
|---|
|  | 671 | results are consistent for the relevant energy of 3.5~GeV. We | 
|---|
|  | 672 | emphasize that the pion and the kaon production cross-sections are | 
|---|
|  | 673 | waiting for experimental confirmation~\cite{HARP-MINERVA} and a new | 
|---|
|  | 674 | optimization would be required if their is a disagreement with the | 
|---|
|  | 675 | present knowledge.} | 
|---|
|  | 676 |  | 
|---|
|  | 677 | \begin{figure}[!t] | 
|---|
|  | 678 | \centering | 
|---|
|  | 679 | \includegraphics[width=0.65\textwidth]{./fig3.eps} | 
|---|
|  | 680 | \mycaption{\label{fig:fluxSPLContrib} Neutrino fluxes, at $130$~km | 
|---|
|  | 681 | from the target with the horns focusing the positive particles | 
|---|
|  | 682 | (top panel) or the negative particles (bottom panel). The fluxes are | 
|---|
|  | 683 | computed for a SPL proton beam of $3.5$~GeV (4~MW), a decay tunnel | 
|---|
|  | 684 | with a length of $40$~m and a radius of $2$~m.} | 
|---|
|  | 685 | \end{figure} | 
|---|
|  | 686 |  | 
|---|
|  | 687 | Since the optimization requirements for a Neutrino Factory are rather | 
|---|
|  | 688 | different than for a Super Beam the new SPL configuration has a | 
|---|
|  | 689 | significant impact on the physics performance (see | 
|---|
|  | 690 | Ref.~\cite{Campagne:2004wt} for a detailed discussion).  The SPL | 
|---|
|  | 691 | fluxes of the four neutrino species ($\nu_\mu$, $\nu_e$, | 
|---|
|  | 692 | $\bar{\nu}_\mu$, $\bar{\nu}_e$) for the positive ($\nu_\mu$ beam) and | 
|---|
|  | 693 | the negative focusing ($\bar{\nu}_\mu$ beam) are show in | 
|---|
|  | 694 | Fig.~\ref{fig:fluxSPLContrib}.  The total number of $\nu_\mu$ | 
|---|
|  | 695 | ($\bar{\nu}_\mu$) in positive (negative) focusing is about | 
|---|
|  | 696 | $1.18\,(0.97) \times 10^{12}\:\mathrm{m}^{-2}\mathrm{y}^{-1}$ with an | 
|---|
|  | 697 | average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_e$) contamination | 
|---|
|  | 698 | in the $\nu_\mu$ ($\bar\nu_\mu$) beam is around $0.7\%$ | 
|---|
|  | 699 | ($6.0\%$). Following Ref.~\cite{Mezzetto:2003mm}, the $\pi^o$ | 
|---|
|  | 700 | background is reduced using a tighter PID cut compared to standard | 
|---|
|  | 701 | Super-Kamiokande analysis. The Michel electron is required for the | 
|---|
|  | 702 | $\mu$ identification. | 
|---|
|  | 703 | % | 
|---|
|  | 704 | For the $\nu_\mu \rightarrow \nu_e$ channel the background consists | 
|---|
|  | 705 | roughly of 90\% $\nu_e \rightarrow \nu_e$ CC interactions, 6\% $\pi^o$ | 
|---|
|  | 706 | from NC interactions, 3\% miss identified muons from $\nu_\mu | 
|---|
|  | 707 | \rightarrow \nu_\mu$ CC, and 1\% $\bar{\nu}_e \rightarrow \bar{\nu}_e$ | 
|---|
|  | 708 | CC interactions. For the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ | 
|---|
|  | 709 | channel the contributions to the background are 45\% $\bar{\nu}_e | 
|---|
|  | 710 | \rightarrow \bar{\nu}_e$ CC interactions, 35\% $\nu_e \rightarrow | 
|---|
|  | 711 | \nu_e$ CC interactions, 18\% $\pi^o$ from NC interactions and 2\% miss | 
|---|
|  | 712 | identified muons from $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ CC. | 
|---|
|  | 713 | In addition we include the events from the contamination of | 
|---|
|  | 714 | ``wrong sign'' muon-neutrinos due to $\bar\nu_\mu \to \bar\nu_e$ | 
|---|
|  | 715 | ($\nu_\mu \to \nu_e$) oscillations in the neutrino (antineutrino) | 
|---|
|  | 716 | mode. | 
|---|
|  | 717 |  | 
|---|
|  | 718 | \begin{figure}[!t] | 
|---|
|  | 719 | \centering | 
|---|
|  | 720 | \includegraphics[width=0.5\textwidth]{./fig4.eps} | 
|---|
|  | 721 | % | 
|---|
|  | 722 | \mycaption{\label{fig:fluxComparison} | 
|---|
|  | 723 | Comparison of the fluxes from SPL and \BB.} | 
|---|
|  | 724 | \end{figure} | 
|---|
|  | 725 |  | 
|---|
|  | 726 | Considering the signal over square-root of background | 
|---|
|  | 727 | ratio, the $3.5$~GeV beam energy is more favorable than the original | 
|---|
|  | 728 | $2.2$~GeV option. Compared to the fluxes used in | 
|---|
|  | 729 | Refs.~\cite{Mezzetto:2003mm,Donini:2004hu} the gain is at least a | 
|---|
|  | 730 | factor $2.5$ and this justifies to reconsider in detail the physics | 
|---|
|  | 731 | potential of the SPL Super Beam. | 
|---|
|  | 732 | % | 
|---|
|  | 733 | Both the appearance and the disappearance channels are used. For the | 
|---|
|  | 734 | spectral analysis we use 10 bins of 100~MeV in the interval $0 < E_\nu | 
|---|
|  | 735 | < 1$~GeV, applying the same migration matrices as for the \BB\ to take | 
|---|
|  | 736 | into account properly the neutrino energy reconstruction. As ultimate | 
|---|
|  | 737 | goal suggested in Ref.~\cite{T2K} a 2\% systematical error is used as | 
|---|
|  | 738 | default both for signal and background, this would be achieved by a | 
|---|
|  | 739 | special care of the design of the close position. However, we discuss | 
|---|
|  | 740 | also how a 5\% systematical error affects the sensitivities. | 
|---|
|  | 741 | % | 
|---|
|  | 742 | Using neutrino cross-sections on water from Ref.~\cite{Nuance}, the | 
|---|
|  | 743 | number of expected $\nu_\mu$ charged current is about $95$ per kt~yr | 
|---|
|  | 744 | {\bf *** does this number change using Nuance Xsects instead of | 
|---|
|  | 745 | Lipari? ***}. In Fig.~\ref{fig:fluxComparison} we compare the fluxes | 
|---|
|  | 746 | from the SPL to the one from the \BB. | 
|---|
|  | 747 |  | 
|---|
|  | 748 |  | 
|---|
|  | 749 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 750 | \section{Degeneracies} | 
|---|
|  | 751 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 752 | \label{sec:degeneracies} | 
|---|
|  | 753 |  | 
|---|
|  | 754 |  | 
|---|
|  | 755 | A characteristic feature in the analysis of future LBL experiments is | 
|---|
|  | 756 | the presence of {\it parameter degeneracies}.  Due to the inherent | 
|---|
|  | 757 | three-flavor structure of the oscillation probabilities, for a given | 
|---|
|  | 758 | experiment in general several disconnected regions in the | 
|---|
|  | 759 | multi-dimensional space of oscillation parameters will be | 
|---|
|  | 760 | present. Traditionally these degeneracies are referred to in the | 
|---|
|  | 761 | following way: | 
|---|
|  | 762 | % | 
|---|
|  | 763 | \begin{itemize} | 
|---|
|  | 764 | \item | 
|---|
|  | 765 | The {\it intrinsic} or | 
|---|
|  | 766 | ($\delCP,\theta_{13}$)-degeneracy~\cite{Burguet-Castell:2001ez}: | 
|---|
|  | 767 | For a measurement based on the $\nu_\mu \to \nu_e$ oscillation probability for | 
|---|
|  | 768 | neutrinos and antineutrinos two disconnected solutions appear in the | 
|---|
|  | 769 | ($\delCP,\theta_{13}$) plane. | 
|---|
|  | 770 | \item | 
|---|
|  | 771 | The {\it hierarchy} or sign($\Delta | 
|---|
|  | 772 | m^2_{31}$)-degeneracy~\cite{Minakata:2001qm}: The two solutions | 
|---|
|  | 773 | corresponding to the two signs of $\Delta m^2_{31}$ appear in general | 
|---|
|  | 774 | at different values of $\delCP$ and $\theta_{13}$. | 
|---|
|  | 775 | \item | 
|---|
|  | 776 | The {\it octant} or $\theta_{23}$-degeneracy~\cite{Fogli:1996pv}: | 
|---|
|  | 777 | Since LBL experiments are sensitive mainly to $\sin^22\theta_{23}$ it | 
|---|
|  | 778 | is difficult to distinguish the two octants $\theta_{23} < \pi/4$ and | 
|---|
|  | 779 | $\theta_{23} > \pi/4$.  Again, the solutions corresponding to | 
|---|
|  | 780 | $\theta_{23}$ and $\pi/2 - \theta_{23}$ appear in general at different | 
|---|
|  | 781 | values of $\delCP$ and $\theta_{13}$. | 
|---|
|  | 782 | \end{itemize} | 
|---|
|  | 783 | % | 
|---|
|  | 784 | This leads to an eight-fold ambiguity in $\theta_{13}$ and | 
|---|
|  | 785 | $\delCP$~\cite{Barger:2001yr}, and hence degeneracies provide a | 
|---|
|  | 786 | serious limitation for the determination of $\theta_{13}$, $\delCP$, | 
|---|
|  | 787 | and the sign of $\Delta m^2_{31}$. Recent discussions of degeneracies | 
|---|
|  | 788 | can be found for example in | 
|---|
|  | 789 | Refs.~\cite{Huber:2002mx,Huber:2005ep,Yasuda:2004gu,Ishitsuka:2005qi}; | 
|---|
|  | 790 | degeneracies in the context of CERN--Fr\'ejus \BB\ and SPL have been | 
|---|
|  | 791 | considered previously in Ref.~\cite{Donini:2004hu}. | 
|---|
|  | 792 | % | 
|---|
|  | 793 | In Fig.~\ref{fig:degeneracies} we illustrate the effect of | 
|---|
|  | 794 | degeneracies for the \BB, SPL, and T2HK experiments. Assuming the | 
|---|
|  | 795 | true parameter values $\delta_\mathrm{CP} = -0.85 \pi$, | 
|---|
|  | 796 | $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$ we show the | 
|---|
|  | 797 | allowed regions in the plane of $\stheta$ and $\delCP$ taking into | 
|---|
|  | 798 | account the solutions with the wrong hierarchy and the wrong octant of | 
|---|
|  | 799 | $\theta_{23}$. | 
|---|
|  | 800 |  | 
|---|
|  | 801 | \begin{figure}[!t] | 
|---|
|  | 802 | \centering | 
|---|
|  | 803 | \includegraphics[width=0.95\textwidth]{./fig5.eps} | 
|---|
|  | 804 | % | 
|---|
|  | 805 | \mycaption{Allowed regions in $\sin^22\theta_{13}$ and | 
|---|
|  | 806 | $\delta_\mathrm{CP}$ for LBL data alone (contour lines) and LBL+ATM | 
|---|
|  | 807 | data combined (colored regions). $\mathrm{H^{tr/wr} (O^{tr/wr})}$ | 
|---|
|  | 808 | refers to solutions with the true/wrong mass hierarchy (octant of | 
|---|
|  | 809 | $\theta_{23}$). The true parameter values are $\delta_\mathrm{CP} = | 
|---|
|  | 810 | -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$, | 
|---|
|  | 811 | and the values from Eq.~(\ref{eq:default-params}) for the other | 
|---|
|  | 812 | parameters.} | 
|---|
|  | 813 | \label{fig:degeneracies} | 
|---|
|  | 814 | \end{figure} | 
|---|
|  | 815 |  | 
|---|
|  | 816 |  | 
|---|
|  | 817 | \begin{figure}[!t] | 
|---|
|  | 818 | \centering | 
|---|
|  | 819 | \includegraphics[width=0.9\textwidth]{./fig6.eps} | 
|---|
|  | 820 | % | 
|---|
|  | 821 | \mycaption{Resolving degeneracies in SPL by successively using the | 
|---|
|  | 822 | appearance rate measurement, disappearance channel rate and | 
|---|
|  | 823 | spectrum, spectral information in the appearance channel, and | 
|---|
|  | 824 | atmospheric neutrinos.  Allowed regions in $\sin^22\theta_{13}$ and | 
|---|
|  | 825 | $\delta_\mathrm{CP}$ are shown at 95\%~CL, and $\mathrm{H^{tr/wr} | 
|---|
|  | 826 | (O^{tr/wr})}$ refers to solutions with the true/wrong mass hierarchy | 
|---|
|  | 827 | (octant of $\theta_{23}$). The true parameter values are | 
|---|
|  | 828 | $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, | 
|---|
|  | 829 | $\sin^2\theta_{23} = 0.6$, and the values from | 
|---|
|  | 830 | Eq.~(\ref{eq:default-params}) for the other parameters.} | 
|---|
|  | 831 | \label{fig:degeneracies_SPL} | 
|---|
|  | 832 | \end{figure} | 
|---|
|  | 833 |  | 
|---|
|  | 834 | As visible in Fig.~\ref{fig:degeneracies} for the | 
|---|
|  | 835 | Super Beam experiments SPL and T2HK there is only a four-fold | 
|---|
|  | 836 | degeneracy related to sign($\Delta m^2_{31}$) and the octant of | 
|---|
|  | 837 | $\theta_{23}$, whereas the intrinsic degeneracy can be resolved. | 
|---|
|  | 838 | % | 
|---|
|  | 839 | Several pieces of information contribute to this effect, as we | 
|---|
|  | 840 | illustrate at the example of SPL in Fig.~\ref{fig:degeneracies_SPL}. | 
|---|
|  | 841 | The dashed curves in the left panel of this figure show the allowed | 
|---|
|  | 842 | regions for only the appearance measurement (for neutrinos and | 
|---|
|  | 843 | antineutrinos) without spectral information, i.e., just a counting | 
|---|
|  | 844 | experiment. In this case the eight-fold degeneracy is present in its | 
|---|
|  | 845 | full beauty, and one finds two solutions (corresponding to the | 
|---|
|  | 846 | intrinsic degeneracy) for each choice of sign($\Delta m^2_{31}$) and | 
|---|
|  | 847 | the octant of $\theta_{23}$. Moreover, the allowed regions are | 
|---|
|  | 848 | relatively large. For the thin solid curves the information from the | 
|---|
|  | 849 | disappearance rate is added. The main effect is to decrease the size | 
|---|
|  | 850 | of the allowed regions in $\stheta$. This is especially pronounced for | 
|---|
|  | 851 | the solutions involving the wrong octant of $\theta_{23}$, since these | 
|---|
|  | 852 | solutions are strongly affected by an uncertainty in $\theta_{23}$ | 
|---|
|  | 853 | which gets reduced by the disappearance information. Using in addition | 
|---|
|  | 854 | to the disappearance rate also the spectrum again decreases the size | 
|---|
|  | 855 | of the allowed regions, however, still all eight solutions are present | 
|---|
|  | 856 | (compare dashed curves in the right panel). | 
|---|
|  | 857 | % | 
|---|
|  | 858 | The most relevant effect comes from the inclusion of spectral | 
|---|
|  | 859 | information in the appearance channel, as visible from the comparison | 
|---|
|  | 860 | of the dashed and thick-solid curves in the right panel of | 
|---|
|  | 861 | Fig.~\ref{fig:degeneracies_SPL}. The intrinsic degeneracy gets | 
|---|
|  | 862 | resolved and only four solutions corresponding to the sign and octant | 
|---|
|  | 863 | degeneracies are left.\footnote{The inclusion of spectral information | 
|---|
|  | 864 | might be the source of possible differences to previous studies, see | 
|---|
|  | 865 | e.g.\ Ref.~\cite{Donini:2004hu}.} Note that the thick curves in the | 
|---|
|  | 866 | right panel of Fig.~\ref{fig:degeneracies_SPL} correspond to the | 
|---|
|  | 867 | regions show in Fig.~\ref{fig:degeneracies} for the SPL. | 
|---|
|  | 868 | % | 
|---|
|  | 869 | Finally, by the inclusion of information from atmospheric neutrinos | 
|---|
|  | 870 | all degeneracies can be resolved in this example, and the true | 
|---|
|  | 871 | solution is identified at 95\%~CL (see Sec.~\ref{sec:atmospherics} and | 
|---|
|  | 872 | Ref.~\cite{Huber:2005ep} for further discussions of atmospheric | 
|---|
|  | 873 | neutrinos). | 
|---|
|  | 874 |  | 
|---|
|  | 875 | Concerning the \BB\ one observes from Fig.~\ref{fig:degeneracies} that | 
|---|
|  | 876 | in this case the ($\delCP,\theta_{13}$)-degeneracy cannot be resolved | 
|---|
|  | 877 | and one has to deal with eight distinct solutions. One reason for this | 
|---|
|  | 878 | is the absence of precise information on $|\Delta m^2_{31}|$ and | 
|---|
|  | 879 | $\sin^22\theta_{23}$ which is provided by the $\nu_\mu$ disappearance | 
|---|
|  | 880 | in Super Beam experiments but is not available from the \BB. If | 
|---|
|  | 881 | external information on these parameters at the level of 3\% is | 
|---|
|  | 882 | included the allowed regions in Fig.~\ref{fig:degeneracies} are | 
|---|
|  | 883 | significantly reduced. However, still all eight solutions are present, | 
|---|
|  | 884 | which indicates that for the \BB\ spectral information is not | 
|---|
|  | 885 | efficient enough to resolve the ($\delCP,\theta_{13}$)-degeneracy, and | 
|---|
|  | 886 | in this case only the inclusion of atmospheric neutrino data allows a | 
|---|
|  | 887 | nearly complete resolution of the degeneracies. | 
|---|
|  | 888 |  | 
|---|
|  | 889 | An important observation from Fig.~\ref{fig:degeneracies} is that | 
|---|
|  | 890 | degeneracies have only a very small impact on the CP violation | 
|---|
|  | 891 | discovery, in the sense that if the true solution is CP violating also | 
|---|
|  | 892 | the fake solutions are located at CP violating values of | 
|---|
|  | 893 | $\delCP$. Indeed, since for the relatively short baselines in the | 
|---|
|  | 894 | experiments under consideration matter effects are very small, the | 
|---|
|  | 895 | sign($\Delta m^2_{31}$)-degenerate solution is located within good | 
|---|
|  | 896 | approximation at $\delCP' \approx \pi - | 
|---|
|  | 897 | \delCP$~\cite{Minakata:2001qm}. Therefore, although degeneracies | 
|---|
|  | 898 | strongly affect the determination of $\theta_{13}$ and $\delCP$ they | 
|---|
|  | 899 | have only a small impact on the CP violation discovery potential. | 
|---|
|  | 900 | Furthermore, as clear from Fig.~\ref{fig:degeneracies} the sign($\Delta | 
|---|
|  | 901 | m^2_{31}$) degeneracy has practically no effect on the $\theta_{13}$ | 
|---|
|  | 902 | measurement, whereas the octant degeneracy has very little impact on | 
|---|
|  | 903 | the determination of $\delCP$. | 
|---|
|  | 904 |  | 
|---|
|  | 905 | \begin{figure}[!t] | 
|---|
|  | 906 | \centering | 
|---|
|  | 907 | \includegraphics[width=0.9\textwidth]{./fig7.eps} | 
|---|
|  | 908 | % | 
|---|
|  | 909 | \mycaption{Allowed regions in $\sin^22\theta_{13}$ and | 
|---|
|  | 910 | $\delta_\mathrm{CP}$ for 5~years data (neutrinos only) from \BB, | 
|---|
|  | 911 | SPL, and the combination. $\mathrm{H^{tr/wr} (O^{tr/wr})}$ refers to | 
|---|
|  | 912 | solutions with the true/wrong mass hierarchy (octant of | 
|---|
|  | 913 | $\theta_{23}$). For the colored regions in the left panel also | 
|---|
|  | 914 | 5~years of atmospheric data are included; the solution with the | 
|---|
|  | 915 | wrong hierarchy has $\Delta\chi^2 = 4$. The true parameter | 
|---|
|  | 916 | values are $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = | 
|---|
|  | 917 | 0.03$, $\sin^2\theta_{23} = 0.6$, and the values from | 
|---|
|  | 918 | Eq.~(\ref{eq:default-params}) for the other parameters. For the \BB\ | 
|---|
|  | 919 | only analysis (middle panel) an external accuracy of 2\% (3\%) for | 
|---|
|  | 920 | $|\Delta m^2_{31}|$ ($\theta_{23}$) has been assumed, whereas for | 
|---|
|  | 921 | the left and right panel the default value of 10\% has been used.} | 
|---|
|  | 922 | \label{fig:degeneracies_5yrs} | 
|---|
|  | 923 | \end{figure} | 
|---|
|  | 924 |  | 
|---|
|  | 925 | Fig.~\ref{fig:degeneracies} shows also that the fake solutions occur | 
|---|
|  | 926 | at similar locations in the ($\stheta$, $\delCP$) plane for \BB\ and | 
|---|
|  | 927 | SPL. Therefore, as noted in Ref.~\cite{Donini:2004hu}, in this sense | 
|---|
|  | 928 | the two experiments are not complementary, and the combination of | 
|---|
|  | 929 | 10~years of \BB\ and SPL data is not very effective in resolving | 
|---|
|  | 930 | degeneracies. This is obvious since the baseline is the same and the | 
|---|
|  | 931 | neutrino energies are similar. | 
|---|
|  | 932 | % | 
|---|
|  | 933 | Note however, that the \BB\ looks for $\nu_e\to\nu_\mu$ appearance, | 
|---|
|  | 934 | whereas in SPL the T-conjugate channel $\nu_\mu\to\nu_e$ is observed. | 
|---|
|  | 935 | Assuming CPT invariance the relation $P_{\nu_\alpha\to\nu_\beta} = | 
|---|
|  | 936 | P_{\bar\nu_\beta\to\bar\nu_\alpha}$ holds, which implies that the | 
|---|
|  | 937 | antineutrino measurement can be replaced by a measurement in the | 
|---|
|  | 938 | T-conjugate channel.  Hence, if \BB\ and SPL experiments are available | 
|---|
|  | 939 | simultaneously the full information can be obtained just from neutrino | 
|---|
|  | 940 | data, and in principle the (time consuming) antineutrino measurement | 
|---|
|  | 941 | is not necessary. As shown in Fig.~\ref{fig:degeneracies_5yrs} the | 
|---|
|  | 942 | combination of 5~yrs neutrino data from the \BB\ with 5~yrs of | 
|---|
|  | 943 | neutrino data from SPL leads to a result very close to the 10~yrs | 
|---|
|  | 944 | neutrino+antineutrino data from one experiment alone. Hence, if \BB\ | 
|---|
|  | 945 | and SPL experiments are available simultaneously the data taking | 
|---|
|  | 946 | period is reduced approximately by a factor of 2 with respect to a | 
|---|
|  | 947 | single experiment. This synergy is discussed later in | 
|---|
|  | 948 | Sec.~\ref{sec:synergies-beams} in the context of the $\theta_{13}$ and | 
|---|
|  | 949 | CP violation discovery potentials. | 
|---|
|  | 950 |  | 
|---|
|  | 951 |  | 
|---|
|  | 952 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 953 | \section{Physics potential} | 
|---|
|  | 954 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 955 | \label{sec:sensitivities} | 
|---|
|  | 956 |  | 
|---|
|  | 957 | \subsection{Sensitivity to the atmospheric parameters} | 
|---|
|  | 958 | \label{sec:atm} | 
|---|
|  | 959 |  | 
|---|
|  | 960 | The $\nu_\mu$ disappearance channel available in the Super Beam | 
|---|
|  | 961 | experiments SPL and T2HK allows a precise determination of the | 
|---|
|  | 962 | atmospheric parameters $|\Delta m^2_{31}|$ and $\sin^22\theta_{23}$, | 
|---|
|  | 963 | see, e.g., Refs.~\cite{Antusch:2004yx,Minakata:2004pg,Donini:2005db} | 
|---|
|  | 964 | for recent analyses). Fig.~\ref{fig:atm-params} illustrates the | 
|---|
|  | 965 | improvement on these parameters by Super Beam experiments with respect | 
|---|
|  | 966 | to the present knowledge from SK atmospheric and K2K data. We show the | 
|---|
|  | 967 | allowed regions at 99\%~CL for T2K-I, SPL, and T2HK, where in all | 
|---|
|  | 968 | three cases 5~years of neutrino data are assumed. T2K-I corresponds to | 
|---|
|  | 969 | the phase~I of the T2K experiment with a beam power of 0.77~MW and the | 
|---|
|  | 970 | Super-Kamiokande detector as target~\cite{T2K}. In Tab.~\ref{tab:atm-params} we | 
|---|
|  | 971 | give the corresponding relative accuracies at 3$\sigma$ for $|\Delta | 
|---|
|  | 972 | m^2_{31}|$ and $\sin^2\theta_{23}$. | 
|---|
|  | 973 |  | 
|---|
|  | 974 | \begin{figure}[!t] | 
|---|
|  | 975 | \centering | 
|---|
|  | 976 | \includegraphics[width=0.55\textwidth]{./fig8.eps} | 
|---|
|  | 977 | \mycaption{\label{fig:atm-params} Allowed regions of $\Delta | 
|---|
|  | 978 | m^2_{31}$ and $\sin^2\theta_{23}$ at 99\%~CL (2 d.o.f.)  after 5~yrs | 
|---|
|  | 979 | of neutrino data taking for SPL, T2K phase~I, T2HK, and the | 
|---|
|  | 980 | combination of SPL with 5~yrs of atmospheric neutrino data in the | 
|---|
|  | 981 | MEMPHYS detector. For the true parameter values we use $\Delta | 
|---|
|  | 982 | m^2_{31} = 2.2\, (2.6) \times 10^{-3}~\mathrm{eV}^2$ and | 
|---|
|  | 983 | $\sin^2\theta_{23} = 0.5 \, (0.37)$ for the test point 1 (2), and | 
|---|
|  | 984 | $\theta_{13} = 0$ and the solar parameters as given in | 
|---|
|  | 985 | Eq.~(\ref{eq:default-params}). The shaded region corresponds to the | 
|---|
|  | 986 | 99\%~CL region from present SK and K2K data~\cite{Maltoni:2004ei}.} | 
|---|
|  | 987 | \end{figure} | 
|---|
|  | 988 |  | 
|---|
|  | 989 |  | 
|---|
|  | 990 | \begin{table}[!t] | 
|---|
|  | 991 | \centering | 
|---|
|  | 992 | \begin{tabular}{lcrrr} | 
|---|
|  | 993 | \hline\noalign{\smallskip} | 
|---|
|  | 994 | & True values  & T2K-I & SPL & T2HK \\ | 
|---|
|  | 995 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 996 | $\Delta m^2_{31}$   & $2.2\cdot 10^{-3}$ eV$^2$ & 4.7\% & 3.2\% & 1.1\% \\ | 
|---|
|  | 997 | $\sin^2\theta_{23}$ & $0.5$                     & 20\%  & 20\%  & 6\%   \\ | 
|---|
|  | 998 | \noalign{\smallskip}\hline\noalign{\smallskip} | 
|---|
|  | 999 | $\Delta m^2_{31}$   & $2.6\cdot 10^{-3}$ eV$^2$ & 4.4\% & 2.5\% & 0.7\% \\ | 
|---|
|  | 1000 | $\sin^2\theta_{23}$ & $0.37$                    & 8.9\% & 3.1\% & 0.8\% \\ | 
|---|
|  | 1001 | \noalign{\smallskip}\hline | 
|---|
|  | 1002 | \end{tabular} | 
|---|
|  | 1003 | \mycaption{Accuracies at $3\sigma$ on the atmospheric parameters | 
|---|
|  | 1004 | $|\Delta m^2_{31}|$ and $\sin^2\theta_{23}$ for 5 years of neutrino | 
|---|
|  | 1005 | data from T2K-I, SPL, and T2HK for the two test points shown in | 
|---|
|  | 1006 | Fig.~\ref{fig:atm-params} ($\theta^\mathrm{true}_{13} = 0$). The | 
|---|
|  | 1007 | accuracy for a parameter $x$ is defined as $(x^\mathrm{upper} - | 
|---|
|  | 1008 | x^\mathrm{lower})/(2 x^\mathrm{true})$, where $x^\mathrm{upper}$ | 
|---|
|  | 1009 | ($x^\mathrm{lower}$) is the upper (lower) bound at 3$\sigma$ for | 
|---|
|  | 1010 | 1~d.o.f.\ obtained by projecting the contour $\Delta \chi^2 = 9$ | 
|---|
|  | 1011 | onto the $x$-axis. For the accuracies for test point~2 the octant | 
|---|
|  | 1012 | degenerate solution is neglected.\label{tab:atm-params}} | 
|---|
|  | 1013 | \end{table} | 
|---|
|  | 1014 |  | 
|---|
|  | 1015 | From the figure and the table it becomes evident that the T2K setups | 
|---|
|  | 1016 | are very good in measuring the atmospheric parameters, and only a | 
|---|
|  | 1017 | modest improvement is possible with SPL with respect to T2K phase~I. | 
|---|
|  | 1018 | T2HK provides an excellent sensitivity for these parameters, and for | 
|---|
|  | 1019 | the example of the test point~2 sub-percent accuracies are obtained at | 
|---|
|  | 1020 | 3$\sigma$. The disadvantage of SPL with respect to T2HK is the | 
|---|
|  | 1021 | limited spectral information. Because of the lower beam energy | 
|---|
|  | 1022 | nuclear Fermi motion is a severe limitation for energy reconstruction | 
|---|
|  | 1023 | in SPL, whereas in T2K the somewhat higher energy allows an efficient | 
|---|
|  | 1024 | use of spectral information of quasi-elastic events. Indeed, due to | 
|---|
|  | 1025 | the large number of events in the disappearance channel (cf.\ | 
|---|
|  | 1026 | Tab.~\ref{tab:events}) the measurement is completely dominated by the | 
|---|
|  | 1027 | spectrum, and even increasing the normalization uncertainty up to | 
|---|
|  | 1028 | 100\% has very little impact on the allowed regions. The effect of | 
|---|
|  | 1029 | spectral information on the disappearance measurement is | 
|---|
|  | 1030 | discussed in some detail in Ref.~\cite{Donini:2005db}. | 
|---|
|  | 1031 |  | 
|---|
|  | 1032 | For the test point~1, with maximal mixing for $\theta_{23}$, rather | 
|---|
|  | 1033 | poor accuracies of $\sim20\%$ for T2K-I and SPL, and $6\%$ for T2HK | 
|---|
|  | 1034 | are obtained for $\sin^2\theta_{23}$. The reason is that in the | 
|---|
|  | 1035 | disappearance channel $\sin^22\theta_{23}$ is measured with high | 
|---|
|  | 1036 | precision, which translates to rather large errors for | 
|---|
|  | 1037 | $\sin^2\theta_{23}$ if $\theta_{23} = \pi/4$~\cite{Minakata:2004pg}. | 
|---|
|  | 1038 | % | 
|---|
|  | 1039 | For the same reason it is difficult to resolve the octant degeneracy, | 
|---|
|  | 1040 | and for the test point~2, with a non-maximal value of | 
|---|
|  | 1041 | $\sin^2\theta_{23} = 0.37$, for all three LBL experiments the | 
|---|
|  | 1042 | degenerate solution is present around $\sin^2\theta_{23} = 0.63$. | 
|---|
|  | 1043 | % | 
|---|
|  | 1044 | As pointed out in Refs.~\cite{Peres:2003wd,Gonzalez-Garcia:2004cu} | 
|---|
|  | 1045 | atmospheric neutrino data may allow to distinguish between the two | 
|---|
|  | 1046 | octants of $\theta_{23}$. If 5~years of atmospheric neutrino data in | 
|---|
|  | 1047 | MEMPHYS are added to the SPL data, the degenerate solution for the | 
|---|
|  | 1048 | test point~2 can be excluded at more than $5\sigma$ and hence the | 
|---|
|  | 1049 | octant degeneracy is resolved in this example, see | 
|---|
|  | 1050 | Sec.~\ref{sec:atmospherics} for a more detailed discussion. | 
|---|
|  | 1051 |  | 
|---|
|  | 1052 |  | 
|---|
|  | 1053 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1054 | \subsection{The $\theta_{13}$ discovery potential} | 
|---|
|  | 1055 | \label{sec:th13} | 
|---|
|  | 1056 |  | 
|---|
|  | 1057 | If no finite value of $\theta_{13}$ is discovered by the next round of | 
|---|
|  | 1058 | experiments an important task of the experiments under consideration | 
|---|
|  | 1059 | here is to push further the sensitivity to this parameter. In this | 
|---|
|  | 1060 | section we address this problem, where we use to following definition | 
|---|
|  | 1061 | of the $\theta_{13}$ discovery potential: Data are simulated for a | 
|---|
|  | 1062 | finite true value of $\stheta$ and a given true value for $\delCP$. If | 
|---|
|  | 1063 | the $\Delta\chi^2$ of the fit to these data with $\theta_{13} = 0$ is | 
|---|
|  | 1064 | larger than 9 the corresponding true value of $\theta_{13}$ ``is | 
|---|
|  | 1065 | discovered at 3$\sigma$''. In other words, the $3\sigma$ discovery | 
|---|
|  | 1066 | limit as a function of the true $\delCP$ is given by the true value of | 
|---|
|  | 1067 | $\stheta$ for which $\Delta\chi^2(\theta_{13}=0) = 9$. In the fitting | 
|---|
|  | 1068 | process we minimize the $\Delta\chi^2$ with respect to $\theta_{12}$, | 
|---|
|  | 1069 | $\theta_{23}$, $\Delta m^2_{12}$, and $\Delta m^2_{31}$, and in | 
|---|
|  | 1070 | general one has to test also for degenerate solutions in sign($\Delta | 
|---|
|  | 1071 | m^2_{31}$) and the octant of $\theta_{23}$. | 
|---|
|  | 1072 |  | 
|---|
|  | 1073 | \begin{figure} | 
|---|
|  | 1074 | \centering \includegraphics[width=0.9\textwidth]{./fig9.eps} | 
|---|
|  | 1075 | \mycaption{$3\sigma$ discovery sensitivity to $\stheta$ for \BB, | 
|---|
|  | 1076 | SPL, and T2HK as a function of the true value of \delCP\ (left | 
|---|
|  | 1077 | panel) and as a function of the fraction of all possible values of | 
|---|
|  | 1078 | \delCP\ (right panel). The width of the bands corresponds to values | 
|---|
|  | 1079 | for the systematical errors between 2\% and 5\%. The black curves | 
|---|
|  | 1080 | correspond to the combination of \BB\ and SPL with 10~yrs of total | 
|---|
|  | 1081 | data taking each for a systematical error of 2\%, and the dashed | 
|---|
|  | 1082 | curves show the sensitivity of the \BB\ when the number of ion | 
|---|
|  | 1083 | decays/yr are reduced by a factor of two with respect to the values | 
|---|
|  | 1084 | given in Tab.~\ref{tab:setups}.\label{fig:th13}} | 
|---|
|  | 1085 | \end{figure} | 
|---|
|  | 1086 |  | 
|---|
|  | 1087 | The discovery limits are shown for \BB, SPL, and T2HK in | 
|---|
|  | 1088 | Fig.~\ref{fig:th13}. One observes that SPL and T2HK are rather similar | 
|---|
|  | 1089 | in performance, whereas the \BB\ with our standard fluxes performs | 
|---|
|  | 1090 | significantly better. For all three facilities a guaranteed discovery | 
|---|
|  | 1091 | reach of $\stheta \simeq 5\times 10^{-3}$ is obtained, irrespective of | 
|---|
|  | 1092 | the actual value of \delCP, however, for certain values of \delCP\ the | 
|---|
|  | 1093 | sensitivity is significantly improved. For SPL and T2HK discovery | 
|---|
|  | 1094 | limits around $\stheta \simeq 10^{-3}$ are possible for a large | 
|---|
|  | 1095 | fraction of all possible values of \delCP, whereas for our standard | 
|---|
|  | 1096 | \BB\ a sensitivity below $\stheta = 4\times 10^{-4}$ is reached for | 
|---|
|  | 1097 | 80\% of all possible values of \delCP. If 10~years of data from \BB\ | 
|---|
|  | 1098 | and SPL are combined the discovery limit is dominated by the \BB. | 
|---|
|  | 1099 | % | 
|---|
|  | 1100 | Let us stress that the \BB\ performance depends crucially on the | 
|---|
|  | 1101 | neutrino flux intensity, as can be seen from the dashed curves in | 
|---|
|  | 1102 | Fig.~\ref{fig:th13}, which has been obtained by reducing the number of | 
|---|
|  | 1103 | ion decays/yr by a factor of two with respect to our standard values | 
|---|
|  | 1104 | given in Tab.~\ref{tab:setups}. In this case the sensitivity decreases | 
|---|
|  | 1105 | significantly, but still values slightly better than from the | 
|---|
|  | 1106 | Super Beam experiments are reached. | 
|---|
|  | 1107 |  | 
|---|
|  | 1108 | In Fig.~\ref{fig:th13} we illustrate also the effect of systematical | 
|---|
|  | 1109 | errors on the $\theta_{13}$ discovery reach. The lower boundary of the | 
|---|
|  | 1110 | band for each experiment corresponds to a systematical error of 2\%, | 
|---|
|  | 1111 | whereas the upper boundary is obtained for 5\%. These errors include | 
|---|
|  | 1112 | the (uncorrelated) normalization uncertainties on the signal as well | 
|---|
|  | 1113 | as on the background, where the crucial uncertainty is the error on | 
|---|
|  | 1114 | the background. We find that the \BB\ is basically not affected by | 
|---|
|  | 1115 | these errors, since the background has a rather different spectral | 
|---|
|  | 1116 | shape (strongly peaked at low energies) than the signal. The fact | 
|---|
|  | 1117 | that T2HK is relatively strongly affected by the actual value of the | 
|---|
|  | 1118 | systematics can by understood by considering the ratio of signal to | 
|---|
|  | 1119 | the square-root of the background using the numbers of | 
|---|
|  | 1120 | Tab.~\ref{tab:events}. We shall discuss this issue in more detail in | 
|---|
|  | 1121 | the next section in the context of the CP violation discovery reach. | 
|---|
|  | 1122 |  | 
|---|
|  | 1123 | Let us remark that the $\theta_{13}$ sensitivities are practically not | 
|---|
|  | 1124 | affected by the sign($\Delta m^2_{31}$)-degeneracy. This is easy to | 
|---|
|  | 1125 | understand, since the data is fitted with $\theta_{13} = 0$, and in | 
|---|
|  | 1126 | this case both mass hierarchies lead to very similar event rates. If | 
|---|
|  | 1127 | the inverted hierarchy is used as the true hierarchy, the peak in the | 
|---|
|  | 1128 | discovery limit visible in the left panel of Fig.~\ref{fig:th13} | 
|---|
|  | 1129 | around $\delCP \sim \pi$ moves to $\delCP \sim 0$. However, the | 
|---|
|  | 1130 | characteristic shape of the curves, and in particular, the sensitivity | 
|---|
|  | 1131 | as a function of the \delCP-fraction shown in the right panel are | 
|---|
|  | 1132 | hardly affected by the sign of the true $\Delta m^2_{31}$. | 
|---|
|  | 1133 | % | 
|---|
|  | 1134 | In case of a non-maximal value of $\theta_{23}$ the octant-degeneracy | 
|---|
|  | 1135 | has a minor impact on the $\theta_{13}$ discovery potential, as | 
|---|
|  | 1136 | illustrated in Fig.~\ref{fig:SPLTheta13Disco} for the SPL. We show the | 
|---|
|  | 1137 | discovery limit obtained with the true and the fake octant of | 
|---|
|  | 1138 | $\theta_{23}$ for a true value of $\sin^2\theta_{23}= 0.6$. Let us | 
|---|
|  | 1139 | note that for true values of $\sin^2\theta_{23} > 0.5$ the | 
|---|
|  | 1140 | octant-degenerate solution leads to a worse sensitivity to | 
|---|
|  | 1141 | $\theta_{13}$ (see figure), whereas for $\sin^2\theta_{23} < 0.5$ the | 
|---|
|  | 1142 | fake solution does not affect the $\theta_{13}$ discovery, since in | 
|---|
|  | 1143 | this case the sensitivity is increased. | 
|---|
|  | 1144 |  | 
|---|
|  | 1145 | \begin{figure} | 
|---|
|  | 1146 | \centering | 
|---|
|  | 1147 | \includegraphics[width=0.9\textwidth]{./fig10.eps} | 
|---|
|  | 1148 | \mycaption{\label{fig:SPLTheta13Disco} $3\sigma$ discovery | 
|---|
|  | 1149 | sensitivity to $\stheta$ for the SPL as a function of the true value | 
|---|
|  | 1150 | of \delCP\ for $\sin^2\theta_{23}^\mathrm{true} = 0.6$ and true values for | 
|---|
|  | 1151 | the other parameters as given in Eq.~(\ref{eq:default-params}).} | 
|---|
|  | 1152 | \end{figure} | 
|---|
|  | 1153 |  | 
|---|
|  | 1154 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1155 | \subsection{Sensitivity to CP violation} | 
|---|
|  | 1156 | \label{sec:CPV} | 
|---|
|  | 1157 |  | 
|---|
|  | 1158 | In case a finite value of $\theta_{13}$ is established it is important | 
|---|
|  | 1159 | to quantitatively assess the discovery potential for leptonic CP | 
|---|
|  | 1160 | violation (CPV). The CP symmetry is violated if the complex phase | 
|---|
|  | 1161 | \delCP\ is different from $0$ and $\pi$. Therefore, CPV is discovered | 
|---|
|  | 1162 | if these values for \delCP\ can be excluded. | 
|---|
|  | 1163 | % | 
|---|
|  | 1164 | We evaluate the discovery potential for CPV in the following way: | 
|---|
|  | 1165 | Data are calculated by scanning the true values of $\stheta$ and | 
|---|
|  | 1166 | $\delCP$. Then these data are fitted with the CP conserving values | 
|---|
|  | 1167 | $\delCP = 0$ and $\delCP = \pi$, where all parameters except \delCP\ | 
|---|
|  | 1168 | are varied and the sign and octant degeneracies are taken into | 
|---|
|  | 1169 | account. If no fit with $\Delta \chi^2 < 9$ is found CP conserving | 
|---|
|  | 1170 | values of \delCP\ can be excluded at $3\sigma$ for the chosen values | 
|---|
|  | 1171 | of $\delta_\mathrm{CP}^\mathrm{true}$ and $\stheta^\mathrm{true}$. | 
|---|
|  | 1172 |  | 
|---|
|  | 1173 | \begin{figure}[!t] | 
|---|
|  | 1174 | \centering | 
|---|
|  | 1175 | \includegraphics[width=0.65\textwidth]{./fig11.eps} | 
|---|
|  | 1176 | % | 
|---|
|  | 1177 | \mycaption{CPV discovery potential for \BB, SPL, and T2HK: For | 
|---|
|  | 1178 | parameter values inside the ellipse-shaped curves CP conserving | 
|---|
|  | 1179 | values of \delCP\ can be excluded at $3\sigma$ $(\Delta\chi^2>9)$. | 
|---|
|  | 1180 | The width of the bands corresponds to values for the systematical | 
|---|
|  | 1181 | errors from 2\% to 5\%. The dashed curves show the sensitivity of | 
|---|
|  | 1182 | the \BB\ when the number of ion decays/yr are reduced by a factor | 
|---|
|  | 1183 | of two with respect to the values given in Tab.~\ref{tab:setups} | 
|---|
|  | 1184 | for 2\% systematics.\label{fig:CPV}} | 
|---|
|  | 1185 | \end{figure} | 
|---|
|  | 1186 |  | 
|---|
|  | 1187 | The CPV discovery potential for \BB, SPL, and T2HK is shown in | 
|---|
|  | 1188 | Fig.~\ref{fig:CPV}. As in the case of the $\theta_{13}$ sensitivity we | 
|---|
|  | 1189 | find that SPL and T2HK perform rather similar, whereas the \BB\ has | 
|---|
|  | 1190 | significantly better sensitivity if our adopted numbers of ion decays | 
|---|
|  | 1191 | per year can be achieved. For systematical errors of 2\% maximal CPV | 
|---|
|  | 1192 | (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) can be discovered at | 
|---|
|  | 1193 | $3\sigma$ down to $\stheta \simeq 8.8 \,(6.6)\times 10^{-4}$ for SPL | 
|---|
|  | 1194 | (T2HK), and $\stheta \simeq 2\times 10^{-4}$ for the \BB. This number | 
|---|
|  | 1195 | for the \BB\ is increased by a factor 3 if the fluxes are reduced to | 
|---|
|  | 1196 | half of our nominal values.  The best sensitivity to CPV is obtained | 
|---|
|  | 1197 | for all three facilities around $\stheta \sim 10^{-2}$. For this value | 
|---|
|  | 1198 | CPV can be established for 78\%, 73\%, 75\% of all values of \delCP\ | 
|---|
|  | 1199 | for \BB, SPL, T2HK, respectively (again for systematics of 2\%). | 
|---|
|  | 1200 |  | 
|---|
|  | 1201 | The widths of the bands in Fig.~\ref{fig:CPV} corresponds to different | 
|---|
|  | 1202 | values for systematical errors. The curves which give the best | 
|---|
|  | 1203 | sensitivities are obtained for systematics of 2\%, the curves | 
|---|
|  | 1204 | corresponding to the worst sensitivity have been computed for | 
|---|
|  | 1205 | systematics of 5\%. We change the uncertainty on the signal as well as | 
|---|
|  | 1206 | on the background, however, it turns out that the most relevant | 
|---|
|  | 1207 | uncertainty is the background normalization. We find that the impact | 
|---|
|  | 1208 | of systematics is very small for the \BB. The reason for this is that | 
|---|
|  | 1209 | the spectral shape of the background in the \BB\ (from pions and | 
|---|
|  | 1210 | atmospheric neutrinos) is very different from the signal, and | 
|---|
|  | 1211 | therefore they can be disentangled by the fit of the energy spectrum. | 
|---|
|  | 1212 | For the Super Beams the background spectrum is more similar to the | 
|---|
|  | 1213 | signal, and therefore an uncertainty on the backgound normalization | 
|---|
|  | 1214 | might have a strong impact on the sensitivity, as visible from the SPL | 
|---|
|  | 1215 | and T2HK curves in Fig.~\ref{fig:CPV}. In particular T2HK is strongly | 
|---|
|  | 1216 | affected, and moving from 2\% to 5\% uncertainy decreases the | 
|---|
|  | 1217 | sensitivity to maximal CPV by a factor 3. | 
|---|
|  | 1218 |  | 
|---|
|  | 1219 | This interesting feature can be understood in the following way. A | 
|---|
|  | 1220 | rough measure to estimate the sensitivity is given by the signal | 
|---|
|  | 1221 | compared to the error on the background. The latter receives | 
|---|
|  | 1222 | contributions from the statistical error $\sqrt{B}$ and from the | 
|---|
|  | 1223 | systematical uncertainty $\sigma_\mathrm{bkgr}B$, where $B$ is the | 
|---|
|  | 1224 | number of background events and $\sigma_\mathrm{bkgr}$ is the | 
|---|
|  | 1225 | (relative) systematical error. Hence the importance of the systematics | 
|---|
|  | 1226 | can be estimated by the ratio of systematical and statistical errors | 
|---|
|  | 1227 | $\sigma_\mathrm{bkgr} B / \sqrt{B} = \sigma_\mathrm{bkgr} \sqrt{B}$. | 
|---|
|  | 1228 | Summing the numbers for background events in the neutrino and | 
|---|
|  | 1229 | antineutrino channels given in Tab.~\ref{tab:events} one finds that | 
|---|
|  | 1230 | systematical errors dominate ($\sigma_\mathrm{bkgr} \sqrt{B} > 1$) if | 
|---|
|  | 1231 | $\sigma_\mathrm{bkgr} \gtrsim 6\%,\, 3\%, \, 2\%$ for \BB, SPL, T2HK, | 
|---|
|  | 1232 | respectively. | 
|---|
|  | 1233 | % | 
|---|
|  | 1234 | In the right panel Fig.~\ref{fig:systematics} we show the sensitivity | 
|---|
|  | 1235 | to maximal CPV (as defined in the figure caption) as a function of | 
|---|
|  | 1236 | $\sigma_\mathrm{bkgr}$. Indeed, the worsening of the sensitivity due | 
|---|
|  | 1237 | to systematics occurs roughly at the values of $\sigma_\mathrm{bkgr}$ | 
|---|
|  | 1238 | as estimated above. For a more quantitative understanding of these | 
|---|
|  | 1239 | curves it is necessary to consider the number of signal and background | 
|---|
|  | 1240 | events for neutrinos and antineutrinos separately, as well as to take | 
|---|
|  | 1241 | into account spectral information. | 
|---|
|  | 1242 |  | 
|---|
|  | 1243 |  | 
|---|
|  | 1244 | \begin{figure}[!t] | 
|---|
|  | 1245 | \centering | 
|---|
|  | 1246 | \includegraphics[width=0.9\textwidth]{./fig12.eps} | 
|---|
|  | 1247 | % | 
|---|
|  | 1248 | \mycaption{Impact of total exposure and systematical errors on the | 
|---|
|  | 1249 | CPV discovery potential of \BB, SPL, and T2HK. We show the | 
|---|
|  | 1250 | smallest true value of $\stheta$ for which $\delCP = \pi/2$ can be | 
|---|
|  | 1251 | distinguished from $\delCP = 0$ or $\delCP = \pi$ at $3\sigma$ | 
|---|
|  | 1252 | $(\Delta\chi^2>9)$ as a function of the exposure in kt~yrs (left) | 
|---|
|  | 1253 | and as a function of the systematical error on the background | 
|---|
|  | 1254 | $\sigma_\mathrm{bkgr}$ (right). The widths of the curves in the | 
|---|
|  | 1255 | left panel corresponds to values of $\sigma_\mathrm{bkgr}$ from 2\% | 
|---|
|  | 1256 | to 5\%. The thin solid curves in the left panel corresponds to no | 
|---|
|  | 1257 | systematical errors. The right plot is calculated for the standard | 
|---|
|  | 1258 | exposure of 4400~kt~yrs. No systematical error on the signal has | 
|---|
|  | 1259 | been assumed. \label{fig:systematics}} | 
|---|
|  | 1260 | \end{figure} | 
|---|
|  | 1261 |  | 
|---|
|  | 1262 | The left panel of Fig.~\ref{fig:systematics} shows the sensitivity to | 
|---|
|  | 1263 | maximal CPV as a function of the exposure\footnote{Note that the CPV | 
|---|
|  | 1264 | sensitivity for the \BB\ with reduced fluxes from Fig.~\ref{fig:CPV} | 
|---|
|  | 1265 | is worse than the value which follows from Fig.~\ref{fig:systematics}. | 
|---|
|  | 1266 | The reason is that in Fig.~\ref{fig:systematics} the total exposure is | 
|---|
|  | 1267 | scaled (mass~$\times$~time), i.e., signal and background are scaled in | 
|---|
|  | 1268 | the same way, whereas for the dashed curve in Fig.~\ref{fig:CPV} only | 
|---|
|  | 1269 | the fluxes are reduced but backgrounds are kept constant.} for values | 
|---|
|  | 1270 | of $\sigma_\mathrm{bkgr}$ from 2\% to 5\%. One can observe clearly | 
|---|
|  | 1271 | that for the standard exposure of 4400~kt~yrs T2HK is dominated by | 
|---|
|  | 1272 | systematics and changing $\sigma_\mathrm{bkgr}$ from 2\% to 5\% has a | 
|---|
|  | 1273 | big impact on the sensitivity. In contrast the CERN--MEMPHYS | 
|---|
|  | 1274 | experiments (especially the \BB) are rather stable with respect to | 
|---|
|  | 1275 | systematics and for the standard exposure they are still statistics | 
|---|
|  | 1276 | dominated. We conclude that in T2HK systematics have to be under very | 
|---|
|  | 1277 | good control\footnote{As a possible solution to this problem for T2HK | 
|---|
|  | 1278 | it has been proposed in Ref.~\cite{Ishitsuka:2005qi} to place one half | 
|---|
|  | 1279 | of the Hyper-K detector mass at Kamioka and the second half at the | 
|---|
|  | 1280 | same off-axis angle in Korea.}, whereas this issue is less important | 
|---|
|  | 1281 | for \BB\ and SPL. | 
|---|
|  | 1282 | % | 
|---|
|  | 1283 | We have checked explicitly that the systematical error on the signal | 
|---|
|  | 1284 | has negligible impact on these results. Therefore, we have set this | 
|---|
|  | 1285 | error to zero for calculating Fig.~\ref{fig:systematics} to highlight | 
|---|
|  | 1286 | the importance of the background error. In all other calculations also | 
|---|
|  | 1287 | the signal error is included, in particular also in Fig.~\ref{fig:CPV}. | 
|---|
|  | 1288 |  | 
|---|
|  | 1289 |  | 
|---|
|  | 1290 | \begin{figure}[!t] | 
|---|
|  | 1291 | \centering | 
|---|
|  | 1292 | \includegraphics[width=0.8\textwidth]{./fig13.eps} | 
|---|
|  | 1293 | % | 
|---|
|  | 1294 | \mycaption{Impact of degeneracies on the CPV discovery potential | 
|---|
|  | 1295 | for the \BB. We show the sensitivity to CPV at $3\sigma$ | 
|---|
|  | 1296 | $(\Delta\chi^2>9)$ computed for 4 different combinations of the | 
|---|
|  | 1297 | true values of the hierarchy (NH or IH) and $\theta_{23}$ | 
|---|
|  | 1298 | ($\sin^2\theta_{23} = 0.4$ or $0.6$). Dashed curves are computed | 
|---|
|  | 1299 | neglecting degeneracies in the fit.\label{fig:deltacp}} | 
|---|
|  | 1300 | \end{figure} | 
|---|
|  | 1301 |  | 
|---|
|  | 1302 | Finally, in Fig.~\ref{fig:deltacp} we illustrate the impact of | 
|---|
|  | 1303 | degeneracies, as well as the true hierarchy and \thetatt-octant on the | 
|---|
|  | 1304 | CPV sensitivity.  Curves of different colors correspond to the four | 
|---|
|  | 1305 | different choices for \sigdm\ and the \thetatt-octant of the true | 
|---|
|  | 1306 | parameters. For the solid curves the simulated data for each choice of | 
|---|
|  | 1307 | true \sigdm\ and \thetatt-octant are fitted by taking into account all | 
|---|
|  | 1308 | four degenerate solutions, i.e., also for the fit all four | 
|---|
|  | 1309 | combinations of \sigdm\ and \thetatt-octant are used. One observes | 
|---|
|  | 1310 | from the figure that the true hierarchy and octant have a rather small | 
|---|
|  | 1311 | impact on the \BB\ CPV sensitivity, in particular the sensitivity to | 
|---|
|  | 1312 | maximal CPV is completely independent.  The main effect of changing the | 
|---|
|  | 1313 | true hierarchy is to exchange the behavior between $0 < \delCP < | 
|---|
|  | 1314 | 180^\circ$ and $180^\circ < \delCP < 360^\circ$. For $\stheta \lesssim | 
|---|
|  | 1315 | 10^{-2}$ the sensitivity gets slightly worse if | 
|---|
|  | 1316 | $\thetatt^\mathrm{true} > \pi/4$ compared to $\thetatt^\mathrm{true} < | 
|---|
|  | 1317 | \pi/4$. | 
|---|
|  | 1318 |  | 
|---|
|  | 1319 | The dashed curves in Fig.~\ref{fig:deltacp} are computed without | 
|---|
|  | 1320 | taking into account the degeneracies, i.e., for each choice of true | 
|---|
|  | 1321 | \sigdm\ and \thetatt-octant the data are fitted only with this | 
|---|
|  | 1322 | particular choice. The effect of the degeneracies becomes visible for | 
|---|
|  | 1323 | large values of \thetaot. Note that this is just the region where they | 
|---|
|  | 1324 | can be reduced by a combined analysis with atmospheric neutrinos (see | 
|---|
|  | 1325 | Sec.~\ref{sec:atmospherics} or Ref.~\cite{Huber:2005ep}). | 
|---|
|  | 1326 |  | 
|---|
|  | 1327 |  | 
|---|
|  | 1328 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1329 | \section{Synergies provided by the CERN--MEMPHYS facilities} | 
|---|
|  | 1330 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1331 | \label{sec:synergies} | 
|---|
|  | 1332 |  | 
|---|
|  | 1333 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1334 | \subsection{Combining Beta Beam and Super Beam} | 
|---|
|  | 1335 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1336 | \label{sec:synergies-beams} | 
|---|
|  | 1337 |  | 
|---|
|  | 1338 | In this section we discuss synergies which emerge if both \BB\ and SPL | 
|---|
|  | 1339 | are available. The main difference between these two beams is the | 
|---|
|  | 1340 | different initial neutrino flavor, | 
|---|
|  | 1341 | $\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for \BB\ and | 
|---|
|  | 1342 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ for SPL. This implies | 
|---|
|  | 1343 | that at near detectors all relevant cross sections can be measured. In | 
|---|
|  | 1344 | particular, the near detector of the \BB\ will measure the cross | 
|---|
|  | 1345 | section for the SPL appearance search, and vice versa. | 
|---|
|  | 1346 | % | 
|---|
|  | 1347 | If both experiments run with neutrinos and antineutrinos all possible | 
|---|
|  | 1348 | transition probabilities are covered: $P_{\nu_e\to\nu_\mu}$, | 
|---|
|  | 1349 | $P_{\bar\nu_e\to\bar\nu_\mu}$, $P_{\nu_\mu\to\nu_e}$, and | 
|---|
|  | 1350 | $P_{\bar\nu_\mu\to\bar\nu_e}$. Together with the fact that matter | 
|---|
|  | 1351 | effects are very small because of the relatively short baseline, this | 
|---|
|  | 1352 | means that in addition to CP also direct tests of the T and CPT | 
|---|
|  | 1353 | symmetries are possible. | 
|---|
|  | 1354 |  | 
|---|
|  | 1355 | \begin{figure}[!t] | 
|---|
|  | 1356 | \centering | 
|---|
|  | 1357 | \includegraphics[width=0.9\textwidth]{./fig14.eps} | 
|---|
|  | 1358 | % | 
|---|
|  | 1359 | \mycaption{Discovery potential of a finite value of $\stheta$ at | 
|---|
|  | 1360 | $3\sigma$ $(\Delta\chi^2>9)$ for 5~yrs neutrino data from | 
|---|
|  | 1361 | \BB, SPL, and the combination of \BB\ + SPL compared to | 
|---|
|  | 1362 | 10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos). | 
|---|
|  | 1363 | \label{fig:th13-5yrs}} | 
|---|
|  | 1364 | \end{figure} | 
|---|
|  | 1365 |  | 
|---|
|  | 1366 | \begin{figure}[!t] | 
|---|
|  | 1367 | \centering | 
|---|
|  | 1368 | \includegraphics[width=0.6\textwidth]{./fig15.eps} | 
|---|
|  | 1369 | % | 
|---|
|  | 1370 | \mycaption{Sensitivity to CPV at $3\sigma$ $(\Delta\chi^2>9)$ for | 
|---|
|  | 1371 | combining 5~yrs neutrino data from \BB\ and SPL compared to | 
|---|
|  | 1372 | 10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos). | 
|---|
|  | 1373 | \label{fig:CP-5yrs}} | 
|---|
|  | 1374 | \end{figure} | 
|---|
|  | 1375 |  | 
|---|
|  | 1376 | However, if the CPT symmetry is assumed in principle all information | 
|---|
|  | 1377 | can be obtained just from neutrino data because of the relations | 
|---|
|  | 1378 | $P_{\bar\nu_e\to\bar\nu_\mu} = P_{\nu_\mu\to\nu_e}$ and | 
|---|
|  | 1379 | $P_{\bar\nu_\mu\to\bar\nu_e} = P_{\nu_e\to\nu_\mu}$. As mentioned | 
|---|
|  | 1380 | already in Sec.~\ref{sec:degeneracies} this implies that (time | 
|---|
|  | 1381 | consuming) antineutrino running can be avoided. We illustrate this | 
|---|
|  | 1382 | synergy in Figs.~\ref{fig:th13-5yrs} and \ref{fig:CP-5yrs}. In | 
|---|
|  | 1383 | Fig.~\ref{fig:th13-5yrs} we show the $\theta_{13}$ discovery potential | 
|---|
|  | 1384 | of 5 years of neutrino data from \BB\ and SPL. From the left panel the | 
|---|
|  | 1385 | complementarity of the two experiments is obvious, since each of them | 
|---|
|  | 1386 | is most sensitive in a different region of \delCP. (As expected from | 
|---|
|  | 1387 | general properties of the oscillation probabilities the sensitivity | 
|---|
|  | 1388 | curves of \BB\ and SPL are approximately related by the transformation | 
|---|
|  | 1389 | $\delCP \to 2\pi - \delCP$.) Combining these two data sets results in | 
|---|
|  | 1390 | a sensitivity slightly better than from 10 years (2$\nu$+8$\bar\nu$) | 
|---|
|  | 1391 | of T2HK data. | 
|---|
|  | 1392 | % | 
|---|
|  | 1393 | As visible in Fig.~\ref{fig:CP-5yrs} also for the CPV discovery this | 
|---|
|  | 1394 | synergy works and 5 years of neutrino data from \BB\ and SPL lead to a | 
|---|
|  | 1395 | similar sensitivity as 10 years of T2HK. | 
|---|
|  | 1396 |  | 
|---|
|  | 1397 |  | 
|---|
|  | 1398 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1399 | \subsection{Resolving degeneracies with atmospheric neutrinos} | 
|---|
|  | 1400 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1401 | \label{sec:atmospherics} | 
|---|
|  | 1402 |  | 
|---|
|  | 1403 | It was pointed out in Ref.~\cite{Huber:2005ep} that for LBL | 
|---|
|  | 1404 | experiments based on mega ton scale water \v{C}erenkov detectors data | 
|---|
|  | 1405 | from atmospheric neutrinos (ATM) provide an attractive method to | 
|---|
|  | 1406 | resolve degeneracies. Atmospheric neutrinos are sensitive to the | 
|---|
|  | 1407 | neutrino mass hierarchy if $\theta_{13}$ is sufficiently large due to | 
|---|
|  | 1408 | Earth matter effects, mainly in multi-GeV $e$-like | 
|---|
|  | 1409 | events~\cite{Petcov:1998su,Akhmedov:1998ui,Bernabeu:2003yp}. Moreover, | 
|---|
|  | 1410 | sub-GeV $e$-like events provide sensitivity to the octant of | 
|---|
|  | 1411 | $\theta_{23}$~\cite{Kim:1998bv,Peres:2003wd,Gonzalez-Garcia:2004cu} | 
|---|
|  | 1412 | due to oscillations with $\Delta m^2_{21}$ (see also | 
|---|
|  | 1413 | Ref.~\cite{Kajita} for a discussion of atmospheric neutrinos in the | 
|---|
|  | 1414 | context of Hyper-K). | 
|---|
|  | 1415 | % | 
|---|
|  | 1416 | Following Ref.~\cite{Huber:2005ep} we investigate here the synergy | 
|---|
|  | 1417 | from a combination of LBL data from \BB\ and SPL with ATM data in the | 
|---|
|  | 1418 | MEMPHYS detector. A general three-flavor analysis of ATM data is | 
|---|
|  | 1419 | performed based on Ref.~\cite{Gonzalez-Garcia:2004cu} and references | 
|---|
|  | 1420 | therein. | 
|---|
|  | 1421 | % | 
|---|
|  | 1422 | We include fully-contained $e$-like and $\mu$-like events (further | 
|---|
|  | 1423 | divided into sub-GeV $p_l<400$~MeV, sub-GeV $p_l > 400$~MeV, and | 
|---|
|  | 1424 | Multi-GeV events), partially-contained $\mu$-like events, stopping | 
|---|
|  | 1425 | muons, and through-going muons. Each of these data samples is divided | 
|---|
|  | 1426 | into 10 zenith bins, so we have a total of 90 data points. The | 
|---|
|  | 1427 | simulation of the atmospheric event rates has been adapted to the | 
|---|
|  | 1428 | actual geometry of the MEMPHYS detector proposal (see | 
|---|
|  | 1429 | Fig.~\ref{fig:MEMPHYS}). Details of the statistical analysis can be | 
|---|
|  | 1430 | found in Ref.~\cite{Gonzalez-Garcia:2004wg}. Note that our analysis of | 
|---|
|  | 1431 | atmospheric data is conservative, since there is room for improvement | 
|---|
|  | 1432 | by including multi-ring events as well as by optimizing the energy | 
|---|
|  | 1433 | binning.\footnote{The impact of energy binning on the hierarchy | 
|---|
|  | 1434 | determination with atmospheric neutrinos has been discussed recently | 
|---|
|  | 1435 | in Ref.~\cite{Petcov:2005rv} in the context of magnetized iron | 
|---|
|  | 1436 | detectors.} | 
|---|
|  | 1437 |  | 
|---|
|  | 1438 | \begin{figure}[!t] | 
|---|
|  | 1439 | \centering | 
|---|
|  | 1440 | \includegraphics[width=0.9\textwidth]{./fig16.eps} | 
|---|
|  | 1441 | % | 
|---|
|  | 1442 | \mycaption{Sensitivity to the mass hierarchy at $2\sigma$ | 
|---|
|  | 1443 | $(\Delta\chi^2 = 4)$ as a function of the true values of | 
|---|
|  | 1444 | $\sin^22\theta_{13}$ and $\delta_\mathrm{CP}$ (left), and the | 
|---|
|  | 1445 | fraction of true values of $\delCP$ (right). The solid curves are | 
|---|
|  | 1446 | the sensitivities from the combination of long-baseline and | 
|---|
|  | 1447 | atmospheric neutrino data, the dashed curves correspond to | 
|---|
|  | 1448 | long-baseline data only. For comparison we show in the right panel | 
|---|
|  | 1449 | also the sensitivities of NO$\nu$A and NO$\nu$A+T2K extracted from | 
|---|
|  | 1450 | Fig.~13.14 of Ref.~\cite{Ayres:2004js}. For the curve labeled | 
|---|
|  | 1451 | ``NO$\nu$A (p.dr.)+T2K@4~MW'' a proton driver has been assumed for | 
|---|
|  | 1452 | NO$\nu$A and the T2K beam has been up-graded to 4~MW, see | 
|---|
|  | 1453 | Ref.~\cite{Ayres:2004js} for details.} | 
|---|
|  | 1454 | \label{fig:hierarchy} | 
|---|
|  | 1455 | \end{figure} | 
|---|
|  | 1456 |  | 
|---|
|  | 1457 | The effect of degeneracies in LBL data has been discussed in | 
|---|
|  | 1458 | Sec.~\ref{sec:degeneracies}, see Figs.~\ref{fig:degeneracies} and | 
|---|
|  | 1459 | \ref{fig:degeneracies_SPL}. As discussed there, for given true | 
|---|
|  | 1460 | parameter values the data can be fitted with the wrong hierarchy | 
|---|
|  | 1461 | and/or with the wrong octant of $\theta_{23}$. Hence, from LBL data | 
|---|
|  | 1462 | alone the hierarchy and the octant cannot be determined and | 
|---|
|  | 1463 | ambiguities exist in the determination of $\theta_{13}$ and | 
|---|
|  | 1464 | $\delta_\mathrm{CP}$. | 
|---|
|  | 1465 | % | 
|---|
|  | 1466 | If the LBL data are combined with ATM data only the colored regions in | 
|---|
|  | 1467 | Fig.~\ref{fig:degeneracies} survive, i.e., in this particular example | 
|---|
|  | 1468 | for SPL and T2HK the degeneracies are completely lifted at 95\%~CL, | 
|---|
|  | 1469 | the mass hierarchy and the octant of $\theta_{23}$ can be identified, | 
|---|
|  | 1470 | and the ambiguities in $\theta_{13}$ and $\delta_\mathrm{CP}$ are | 
|---|
|  | 1471 | resolved. For the \BB\ an island corresponding to the wrong hierarchy | 
|---|
|  | 1472 | does survive at the 95\%~CL for 2~dof. Still, the solution with the | 
|---|
|  | 1473 | wrong sign of $\Delta m^2_{31}$ is disfavored with $\Delta\chi^2 = | 
|---|
|  | 1474 | 5.1$ with respect to the true solution, which corresponds to | 
|---|
|  | 1475 | 2.4$\sigma$ for 1~dof. | 
|---|
|  | 1476 | % | 
|---|
|  | 1477 | Let us note that in Fig.~\ref{fig:degeneracies} we have chosen a | 
|---|
|  | 1478 | favorable value of $\sin^2\theta_{23} = 0.6$; for values | 
|---|
|  | 1479 | $\sin^2\theta_{23} < 0.5$ in general the sensitivity of ATM data is | 
|---|
|  | 1480 | weaker~\cite{Huber:2005ep}. | 
|---|
|  | 1481 |  | 
|---|
|  | 1482 | In Fig.~\ref{fig:hierarchy} we show how the combination of ATM+LBL | 
|---|
|  | 1483 | data leads to a non-trivial sensitivity to the neutrino mass | 
|---|
|  | 1484 | hierarchy, i.e.\ to the sign of $\Delta m^2_{31}$. For LBL data alone | 
|---|
|  | 1485 | (dashed curves) there is practically no sensitivity for the | 
|---|
|  | 1486 | CERN--MEMPHYS experiments (because of the very small matter effects | 
|---|
|  | 1487 | due to the relatively short baseline), and the sensitivity of T2HK | 
|---|
|  | 1488 | depends strongly on the true value of $\delta_\mathrm{CP}$. However, | 
|---|
|  | 1489 | by including data from atmospheric neutrinos (solid curves) the mass | 
|---|
|  | 1490 | hierarchy can be identified at $2\sigma$~CL provided | 
|---|
|  | 1491 | $\sin^22\theta_{13} \gtrsim 0.03-0.05$ for \BB\ and SPL, and | 
|---|
|  | 1492 | $\sin^22\theta_{13} \gtrsim 0.02-0.03$ for T2HK, where for the CERN | 
|---|
|  | 1493 | experiments the sensitivity shows somewhat more dependence on the true | 
|---|
|  | 1494 | value of $\delta_\mathrm{CP}$. As an example we have chosen in that | 
|---|
|  | 1495 | figure a true value of $\theta_{23} = \pi/4$. Generically the | 
|---|
|  | 1496 | hierarchy sensitivity increases with increasing $\theta_{23}$, see | 
|---|
|  | 1497 | Ref.~\cite{Huber:2005ep} for a detailed discussion. | 
|---|
|  | 1498 |  | 
|---|
|  | 1499 | Although \BB\ and SPL alone have no sensitivity to the hierarchy at | 
|---|
|  | 1500 | all, we find that the combination of them does provide rather good | 
|---|
|  | 1501 | sensitivity even without atmosheric data. The reason for this | 
|---|
|  | 1502 | interesting effect is the following. Because of the rather short | 
|---|
|  | 1503 | baseline the matter effect is too small to distinguish between NH and | 
|---|
|  | 1504 | IH given only neutrino and antineutrino information in one channel. | 
|---|
|  | 1505 | However, the tiny matter effect suffices to move the hierarchy | 
|---|
|  | 1506 | degenerate solution to slightly different locations in the ($\stheta$, | 
|---|
|  | 1507 | $\delCP$) plane for the $\stackrel{\scriptscriptstyle(-)}{\nu}_e \to | 
|---|
|  | 1508 | \stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ (\BB) and | 
|---|
|  | 1509 | $\stackrel{\scriptscriptstyle(-)}{\nu}_\mu \to | 
|---|
|  | 1510 | \stackrel{\scriptscriptstyle (-)}{\nu}_e$ (SPL) channels (compare | 
|---|
|  | 1511 | Fig.~\ref{fig:degeneracies}). Hence, if all four CP and T conjugate | 
|---|
|  | 1512 | channels are available (as it is the case for the \BB+SPL combination) | 
|---|
|  | 1513 | already the small matter effect picked up allong the 130~km | 
|---|
|  | 1514 | CERN--MEMPHYS distance provides sensitivity to the mass hierarchy for | 
|---|
|  | 1515 | $\sin^22\theta_{13} \gtrsim 0.03$, or $\sin^22\theta_{13} \gtrsim 0.02$ | 
|---|
|  | 1516 | if also atmospheric neutrino data is included. | 
|---|
|  | 1517 |  | 
|---|
|  | 1518 | For comparison we show in the right panel of Fig.~\ref{fig:hierarchy} | 
|---|
|  | 1519 | also the sensitivity of the NO$\nu$A~\cite{Ayres:2004js} experiment, | 
|---|
|  | 1520 | and of NO$\nu$A+T2K, where in the second case a beam upgrade by a | 
|---|
|  | 1521 | proton driver has been assumed for NO$\nu$A, and for T2K the | 
|---|
|  | 1522 | Super-Kamiokande detector has been used but the beam intensity has | 
|---|
|  | 1523 | been increased by assuming 4~MW power. More details on these | 
|---|
|  | 1524 | sensitivities can be found in Ref.~\cite{Ayres:2004js}. | 
|---|
|  | 1525 | % | 
|---|
|  | 1526 | Let us note that in general LBL experiments with two detectors (or the | 
|---|
|  | 1527 | combination of two different LBL experiments) are a competitive method | 
|---|
|  | 1528 | to atmospheric neutrinos for the hierarchy determination, see, e.g., | 
|---|
|  | 1529 | Refs.~\cite{Ishitsuka:2005qi,MenaRequejo:2005hn,Hagiwara:2005pe} for | 
|---|
|  | 1530 | recent analyses. | 
|---|
|  | 1531 | % | 
|---|
|  | 1532 | We mention also the possibility to determine the neutrino mass | 
|---|
|  | 1533 | hierarchy by using neutrino events from a galactic Super Nova | 
|---|
|  | 1534 | explosion in mega ton \v{C}erenkov detectors such as MEMPHYS, see, | 
|---|
|  | 1535 | e.g., Ref.~\cite{Kachelriess:2004vs}. | 
|---|
|  | 1536 |  | 
|---|
|  | 1537 | \begin{figure}[!t] | 
|---|
|  | 1538 | \centering | 
|---|
|  | 1539 | \includegraphics[width=0.55\textwidth]{./fig17.eps} | 
|---|
|  | 1540 | % | 
|---|
|  | 1541 | \mycaption{$\Delta\chi^2$ of the solution with the wrong octant of | 
|---|
|  | 1542 | $\theta_{23}$ as a function of the true value of | 
|---|
|  | 1543 | $\sin^2\theta_{23}$. We have assumed a true value of $\theta_{13} = | 
|---|
|  | 1544 | 0$.} | 
|---|
|  | 1545 | \label{fig:octant} | 
|---|
|  | 1546 | \end{figure} | 
|---|
|  | 1547 |  | 
|---|
|  | 1548 | Fig.~\ref{fig:octant} shows the potential of ATM+LBL data to exclude | 
|---|
|  | 1549 | the octant degenerate solution. Since this effect is based mainly on | 
|---|
|  | 1550 | oscillations with $\Delta m^2_{21}$ there is very good sensitivity | 
|---|
|  | 1551 | even for $\theta_{13} = 0$; a finite value of $\theta_{13}$ in general | 
|---|
|  | 1552 | improves the sensitivity~\cite{Huber:2005ep}.  From the figure one can | 
|---|
|  | 1553 | read off that atmospheric data alone can can resolve the correct | 
|---|
|  | 1554 | octant at $3\sigma$ if $|\sin^2\theta_{23} - 0.5| \gtrsim 0.085$. If | 
|---|
|  | 1555 | atmospheric data is combined with the LBL data from SPL or T2HK there | 
|---|
|  | 1556 | is sensitivity to the octant for $|\sin^2\theta_{23} - 0.5| \gtrsim | 
|---|
|  | 1557 | 0.05$. The improvement of the octant sensitivity with respect to | 
|---|
|  | 1558 | previous analyses~\cite{Huber:2005ep,Gonzalez-Garcia:2004cu} follows | 
|---|
|  | 1559 | from changes in the analysis of sub-GeV atmospheric events, where now | 
|---|
|  | 1560 | three bins {\bf *** to be confirmed ***} in lepton momentum are used | 
|---|
|  | 1561 | instead of one. Note that since in Fig.~\ref{fig:octant} we have | 
|---|
|  | 1562 | assumed a true value of $\theta_{13} = 0$, combining the \BB\ with ATM | 
|---|
|  | 1563 | does not improve the sensitivity with respect to atmospheric data | 
|---|
|  | 1564 | alone. | 
|---|
|  | 1565 |  | 
|---|
|  | 1566 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1567 | \section{Summary} | 
|---|
|  | 1568 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 1569 | \label{sec:conclusions} | 
|---|
|  | 1570 |  | 
|---|
|  | 1571 | In this work we have studied the physics potential of the | 
|---|
|  | 1572 | CERN--MEMPHYS neutrino oscillation project. We consider a Beta Beam | 
|---|
|  | 1573 | (\BB) with $\gamma = 100$ for the stored ions, where existing | 
|---|
|  | 1574 | facilities at CERN can be used optimally, and a Super Beam based on an | 
|---|
|  | 1575 | optimized Super Proton Linac (SPL) with a beam energy of 3.5~GeV and | 
|---|
|  | 1576 | 4~MW power. As target we assume the MEMPHYS detector, a 440~kt water | 
|---|
|  | 1577 | \v{C}erenkov detector at Fr\'ejus, at a distance of 130~km from | 
|---|
|  | 1578 | CERN. The main characteristics of the experiments are summarized in | 
|---|
|  | 1579 | Tab.~\ref{tab:setups}. | 
|---|
|  | 1580 | % | 
|---|
|  | 1581 | The adopted neutrino fluxes are based on realistic calculations of ion | 
|---|
|  | 1582 | production and storage for the \BB, and a full simulation of the beam | 
|---|
|  | 1583 | line (particle production and decay of secondaries) for SPL. Special | 
|---|
|  | 1584 | care has be given to the issue of backgrounds, which we include by | 
|---|
|  | 1585 | means of detailed event simulations and applying Super-Kamiokande particle | 
|---|
|  | 1586 | identification algorithms. | 
|---|
|  | 1587 |  | 
|---|
|  | 1588 | The physics potential of the \BB\ and SPL experiments in terms of | 
|---|
|  | 1589 | $\theta_{13}$ discovery reach and sensitivity to CP violation has been | 
|---|
|  | 1590 | addressed where parameter degeneracies are fully taken into account. | 
|---|
|  | 1591 | The main results on these performance indicators are summarized in | 
|---|
|  | 1592 | Figs.~\ref{fig:th13} and \ref{fig:CPV}. | 
|---|
|  | 1593 | % | 
|---|
|  | 1594 | We obtain a guaranteed discovery reach of $\stheta \simeq 5\times | 
|---|
|  | 1595 | 10^{-3}$ at $3\sigma$, irrespective of the actual value of \delCP. For | 
|---|
|  | 1596 | certain values of \delCP\ the sensitivity is significantly improved, | 
|---|
|  | 1597 | and for \BB\ (SPL) discovery limits arround $\stheta \simeq 3\,(10) | 
|---|
|  | 1598 | \times 10^{-4}$ are possible for a large fraction of all possible | 
|---|
|  | 1599 | values of \delCP. | 
|---|
|  | 1600 | % | 
|---|
|  | 1601 | Maximal CP violation (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) | 
|---|
|  | 1602 | can be discovered at $3\sigma$ down to $\stheta \simeq 2\, (9)\times | 
|---|
|  | 1603 | 10^{-4}$ for \BB\ (SPL), whereas the best sensitivity to CP violation | 
|---|
|  | 1604 | is obtained for $\stheta \sim 10^{-2}$: For $\stheta = 10^{-2}$ CP | 
|---|
|  | 1605 | violation can be established at $3\sigma$ for 78\% (73\%) of all | 
|---|
|  | 1606 | possible true values of \delCP\ for \BB\ (SPL). | 
|---|
|  | 1607 | % | 
|---|
|  | 1608 | We stress that the \BB\ performance in general depends crucially on | 
|---|
|  | 1609 | the number of ion decays per year. | 
|---|
|  | 1610 | % | 
|---|
|  | 1611 | The impact of the value of systematical uncertainties on signal and | 
|---|
|  | 1612 | background on our results is discussed. | 
|---|
|  | 1613 | % | 
|---|
|  | 1614 | The \BB\ and SPL sensitivities are compared to the ones of the | 
|---|
|  | 1615 | phase~II of the T2K experiment in Japan (T2HK), which is a competing | 
|---|
|  | 1616 | proposal of similar size and timescale. In general we obtain rather | 
|---|
|  | 1617 | similar sensitivities for T2HK and SPL, and hence the CERN--MEMPHYS | 
|---|
|  | 1618 | experiments provide a viable alternative to T2HK. We find that \BB\ | 
|---|
|  | 1619 | and SPL are less sensitive to systematical errors, whereas the | 
|---|
|  | 1620 | sensitivity of T2HK crucially depends on the systematical error on the | 
|---|
|  | 1621 | background.\footnote{Let us note that in the present study we have not | 
|---|
|  | 1622 | considered the recent ``T2KK'' proposal~\cite{Ishitsuka:2005qi}, where | 
|---|
|  | 1623 | one half of the Hyper-K detector mass is at Kamioka and the second | 
|---|
|  | 1624 | half in Korea. For such a setup our results do not apply and | 
|---|
|  | 1625 | especially the conclusion on systematical errors may be different.} | 
|---|
|  | 1626 |  | 
|---|
|  | 1627 | Assuming that both \BB\ and SPL experiments are available, we point | 
|---|
|  | 1628 | out that one can benefit from the different oscillation channels | 
|---|
|  | 1629 | $\nu_e\to\nu_\mu$ for \BB\ and $\nu_\mu\to\nu_e$ for SPL, since by the | 
|---|
|  | 1630 | combination of these channels the time intensive antineutrino | 
|---|
|  | 1631 | measurements can be avoided. We show that 5 years of neutrino data from | 
|---|
|  | 1632 | \BB\ and SPL lead to similar results as 2 years of neutrino plus 8 | 
|---|
|  | 1633 | years of antineutrino data from T2HK. | 
|---|
|  | 1634 | % | 
|---|
|  | 1635 | Furthermore, we discuss the use of atmospheric neutrinos in the | 
|---|
|  | 1636 | MEMPHYS detector to resolve parameter degeneracies in the | 
|---|
|  | 1637 | long-baseline data. This effect leads to a sensitivity to the neutrino | 
|---|
|  | 1638 | mass hierarchy at $2\sigma$~CL for $\sin^22\theta_{13} \gtrsim | 
|---|
|  | 1639 | 0.03-0.05$ for \BB\ and SPL, although these experiments alone (without | 
|---|
|  | 1640 | atmospheric data) have no sensitivity at all. The optimal hierarchy | 
|---|
|  | 1641 | sensitivity is obtained from combining \BB+SPL+atmospheric data. | 
|---|
|  | 1642 | Furthermore, the combination of atmospheric data with a Super Beam | 
|---|
|  | 1643 | provides a possibility to determine the octant of $\theta_{23}$. | 
|---|
|  | 1644 |  | 
|---|
|  | 1645 | To conclude, we have shown that the CERN--MEMPHYS neutrino oscillation | 
|---|
|  | 1646 | project based on a Beta Beam and/or a Super Beam plus a mega ton scale | 
|---|
|  | 1647 | water \v{C}erenkov detector offers interesting and competitive physics | 
|---|
|  | 1648 | possibilities and is worth to be considered as a serious option in | 
|---|
|  | 1649 | the worldwide process of identifying future high precision neutrino | 
|---|
|  | 1650 | oscillation facilities~\cite{ISSpage}. | 
|---|
|  | 1651 |  | 
|---|
|  | 1652 | \subsection*{Acknowledgment} | 
|---|
|  | 1653 |  | 
|---|
|  | 1654 | We thank J.~Argyriades for communication on the Super-K atmospheric | 
|---|
|  | 1655 | neutrino analysis, A.~Cazes for his work on the SPL simulation, and | 
|---|
|  | 1656 | P.~Huber for his patience in answering questions concerning the use of | 
|---|
|  | 1657 | GLoBES. T.S.\ is supported by the $6^\mathrm{th}$~Framework Program | 
|---|
|  | 1658 | of the European Community under a Marie Curie Intra-European | 
|---|
|  | 1659 | Fellowship. | 
|---|
|  | 1660 |  | 
|---|
|  | 1661 |  | 
|---|
|  | 1662 | %\newpage | 
|---|
|  | 1663 | \begin{thebibliography}{99} | 
|---|
|  | 1664 |  | 
|---|
|  | 1665 | \bibitem{solar} | 
|---|
|  | 1666 | B.~T.~Cleveland {\it et al.}, | 
|---|
|  | 1667 | Astrophys.\ J.\  {\bf 496} (1998) 505; | 
|---|
|  | 1668 | %%CITATION = ASJOA,496,505;%% | 
|---|
|  | 1669 | % | 
|---|
|  | 1670 | J.N.~Abdurashitov {\it et al.}  [SAGE], | 
|---|
|  | 1671 | J.\ Exp.\ Theor.\ Phys.\  {\bf 95} (2002) 181 | 
|---|
|  | 1672 | % [Zh.\ Eksp.\ Teor.\ Fiz.\  {\bf 122} (2002) 211]. | 
|---|
|  | 1673 | [astro-ph/0204245]; | 
|---|
|  | 1674 | %%CITATION = ASTRO-PH 0204245;%% | 
|---|
|  | 1675 | % | 
|---|
|  | 1676 | T. Kirsten {\it et al.} [GALLEX and GNO], | 
|---|
|  | 1677 | Nucl. Phys. B (Proc. Suppl.)  {\bf 118} (2003) 33; | 
|---|
|  | 1678 | % | 
|---|
|  | 1679 | S.~Fukuda {\it et al.} [Super-Kamiokande], | 
|---|
|  | 1680 | %``Determination of solar neutrino | 
|---|
|  | 1681 | % oscillation parameters using 1496 days  of Super-Kamiokande-I data,'' | 
|---|
|  | 1682 | Phys. Lett. {\bf B539} (2002) 179; | 
|---|
|  | 1683 | % | 
|---|
|  | 1684 | %\bibitem{ahmad:2002ka} | 
|---|
|  | 1685 | Q.R. Ahmad {\em et~al.} [SNO], | 
|---|
|  | 1686 | Phys. Rev. Lett. {\bf 89}, 011302 (2002) | 
|---|
|  | 1687 | [nucl-ex/0204009]; | 
|---|
|  | 1688 | %%CITATION = NUCL-EX 0204009;%% | 
|---|
|  | 1689 | % | 
|---|
|  | 1690 | %\bibitem{Aharmim:2005gt} | 
|---|
|  | 1691 | B.~Aharmim {\it et al.}  [SNO], | 
|---|
|  | 1692 | %``Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar | 
|---|
|  | 1693 | %neutrinos from the 391-day salt phase SNO data set,'' | 
|---|
|  | 1694 | Phys.\ Rev.\ C {\bf 72} (2005) 055502 | 
|---|
|  | 1695 | [nucl-ex/0502021]. | 
|---|
|  | 1696 | %%CITATION = NUCL-EX 0502021;%% | 
|---|
|  | 1697 |  | 
|---|
|  | 1698 | \bibitem{sk-atm} | 
|---|
|  | 1699 | %\bibitem{Fukuda:1998mi} | 
|---|
|  | 1700 | Super-Kamiokande Coll., | 
|---|
|  | 1701 | Y.~Fukuda {\it et al.}, | 
|---|
|  | 1702 | %``Evidence for oscillation of atmospheric neutrinos,'' | 
|---|
|  | 1703 | Phys.\ Rev.\ Lett.\  {\bf 81} (1998) 1562 | 
|---|
|  | 1704 | [hep-ex/9807003]; | 
|---|
|  | 1705 | %%CITATION = HEP-EX 9807003;%% | 
|---|
|  | 1706 | % | 
|---|
|  | 1707 | %\bibitem{Ashie:2005ik} | 
|---|
|  | 1708 | Y.~Ashie {\it et al.},%  [Super-Kamiokande Collaboration], | 
|---|
|  | 1709 | %``A measurement of atmospheric neutrino oscillation parameters by | 
|---|
|  | 1710 | %Super-Kamiokande I,'' | 
|---|
|  | 1711 | Phys.\ Rev.\ D {\bf 71}, 112005 (2005) | 
|---|
|  | 1712 | [hep-ex/0501064]. | 
|---|
|  | 1713 | %%CITATION = HEP-EX 0501064;%% | 
|---|
|  | 1714 |  | 
|---|
|  | 1715 | \bibitem{Araki:2004mb} | 
|---|
|  | 1716 | T.~Araki {\it et al.} [KamLAND Coll.], | 
|---|
|  | 1717 | %``Measurement of neutrino oscillation with KamLAND: Evidence of spectral | 
|---|
|  | 1718 | %distortion,'' | 
|---|
|  | 1719 | Phys.\ Rev.\ Lett.\  {\bf 94}, 081801 (2005) | 
|---|
|  | 1720 | [hep-ex/0406035]. | 
|---|
|  | 1721 | %%CITATION = HEP-EX 0406035;%% | 
|---|
|  | 1722 |  | 
|---|
|  | 1723 |  | 
|---|
|  | 1724 | \bibitem{Aliu:2004sq} | 
|---|
|  | 1725 | E.~Aliu {\it et al.}  [K2K Coll.], | 
|---|
|  | 1726 | %``Evidence for muon neutrino oscillation in an accelerator-based | 
|---|
|  | 1727 | %experiment,'' | 
|---|
|  | 1728 | Phys.\ Rev.\ Lett.\  {\bf 94}, 081802 (2005) | 
|---|
|  | 1729 | [hep-ex/0411038]. | 
|---|
|  | 1730 | %%CITATION = HEP-EX 0411038;%% | 
|---|
|  | 1731 |  | 
|---|
|  | 1732 | \bibitem{MINOS} | 
|---|
|  | 1733 | T. Thomson [MINOS Coll.], | 
|---|
|  | 1734 | Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 249 (2005); | 
|---|
|  | 1735 | P. Adamson \etal, NuMi-L-337. | 
|---|
|  | 1736 |  | 
|---|
|  | 1737 | \bibitem{OPERA} | 
|---|
|  | 1738 | D. Autiero [OPERA Coll.], | 
|---|
|  | 1739 | Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 257 (2005); | 
|---|
|  | 1740 | M. Guler  \etal, \textit{Experiment proposal}, | 
|---|
|  | 1741 | CERN/SPSC 2000-028 SPSC/P318 LNGS P25/2000. | 
|---|
|  | 1742 |  | 
|---|
|  | 1743 | \bibitem{CNGS} | 
|---|
|  | 1744 | G. Acquistapace \etal, CERN-98-02. | 
|---|
|  | 1745 |  | 
|---|
|  | 1746 | \bibitem{LSND} | 
|---|
|  | 1747 | A. Athanassopoulos \etal, Phys.\ Rev.\ Lett.\ {\bf 81}, 1774  (1998); | 
|---|
|  | 1748 | A. Aguilar \etal, Phys.\ Rev.\ D {\bf 64}, 112007 (2001). | 
|---|
|  | 1749 |  | 
|---|
|  | 1750 | \bibitem{MINIBOONE} | 
|---|
|  | 1751 | I. Stancu \etal, FERMILAB-TM-2207. | 
|---|
|  | 1752 |  | 
|---|
|  | 1753 | \bibitem{FOGLILISI05} | 
|---|
|  | 1754 | G.~L.~Fogli, E.~Lisi, A.~Marrone and A.~Palazzo, | 
|---|
|  | 1755 | %``Global analysis of three-flavor neutrino masses and mixings,'' | 
|---|
|  | 1756 | hep-ph/0506083; | 
|---|
|  | 1757 |  | 
|---|
|  | 1758 | \bibitem{Maltoni:2004ei} | 
|---|
|  | 1759 | M.~Maltoni, T.~Schwetz, M.~A.~Tortola and J.~W.~F.~Valle, | 
|---|
|  | 1760 | %``Status of global fits to neutrino oscillations,'' | 
|---|
|  | 1761 | New J.\ Phys.\  {\bf 6}, 122 (2004) | 
|---|
|  | 1762 | [hep-ph/0405172]; | 
|---|
|  | 1763 | %%CITATION = HEP-PH 0405172;%% | 
|---|
|  | 1764 | % | 
|---|
|  | 1765 | %\bibitem{Schwetz:2005jr} | 
|---|
|  | 1766 | T.~Schwetz, | 
|---|
|  | 1767 | %``Neutrino oscillations: Current status and prospects,'' | 
|---|
|  | 1768 | Acta Phys.\ Polon.\ B {\bf 36}, 3203 (2005) | 
|---|
|  | 1769 | [hep-ph/0510331]. | 
|---|
|  | 1770 | %%CITATION = HEP-PH 0510331;%% | 
|---|
|  | 1771 |  | 
|---|
|  | 1772 | \bibitem{PMNS} | 
|---|
|  | 1773 | B.~Pontecorvo, Sov.\ Phys.--JETP {\bf 6}, 429 (1957) | 
|---|
|  | 1774 | [Zh.\ Eksp.\ Teor.\ Fiz.\ \textbf{33}, 549 (1957)]; | 
|---|
|  | 1775 | Z.~Maki, M.~Nakagawa and S.~Sakata, | 
|---|
|  | 1776 | Prog.\ Theor.\ Phys.\ \textbf{28}, 870 (1962); | 
|---|
|  | 1777 | B.~Pontecorvo, Sov.\ Phys.--JETP \textbf{26}, 984 (1968) | 
|---|
|  | 1778 | [Zh. Eksp. Teor. Fiz. \textbf{53}, 1717 (1967)]; | 
|---|
|  | 1779 | V.~N.~Gribov and B.~Pontecorvo, | 
|---|
|  | 1780 | Phys.\ Lett.\ B \textbf{28}, 493 (1969). | 
|---|
|  | 1781 |  | 
|---|
|  | 1782 | \bibitem{CHOOZ} | 
|---|
|  | 1783 | Chooz Collaboration, | 
|---|
|  | 1784 | M. Apollonio \etal, Phys.\ Lett.\ B {\bf 466}, 415 (1999); | 
|---|
|  | 1785 | %\bibitem{Apollonio:2002gd} | 
|---|
|  | 1786 | M.~Apollonio {\it et al.}, | 
|---|
|  | 1787 | %``Search for neutrino oscillations on a long base-line at the CHOOZ  nuclear | 
|---|
|  | 1788 | %power station,'' | 
|---|
|  | 1789 | Eur.\ Phys.\ J.\ C {\bf 27}, 331 (2003) | 
|---|
|  | 1790 | [hep-ex/0301017]. | 
|---|
|  | 1791 | %%CITATION = HEP-EX 0301017;%% | 
|---|
|  | 1792 |  | 
|---|
|  | 1793 | \bibitem{Wpaper} | 
|---|
|  | 1794 | K.~Anderson \etal, White paper report on using nuclear | 
|---|
|  | 1795 | reactors to search for a value of $\theta_{13}$, | 
|---|
|  | 1796 | hep-ex/0402041; | 
|---|
|  | 1797 | % | 
|---|
|  | 1798 | F.~Ardellier \etal, Letter of intent for Double-Chooz, | 
|---|
|  | 1799 | hep-ex/0405032. | 
|---|
|  | 1800 |  | 
|---|
|  | 1801 | \bibitem{T2K} | 
|---|
|  | 1802 | Y.~Itow {\it et al.}, | 
|---|
|  | 1803 | The JHF-Kamioka neutrino project, | 
|---|
|  | 1804 | hep-ex/0106019; | 
|---|
|  | 1805 | %%CITATION = HEP-EX 0106019;%% | 
|---|
|  | 1806 | % | 
|---|
|  | 1807 | %\bibitem{Kobayashi:2005hu} | 
|---|
|  | 1808 | T.~Kobayashi, | 
|---|
|  | 1809 | %``Super beams,'' | 
|---|
|  | 1810 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 303. | 
|---|
|  | 1811 | %%CITATION = NUPHZ,143,303;%% | 
|---|
|  | 1812 |  | 
|---|
|  | 1813 | \bibitem{Ayres:2004js} | 
|---|
|  | 1814 | D.~S.~Ayres {\it et al.} [NOvA Coll.], | 
|---|
|  | 1815 | %``NOvA proposal to build a 30-kiloton off-axis detector to study neutrino | 
|---|
|  | 1816 | %oscillations in the Fermilab NuMI beamline,'' | 
|---|
|  | 1817 | hep-ex/0503053. | 
|---|
|  | 1818 | %%CITATION = HEP-EX 0503053;%% | 
|---|
|  | 1819 |  | 
|---|
|  | 1820 | \bibitem{Huber:2003pm} | 
|---|
|  | 1821 | P.~Huber, M.~Lindner, T.~Schwetz and W.~Winter, | 
|---|
|  | 1822 | %``Reactor neutrino experiments compared to superbeams,'' | 
|---|
|  | 1823 | Nucl.\ Phys.\ B {\bf 665} (2003) 487 | 
|---|
|  | 1824 | [hep-ph/0303232]; | 
|---|
|  | 1825 | %%CITATION = HEP-PH 0303232;%% | 
|---|
|  | 1826 | % | 
|---|
|  | 1827 | %\bibitem{Huber:2004ug} | 
|---|
|  | 1828 | P.~Huber, M.~Lindner, M.~Rolinec, T.~Schwetz and W.~Winter, | 
|---|
|  | 1829 | %``Prospects of accelerator and reactor neutrino oscillation experiments  for | 
|---|
|  | 1830 | %the coming ten years,'' | 
|---|
|  | 1831 | Phys.\ Rev.\ D {\bf 70} (2004) 073014 | 
|---|
|  | 1832 | [hep-ph/0403068]. | 
|---|
|  | 1833 | %%CITATION = HEP-PH 0403068;%% | 
|---|
|  | 1834 |  | 
|---|
|  | 1835 | \bibitem{Albrow:2005kw} | 
|---|
|  | 1836 | M.~G.~Albrow {\it et al.}, | 
|---|
|  | 1837 | Physics at a Fermilab proton driver, | 
|---|
|  | 1838 | hep-ex/0509019. | 
|---|
|  | 1839 | %%CITATION = HEP-EX 0509019;%% | 
|---|
|  | 1840 |  | 
|---|
|  | 1841 | \bibitem{SPL} | 
|---|
|  | 1842 | %\bibitem{Autin:2000mn} | 
|---|
|  | 1843 | B.~Autin {\it et al.}, | 
|---|
|  | 1844 | Conceptual design of the SPL, a high-power superconducting H- linac at | 
|---|
|  | 1845 | CERN, CERN-2000-012. | 
|---|
|  | 1846 |  | 
|---|
|  | 1847 | \bibitem{BNLHS} | 
|---|
|  | 1848 | %\bibitem{Diwan:2003bp} | 
|---|
|  | 1849 | M.~V.~Diwan {\it et al.}, | 
|---|
|  | 1850 | %``Very long baseline neutrino oscillation experiments for precise | 
|---|
|  | 1851 | %measurements of mixing parameters and CP violating effects,'' | 
|---|
|  | 1852 | Phys.\ Rev.\ D {\bf 68} (2003) 012002 | 
|---|
|  | 1853 | [hep-ph/0303081]. | 
|---|
|  | 1854 | %%CITATION = HEP-PH 0303081;%% | 
|---|
|  | 1855 |  | 
|---|
|  | 1856 | \bibitem{zucchelli} | 
|---|
|  | 1857 | %\bibitem{Zucchelli:2002sa} | 
|---|
|  | 1858 | P.~Zucchelli, | 
|---|
|  | 1859 | %``A novel concept for a anti-nu/e / nu/e neutrino factory: The Beta Beam,'' | 
|---|
|  | 1860 | Phys.\ Lett.\ B {\bf 532} (2002) 166. | 
|---|
|  | 1861 | %%CITATION = PHLTA,B532,166;%% | 
|---|
|  | 1862 |  | 
|---|
|  | 1863 | \bibitem{Albright:2004iw} | 
|---|
|  | 1864 | C.~Albright {\it et al.}  [Neutrino Factory/Muon Collider Coll.], | 
|---|
|  | 1865 | %``The neutrino factory and Beta Beam experiments and development,'' | 
|---|
|  | 1866 | physics/0411123. | 
|---|
|  | 1867 | %%CITATION = PHYS-ICS 0411123;%% | 
|---|
|  | 1868 |  | 
|---|
|  | 1869 | \bibitem{Blondel:2004ae} | 
|---|
|  | 1870 | A.~Blondel {\it et al.}, | 
|---|
|  | 1871 | ECFA/CERN studies of a European neutrino factory complex, | 
|---|
|  | 1872 | CERN-2004-002 | 
|---|
|  | 1873 |  | 
|---|
|  | 1874 | \bibitem{Campagne:2004wt} | 
|---|
|  | 1875 | J.~E.~Campagne and A.~Cazes, | 
|---|
|  | 1876 | %``The theta(13) and delta(CP) sensitivities of the SPL-Frejus project | 
|---|
|  | 1877 | %revisited,'' | 
|---|
|  | 1878 | Eur.\ Phys.\ J.\ C {\bf 45} (2006) 643 | 
|---|
|  | 1879 | [hep-ex/0411062]. | 
|---|
|  | 1880 | %%CITATION = HEP-EX 0411062;%% | 
|---|
|  | 1881 |  | 
|---|
|  | 1882 | \bibitem{Mezzetto:2003ub} | 
|---|
|  | 1883 | M.~Mezzetto, | 
|---|
|  | 1884 | %``Physics reach of the beta beam,'' | 
|---|
|  | 1885 | J.\ Phys.\ G {\bf 29} (2003) 1771 | 
|---|
|  | 1886 | [hep-ex/0302007]; | 
|---|
|  | 1887 | %%CITATION = HEP-EX 0302007;%% | 
|---|
|  | 1888 | % | 
|---|
|  | 1889 | J.~Bouchez, M.~Lindroos, M.~Mezzetto, | 
|---|
|  | 1890 | %``Beta Beams: Present design and expected performances,'' | 
|---|
|  | 1891 | AIP Conf.\ Proc.\  {\bf 721} (2004) 37 | 
|---|
|  | 1892 | [hep-ex/0310059]. | 
|---|
|  | 1893 | %%CITATION = HEP-EX 0310059;%% | 
|---|
|  | 1894 |  | 
|---|
|  | 1895 | \bibitem{memphys} | 
|---|
|  | 1896 | A.~de Bellefon {\it et al.}, | 
|---|
|  | 1897 | MEMPHYS: A large scale water \v{C}erenkov detector | 
|---|
|  | 1898 | at Fr\'ejus, Contribution to the CERN strategic committee,\\ | 
|---|
|  | 1899 | \verb!http://apc-p7.org/APC_CS/Experiences/MEMPHYS/! | 
|---|
|  | 1900 |  | 
|---|
|  | 1901 | \bibitem{UNO} | 
|---|
|  | 1902 | C.~K.~Jung, | 
|---|
|  | 1903 | Feasibility of a next generation underground water Cherenkov detector: | 
|---|
|  | 1904 | UNO, hep-ex/0005046. | 
|---|
|  | 1905 | %%CITATION = HEP-EX 0005046;%% | 
|---|
|  | 1906 |  | 
|---|
|  | 1907 | \bibitem{Nakamura:2003hk} | 
|---|
|  | 1908 | K.~Nakamura, | 
|---|
|  | 1909 | %``Hyper-Kamiokande: A next generation water Cherenkov detector,'' | 
|---|
|  | 1910 | Int.\ J.\ Mod.\ Phys.\ A {\bf 18} (2003) 4053. | 
|---|
|  | 1911 | %%CITATION = IMPAE,A18,4053;%% | 
|---|
|  | 1912 |  | 
|---|
|  | 1913 | \bibitem{Huber:2005ep} | 
|---|
|  | 1914 | P.~Huber, M.~Maltoni, T.~Schwetz, | 
|---|
|  | 1915 | %``Resolving parameter degeneracies in long-baseline experiments by | 
|---|
|  | 1916 | %atmospheric neutrino data,'' | 
|---|
|  | 1917 | Phys.\ Rev.\ D {\bf 71} (2005) 053006 | 
|---|
|  | 1918 | [hep-ph/0501037]. | 
|---|
|  | 1919 | %%CITATION = HEP-PH 0501037;%% | 
|---|
|  | 1920 |  | 
|---|
|  | 1921 | \bibitem{Globes} | 
|---|
|  | 1922 | P.~Huber, M.~Lindner and W.~Winter, | 
|---|
|  | 1923 | %``Simulation of long-baseline neutrino oscillation experiments with | 
|---|
|  | 1924 | %GLoBES,'' | 
|---|
|  | 1925 | Comput.\ Phys.\ Commun.\  {\bf 167} (2005) 195 | 
|---|
|  | 1926 | [hep-ph/0407333], | 
|---|
|  | 1927 | \verb!http://www.ph.tum.de/~globes! | 
|---|
|  | 1928 |  | 
|---|
|  | 1929 | \bibitem{Huber:2002mx} | 
|---|
|  | 1930 | P.~Huber, M.~Lindner and W.~Winter, | 
|---|
|  | 1931 | %``Superbeams versus neutrino factories,'' | 
|---|
|  | 1932 | Nucl.\ Phys.\ B {\bf 645} (2002) 3 | 
|---|
|  | 1933 | [hep-ph/0204352]. | 
|---|
|  | 1934 | %%CITATION = HEP-PH 0204352;%% | 
|---|
|  | 1935 |  | 
|---|
|  | 1936 | \bibitem{Nuance} | 
|---|
|  | 1937 | NUANCE event generator (v3), | 
|---|
|  | 1938 | \verb!http://nuint.ps.uci.edu/nuance/!, | 
|---|
|  | 1939 | D.~Casper, | 
|---|
|  | 1940 | %``The nuance neutrino physics simulation, and the future,'' | 
|---|
|  | 1941 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 112} (2002) 161 | 
|---|
|  | 1942 | [hep-ph/0208030]. | 
|---|
|  | 1943 |  | 
|---|
|  | 1944 | \bibitem{ISSpage} | 
|---|
|  | 1945 | Webpage of the International Scoping Study physics working group:\\ | 
|---|
|  | 1946 | \verb!http://www.hep.ph.ic.ac.uk/iss/wg1-phys-phen/index.html! | 
|---|
|  | 1947 |  | 
|---|
|  | 1948 | \bibitem{MyNufact04} | 
|---|
|  | 1949 | M.~Mezzetto, | 
|---|
|  | 1950 | %``SPL and Beta Beams to the Frejus,'' | 
|---|
|  | 1951 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 149} (2005) 179. | 
|---|
|  | 1952 |  | 
|---|
|  | 1953 | \bibitem{Donini:2004hu} | 
|---|
|  | 1954 | A.~Donini, E.~Fernandez-Martinez, P.~Migliozzi, S.~Rigolin and L.~Scotto Lavina, | 
|---|
|  | 1955 | %``Study of the eightfold degeneracy with a standard beta-beam and a | 
|---|
|  | 1956 | %super-beam facility,'' | 
|---|
|  | 1957 | Nucl.\ Phys.\ B {\bf 710}, 402 (2005) | 
|---|
|  | 1958 | [hep-ph/0406132]. | 
|---|
|  | 1959 | %%CITATION = HEP-PH 0406132;%% | 
|---|
|  | 1960 |  | 
|---|
|  | 1961 | \bibitem{JJHigh2} | 
|---|
|  | 1962 | %\bibitem{Burguet-Castell:2005pa} | 
|---|
|  | 1963 | J.~Burguet-Castell, D.~Casper, E.~Couce, J.~J.~Gomez-Cadenas and P.~Hernandez, | 
|---|
|  | 1964 | %``Optimal beta-beam at the CERN-SPS,'' | 
|---|
|  | 1965 | Nucl.\ Phys.\ B {\bf 725} (2005) 306 | 
|---|
|  | 1966 | [hep-ph/0503021]. | 
|---|
|  | 1967 | %%CITATION = HEP-PH 0503021;%% | 
|---|
|  | 1968 |  | 
|---|
|  | 1969 | \bibitem{LindnerBB} | 
|---|
|  | 1970 | %\bibitem{Huber:2005jk} | 
|---|
|  | 1971 | P.~Huber, M.~Lindner, M.~Rolinec and W.~Winter, | 
|---|
|  | 1972 | %``Physics and optimization of beta-beams: From low to very high gamma,'' | 
|---|
|  | 1973 | hep-ph/0506237. | 
|---|
|  | 1974 | %%CITATION = HEP-PH 0506237;%% | 
|---|
|  | 1975 |  | 
|---|
|  | 1976 | \bibitem{JJHigh1} | 
|---|
|  | 1977 | J.~Burguet-Castell, D.~Casper, J.~J.~Gomez-Cadenas, P.~Hernandez and F.~Sanchez, | 
|---|
|  | 1978 | Nucl.\ Phys.\ B {\bf 695} (2004) 217 | 
|---|
|  | 1979 | [hep-ph/0312068]. | 
|---|
|  | 1980 |  | 
|---|
|  | 1981 | \bibitem{Terranova} | 
|---|
|  | 1982 | F.~Terranova, A.~Marotta, P.~Migliozzi and M.~Spinetti, | 
|---|
|  | 1983 | %``High energy beta beams without massive detectors,'' | 
|---|
|  | 1984 | Eur.\ Phys.\ J.\ C {\bf 38}, 69 (2004) | 
|---|
|  | 1985 | [hep-ph/0405081]. | 
|---|
|  | 1986 | %%CITATION = HEP-PH 0405081;%% | 
|---|
|  | 1987 |  | 
|---|
|  | 1988 | \bibitem{BB-Reviews} | 
|---|
|  | 1989 | M.~Mezzetto, %``Beta Beams,'' | 
|---|
|  | 1990 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 309 | 
|---|
|  | 1991 | [hep-ex/0410083]; | 
|---|
|  | 1992 | % | 
|---|
|  | 1993 | C.~Volpe, | 
|---|
|  | 1994 | %``Topical review on 'beta-beams','' | 
|---|
|  | 1995 | hep-ph/0605033. | 
|---|
|  | 1996 |  | 
|---|
|  | 1997 | \bibitem{Volpe} | 
|---|
|  | 1998 | C.~Volpe, | 
|---|
|  | 1999 | %``What about a Beta Beam facility for low energy neutrinos?,'' | 
|---|
|  | 2000 | J.\ Phys.\ G {\bf 30} (2004) L1 | 
|---|
|  | 2001 | [hep-ph/0303222]. | 
|---|
|  | 2002 |  | 
|---|
|  | 2003 | \bibitem{Lindroos} | 
|---|
|  | 2004 | %\bibitem{Autin:2002ms} | 
|---|
|  | 2005 | B.~Autin {\it et al.}, | 
|---|
|  | 2006 | %``The acceleration and storage of radioactive ions for a neutrino  factory,'' | 
|---|
|  | 2007 | J.\ Phys.\ G {\bf 29}, 1785 (2003) | 
|---|
|  | 2008 | [physics/0306106]; | 
|---|
|  | 2009 | %%CITATION = PHYS-ICS 0306106;%% | 
|---|
|  | 2010 | % | 
|---|
|  | 2011 | M.~Benedikt, S.~Hancock and M.~Lindroos, | 
|---|
|  | 2012 | % ``Baseline Design for a Beta-Beam Neutrino Factory'', | 
|---|
|  | 2013 | Proceedings of EPAC, 2004, | 
|---|
|  | 2014 | \verb!http://accelconf.web.cern.ch/AccelConf/e04!; | 
|---|
|  | 2015 | % | 
|---|
|  | 2016 | M.~Lindroos, EURISOL DS/TASK12/TN-05-02. | 
|---|
|  | 2017 |  | 
|---|
|  | 2018 | \bibitem{Eurisol} | 
|---|
|  | 2019 | Eurisol Beta Beam webpage: \verb!http://beta-beam.web.cern.ch/beta-beam/!. | 
|---|
|  | 2020 |  | 
|---|
|  | 2021 | \bibitem{Lindroos-Optimization} | 
|---|
|  | 2022 | M.~Benedikt, A.~Fabich, S.~Hancock and M.~Lindroos, | 
|---|
|  | 2023 | %``Optimization Of The Beta-Beam Baseline,'' | 
|---|
|  | 2024 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 211. | 
|---|
|  | 2025 |  | 
|---|
|  | 2026 | \bibitem{Neugen} | 
|---|
|  | 2027 | The NEUGEN neutrino event generator, | 
|---|
|  | 2028 | \verb!http://minos.phy.tufts.edu/gallag/neugen/!. | 
|---|
|  | 2029 |  | 
|---|
|  | 2030 | \bibitem{MezzettoNuFact05} | 
|---|
|  | 2031 | M.~Mezzetto, | 
|---|
|  | 2032 | %``Physics potential of the gamma = 100,100 beta beam,'' | 
|---|
|  | 2033 | Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 214 | 
|---|
|  | 2034 | [hep-ex/0511005]. | 
|---|
|  | 2035 |  | 
|---|
|  | 2036 | \bibitem{FLUKA} | 
|---|
|  | 2037 | A.~Fasso \etal, Proceedings of the MonteCarlo 2000 conference, | 
|---|
|  | 2038 | Lisbon, October 26 2000, | 
|---|
|  | 2039 | A.~Kling \etal\ (eds.), Springer-Verlag Berlin (2001), 159-164 and 955-960. | 
|---|
|  | 2040 |  | 
|---|
|  | 2041 | \bibitem{GEANT} | 
|---|
|  | 2042 | Application Software group, Computing and Network Division \etal, | 
|---|
|  | 2043 | GEANT Description and Simulation Tool, CERN Geneva, Switzerland | 
|---|
|  | 2044 |  | 
|---|
|  | 2045 | \bibitem{HARP-MINERVA} | 
|---|
|  | 2046 | C. Catanesi \etal\ [HARP Coll.], CERN-SPSC 2002/019; | 
|---|
|  | 2047 | % | 
|---|
|  | 2048 | %\bibitem{Drakoulakos:2004gn} | 
|---|
|  | 2049 | D.~Drakoulakos {\it et al.}  [Minerva Coll.], | 
|---|
|  | 2050 | %``Proposal to perform a high-statistics neutrino scattering experiment  using | 
|---|
|  | 2051 | %a fine-grained detector in the NuMI beam,'' | 
|---|
|  | 2052 | hep-ex/0405002. | 
|---|
|  | 2053 | %%CITATION = HEP-EX 0405002;%% | 
|---|
|  | 2054 |  | 
|---|
|  | 2055 | \bibitem{Mezzetto:2003mm} | 
|---|
|  | 2056 | M.~Mezzetto, | 
|---|
|  | 2057 | %``Physics potential of the SPL super beam,'' | 
|---|
|  | 2058 | J.\ Phys.\ G {\bf 29}, 1781 (2003) | 
|---|
|  | 2059 | [hep-ex/0302005]. | 
|---|
|  | 2060 | %%CITATION = HEP-EX 0302005;%% | 
|---|
|  | 2061 |  | 
|---|
|  | 2062 | \bibitem{Burguet-Castell:2001ez} | 
|---|
|  | 2063 | J.~Burguet-Castell, M.~B.~Gavela, J.~J.~Gomez-Cadenas, P.~Hernandez and O.~Mena, | 
|---|
|  | 2064 | %``On the measurement of leptonic CP violation,'' | 
|---|
|  | 2065 | Nucl.\ Phys.\ B {\bf 608} (2001) 301 | 
|---|
|  | 2066 | [hep-ph/0103258]. | 
|---|
|  | 2067 | %%CITATION = HEP-PH 0103258;%% | 
|---|
|  | 2068 |  | 
|---|
|  | 2069 | \bibitem{Minakata:2001qm} | 
|---|
|  | 2070 | H.~Minakata and H.~Nunokawa, | 
|---|
|  | 2071 | %``Exploring neutrino mixing with low energy superbeams,'' | 
|---|
|  | 2072 | JHEP {\bf 0110}, 001 (2001) | 
|---|
|  | 2073 | [hep-ph/0108085]. | 
|---|
|  | 2074 | %%CITATION = HEP-PH 0108085;%% | 
|---|
|  | 2075 |  | 
|---|
|  | 2076 | \bibitem{Fogli:1996pv} | 
|---|
|  | 2077 | G.~L.~Fogli and E.~Lisi, | 
|---|
|  | 2078 | %``Tests of three-flavor mixing in long-baseline neutrino oscillation | 
|---|
|  | 2079 | %experiments,'' | 
|---|
|  | 2080 | Phys.\ Rev.\ D {\bf 54}, 3667 (1996) | 
|---|
|  | 2081 | [hep-ph/9604415]. | 
|---|
|  | 2082 | %%CITATION = HEP-PH 9604415;%% | 
|---|
|  | 2083 |  | 
|---|
|  | 2084 | \bibitem{Barger:2001yr} | 
|---|
|  | 2085 | V.~Barger, D.~Marfatia and K.~Whisnant, | 
|---|
|  | 2086 | %``Breaking eight-fold degeneracies in neutrino CP violation, mixing, and | 
|---|
|  | 2087 | %mass hierarchy,'' | 
|---|
|  | 2088 | Phys.\ Rev.\ D {\bf 65}, 073023 (2002) | 
|---|
|  | 2089 | [hep-ph/0112119]. | 
|---|
|  | 2090 | %%CITATION = HEP-PH 0112119;%% | 
|---|
|  | 2091 |  | 
|---|
|  | 2092 | \bibitem{Yasuda:2004gu} | 
|---|
|  | 2093 | O.~Yasuda, | 
|---|
|  | 2094 | %``New plots and parameter degeneracies in neutrino oscillations,'' | 
|---|
|  | 2095 | New J.\ Phys.\  {\bf 6}, 83 (2004) | 
|---|
|  | 2096 | [hep-ph/0405005]. | 
|---|
|  | 2097 | %%CITATION = HEP-PH 0405005;%% | 
|---|
|  | 2098 |  | 
|---|
|  | 2099 | \bibitem{Ishitsuka:2005qi} | 
|---|
|  | 2100 | M.~Ishitsuka, T.~Kajita, H.~Minakata and H.~Nunokawa, | 
|---|
|  | 2101 | %``Resolving neutrino mass hierarchy and CP degeneracy by two identical | 
|---|
|  | 2102 | %detectors with different baselines,'' | 
|---|
|  | 2103 | Phys.\ Rev.\ D {\bf 72} (2005) 033003 | 
|---|
|  | 2104 | [hep-ph/0504026]. | 
|---|
|  | 2105 | %%CITATION = HEP-PH 0504026;%% | 
|---|
|  | 2106 |  | 
|---|
|  | 2107 | \bibitem{Antusch:2004yx} | 
|---|
|  | 2108 | S.~Antusch, P.~Huber, J.~Kersten, T.~Schwetz and W.~Winter, | 
|---|
|  | 2109 | %``Is there maximal mixing in the lepton sector?,'' | 
|---|
|  | 2110 | Phys.\ Rev.\ D {\bf 70}, 097302 (2004) | 
|---|
|  | 2111 | [hep-ph/0404268]. | 
|---|
|  | 2112 | %%CITATION = HEP-PH 0404268;%% | 
|---|
|  | 2113 |  | 
|---|
|  | 2114 | \bibitem{Minakata:2004pg} | 
|---|
|  | 2115 | H.~Minakata, M.~Sonoyama and H.~Sugiyama, | 
|---|
|  | 2116 | %``Determination of theta(23) in long-baseline neutrino oscillation | 
|---|
|  | 2117 | %experiments with three-flavor mixing effects,'' | 
|---|
|  | 2118 | Phys.\ Rev.\ D {\bf 70} (2004) 113012 | 
|---|
|  | 2119 | [hep-ph/0406073]. | 
|---|
|  | 2120 | %%CITATION = HEP-PH 0406073;%% | 
|---|
|  | 2121 |  | 
|---|
|  | 2122 | \bibitem{Donini:2005db} | 
|---|
|  | 2123 | A.~Donini, E.~Fernandez-Martinez, D.~Meloni and S.~Rigolin, | 
|---|
|  | 2124 | %``nu/mu disappearance at the SPL, T2K-I, NOnuA and the neutrino factory,'' | 
|---|
|  | 2125 | hep-ph/0512038. | 
|---|
|  | 2126 | %%CITATION = HEP-PH 0512038;%% | 
|---|
|  | 2127 |  | 
|---|
|  | 2128 | \bibitem{Peres:2003wd} | 
|---|
|  | 2129 | O.L.G.~Peres, A.Y.~Smirnov, | 
|---|
|  | 2130 | %``Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and | 
|---|
|  | 2131 | %CP-violation,'' | 
|---|
|  | 2132 | Nucl.\ Phys.\ B {\bf 680} (2004) 479 | 
|---|
|  | 2133 | [hep-ph/0309312]. | 
|---|
|  | 2134 | %%CITATION = HEP-PH 0309312;%% | 
|---|
|  | 2135 |  | 
|---|
|  | 2136 | \bibitem{Gonzalez-Garcia:2004cu} | 
|---|
|  | 2137 | M.C.~Gonzalez-Garcia, M.~Maltoni, A.Y. Smirnov, | 
|---|
|  | 2138 | %``Measuring the deviation of the 2-3 lepton mixing from maximal with | 
|---|
|  | 2139 | %atmospheric neutrinos,'' | 
|---|
|  | 2140 | Phys.\ Rev.\ D {\bf 70} (2004) 093005 | 
|---|
|  | 2141 | [hep-ph/0408170]. | 
|---|
|  | 2142 | %%CITATION = HEP-PH 0408170;%% | 
|---|
|  | 2143 |  | 
|---|
|  | 2144 | \bibitem{Petcov:1998su} | 
|---|
|  | 2145 | S.~T.~Petcov, | 
|---|
|  | 2146 | %``Diffractive-like (or parametric-resonance-like?) enhancement of the  earth | 
|---|
|  | 2147 | %(day-night) effect for solar neutrinos crossing the earth core,'' | 
|---|
|  | 2148 | Phys.\ Lett.\ B {\bf 434} (1998) 321 | 
|---|
|  | 2149 | [hep-ph/9805262]; | 
|---|
|  | 2150 | %%CITATION = HEP-PH 9805262;%% | 
|---|
|  | 2151 | % | 
|---|
|  | 2152 | %\bibitem{Chizhov:1998ug} | 
|---|
|  | 2153 | M.~Chizhov, M.~Maris and S.~T.~Petcov, | 
|---|
|  | 2154 | %``On the oscillation length resonance in the transitions of solar and | 
|---|
|  | 2155 | %atmospheric neutrinos crossing the earth core,'' | 
|---|
|  | 2156 | hep-ph/9810501; | 
|---|
|  | 2157 | %%CITATION = HEP-PH 9810501;%% | 
|---|
|  | 2158 | % | 
|---|
|  | 2159 | %\bibitem{Chizhov:1999az} | 
|---|
|  | 2160 | M.~V.~Chizhov and S.~T.~Petcov, | 
|---|
|  | 2161 | %``New conditions for a total neutrino conversion in a medium,'' | 
|---|
|  | 2162 | Phys.\ Rev.\ Lett.\  {\bf 83} (1999) 1096 | 
|---|
|  | 2163 | [hep-ph/9903399]. | 
|---|
|  | 2164 | %%CITATION = HEP-PH 9903399;%% | 
|---|
|  | 2165 |  | 
|---|
|  | 2166 | \bibitem{Akhmedov:1998ui} | 
|---|
|  | 2167 | E.~K.~Akhmedov, | 
|---|
|  | 2168 | %``Parametric resonance of neutrino oscillations and passage of solar and | 
|---|
|  | 2169 | %atmospheric neutrinos through the earth,'' | 
|---|
|  | 2170 | Nucl.\ Phys.\ B {\bf 538}, 25 (1999) | 
|---|
|  | 2171 | [hep-ph/9805272]; | 
|---|
|  | 2172 | %%CITATION = HEP-PH 9805272;%% | 
|---|
|  | 2173 | % | 
|---|
|  | 2174 | %\bibitem{Akhmedov:1998xq} | 
|---|
|  | 2175 | E.~K.~Akhmedov, A.~Dighe, P.~Lipari and A.~Y.~Smirnov, | 
|---|
|  | 2176 | %``Atmospheric neutrinos at Super-Kamiokande and parametric resonance in | 
|---|
|  | 2177 | %neutrino oscillations,'' | 
|---|
|  | 2178 | Nucl.\ Phys.\ B {\bf 542}, 3 (1999) | 
|---|
|  | 2179 | [hep-ph/9808270]. | 
|---|
|  | 2180 | %%CITATION = HEP-PH 9808270;%% | 
|---|
|  | 2181 |  | 
|---|
|  | 2182 | \bibitem{Bernabeu:2003yp} | 
|---|
|  | 2183 | J.~Bernabeu, S.~Palomares-Ruiz and S.~T.~Petcov, | 
|---|
|  | 2184 | %``Atmospheric neutrino oscillations, theta(13) and neutrino mass | 
|---|
|  | 2185 | %hierarchy,'' | 
|---|
|  | 2186 | Nucl.\ Phys.\ B {\bf 669}, 255 (2003) | 
|---|
|  | 2187 | [hep-ph/0305152]. | 
|---|
|  | 2188 | %%CITATION = HEP-PH 0305152;%% | 
|---|
|  | 2189 |  | 
|---|
|  | 2190 | \bibitem{Kim:1998bv} | 
|---|
|  | 2191 | C.~W.~Kim and U.~W.~Lee, | 
|---|
|  | 2192 | %``Comment on the possible electron-neutrino excess in the  Super-Kamiokande | 
|---|
|  | 2193 | %atmospheric neutrino experiment,'' | 
|---|
|  | 2194 | Phys.\ Lett.\ B {\bf 444}, 204 (1998) | 
|---|
|  | 2195 | [hep-ph/9809491]. | 
|---|
|  | 2196 | %%CITATION = HEP-PH 9809491;%% | 
|---|
|  | 2197 |  | 
|---|
|  | 2198 | \bibitem{Kajita} | 
|---|
|  | 2199 | T.~Kajita, Talk at NNN05, 7--9 April 2005, Aussois, Savoie, France,\\ | 
|---|
|  | 2200 | \verb!http://nnn05.in2p3.fr/! | 
|---|
|  | 2201 |  | 
|---|
|  | 2202 | \bibitem{Gonzalez-Garcia:2004wg} | 
|---|
|  | 2203 | M.~C.~Gonzalez-Garcia and M.~Maltoni, | 
|---|
|  | 2204 | %``Atmospheric neutrino oscillations and new physics,'' | 
|---|
|  | 2205 | Phys.\ Rev.\ D {\bf 70} (2004) 033010 | 
|---|
|  | 2206 | [hep-ph/0404085]. | 
|---|
|  | 2207 | %%CITATION = HEP-PH 0404085;%% | 
|---|
|  | 2208 |  | 
|---|
|  | 2209 | \bibitem{Petcov:2005rv} | 
|---|
|  | 2210 | S.~T.~Petcov and T.~Schwetz, | 
|---|
|  | 2211 | %``Determining the neutrino mass hierarchy with atmospheric neutrinos,'' | 
|---|
|  | 2212 | Nucl.\ Phys.\ B {\bf 740}, 1 (2006) | 
|---|
|  | 2213 | [hep-ph/0511277]. | 
|---|
|  | 2214 | %%CITATION = HEP-PH 0511277;%% | 
|---|
|  | 2215 |  | 
|---|
|  | 2216 | \bibitem{MenaRequejo:2005hn} | 
|---|
|  | 2217 | O.~Mena-Requejo, S.~Palomares-Ruiz and S.~Pascoli, | 
|---|
|  | 2218 | %``Super-NOvA: A long-baseline neutrino experiment with two off-axis | 
|---|
|  | 2219 | %detectors,'' | 
|---|
|  | 2220 | Phys.\ Rev.\ D {\bf 72} (2005) 053002 | 
|---|
|  | 2221 | [hep-ph/0504015]; | 
|---|
|  | 2222 | %%CITATION = HEP-PH 0504015;%% | 
|---|
|  | 2223 | % | 
|---|
|  | 2224 | %\bibitem{Mena:2005ri} | 
|---|
|  | 2225 | %O.~Mena, S.~Palomares-Ruiz and S.~Pascoli, | 
|---|
|  | 2226 | %``Determining the neutrino mass hierarchy and CP violation in NOnuA with a | 
|---|
|  | 2227 | %second off-axis detector,'' | 
|---|
|  | 2228 | hep-ph/0510182. | 
|---|
|  | 2229 | %%CITATION = HEP-PH 0510182;%% | 
|---|
|  | 2230 |  | 
|---|
|  | 2231 | \bibitem{Hagiwara:2005pe} | 
|---|
|  | 2232 | K.~Hagiwara, N.~Okamura and K.~Senda, | 
|---|
|  | 2233 | %``Solving the neutrino parameter degeneracy by measuring the T2K off-axis | 
|---|
|  | 2234 | %beam in Korea,'' | 
|---|
|  | 2235 | hep-ph/0504061. | 
|---|
|  | 2236 | %%CITATION = HEP-PH 0504061;%% | 
|---|
|  | 2237 |  | 
|---|
|  | 2238 | \bibitem{Kachelriess:2004vs} | 
|---|
|  | 2239 | M.~Kachelriess and R.~Tomas, | 
|---|
|  | 2240 | %``Identifying the neutrino mass hierarchy with supernova neutrinos,'' | 
|---|
|  | 2241 | hep-ph/0412100. | 
|---|
|  | 2242 | %%CITATION = HEP-PH 0412100;%% | 
|---|
|  | 2243 |  | 
|---|
|  | 2244 | \end{thebibliography} | 
|---|
|  | 2245 | \end{document} | 
|---|
|  | 2246 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
|  | 2247 |  | 
|---|
|  | 2248 |  | 
|---|