[386] | 1 |
|
---|
| 2 | \section{Monte Carlo Generators}
|
---|
| 3 |
|
---|
| 4 |
|
---|
| 5 |
|
---|
| 6 | Accurate measurements of neutrino oscillation parameters by future experiments could be significantly hampered
|
---|
| 7 |
|
---|
| 8 | by the large uncertainties in neutrino cross-section in the sub-GeV range. Neutrino interactions with nucleon in
|
---|
| 9 |
|
---|
| 10 | nuclei are not well understood from a theoretical point of view, especially at low energies, and experimental
|
---|
| 11 |
|
---|
| 12 | data are sparse. Futhermore, most of available data come from Bubble chamber experiments made in the late 70s and have
|
---|
| 13 |
|
---|
| 14 | large systematic errors induced by the determination of the neutrino flux. Calulations for charged current $\nu_\mu$ are
|
---|
| 15 |
|
---|
| 16 | shown in Fig \ref{fig:neutrinoxsection}. \\
|
---|
| 17 |
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | New generation of high intensity and well controlled neutrino beams allow to collect much precised data that will
|
---|
| 21 |
|
---|
| 22 | attend to futher understand interactions and better constrain models.\\
|
---|
| 23 |
|
---|
| 24 |
|
---|
| 25 |
|
---|
| 26 | \begin{figure}[hbt]
|
---|
| 27 |
|
---|
| 28 | \begin{center}
|
---|
| 29 |
|
---|
| 30 | \vspace{0.1cm}
|
---|
| 31 |
|
---|
| 32 | \includegraphics[width=85mm]{./figures/neutrinoXsection.epsf}
|
---|
| 33 |
|
---|
| 34 | \vspace{0.5cm}
|
---|
| 35 |
|
---|
| 36 | \caption{ $\nu_\mu$ charged current cross-section calculations compared with experimental data}
|
---|
| 37 |
|
---|
| 38 | \label{fig:neutrinoxsection}
|
---|
| 39 |
|
---|
| 40 | \end{center}
|
---|
| 41 |
|
---|
| 42 | \end{figure}
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 |
|
---|
| 46 | Many Monte-carlo generator codes exist but are optimised for a dedicated experiment, ${\it{e.g.}}$ tuned for specific
|
---|
| 47 |
|
---|
| 48 | target materials. The GENIE collaboration\footnote{http://hepunx.rl.ac.uk/~candreop/generators/GENIE/} \cite{genie} gathers
|
---|
| 49 |
|
---|
| 50 | experimentalists from major neutrino experiments as well as theorits and proposes a Universal neutrino generator
|
---|
| 51 |
|
---|
| 52 | that will work for all nuclear targets in all energies.
|
---|
| 53 |
|
---|
| 54 | The code of the framework is developped in Object-Oriented language to ease the interface with standard libraries like
|
---|
| 55 |
|
---|
| 56 | the CERNLIB or CLHEP packages, with other existing simulation softwares (Geant4, Pythia7, $\ldots$) and with standard
|
---|
| 57 |
|
---|
| 58 | analysis tools such as ROOT.\\
|
---|
| 59 |
|
---|
| 60 | An additional feature that is included in the GENIE framework is an interface with a database containing the
|
---|
| 61 |
|
---|
| 62 | world's neutrino data \cite{xsectiondata} for model validation.\\
|
---|
| 63 |
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | \section{Background rejection in large water Cerenkov}
|
---|
| 67 |
|
---|
| 68 |
|
---|
| 69 |
|
---|
| 70 | Large underground water Cherenkov detectors can measure $\nu_{\rm{e}}$ appearance as well as $\nu_\mu$
|
---|
| 71 |
|
---|
| 72 | disappearance. Projects have different configurations in neutrino flux and energy spectrum, although with
|
---|
| 73 |
|
---|
| 74 | a similar overall shape with a the dip from oscillation minimum in the oscillated $\nu_\mu$ distribution.
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 |
|
---|
| 78 | \par
|
---|
| 79 |
|
---|
| 80 | For a $\nu_\mu$ disapearance experiment, the signal is muons from charged current quasi elestic interactions,
|
---|
| 81 |
|
---|
| 82 | $\nu_\mu + n \rightarrow p + \mu^-$.
|
---|
| 83 |
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 | \par
|
---|
| 87 |
|
---|
| 88 | For a $\nu_{\rm{e}}$ appearance experiment, the signal comes from oscillated $\nu_{\rm{e}}$ neutrinos,
|
---|
| 89 |
|
---|
| 90 | $\nu_\mu \rightarrow \nu_{\rm{e}}$, $\nu_{\rm{e}} + n \rightarrow p + e^-$ and is detected as a fully
|
---|
| 91 |
|
---|
| 92 | contained single electron-ring event.\\
|
---|
| 93 |
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | \par
|
---|
| 97 |
|
---|
| 98 | Realistic monte-carlo studies for background rejection in $\nu_{\rm{e}}$ appearance experiments are
|
---|
| 99 |
|
---|
| 100 | the essential groundwork for the quest for the last unknown mixing angle of the mixing matrix and
|
---|
| 101 |
|
---|
| 102 | precise measurement of $\theta_{13}$. Main background sources are the $\nu_{\rm{e}}$ contamination in
|
---|
| 103 |
|
---|
| 104 | the beam and neutral current events with one pion decaying into two photons, $\nu + N \rightarrow N' + \nu + \pi^0 (\gamma\gamma)$.
|
---|
| 105 |
|
---|
| 106 | The latter can be reduced by the reconstruction of the second fainter photon-ring. Indeed, it is likely that
|
---|
| 107 |
|
---|
| 108 | one of the photon will carry away most of the energy, and when the energy fraction of one photon is very small,
|
---|
| 109 |
|
---|
| 110 | the event closely resembles electron signal. Algorthims for $\pi^0$ identification have thus been developped
|
---|
| 111 |
|
---|
| 112 | both at T2K \cite{dunmore} and at a megaton class detector on a Very Long Base Line neutrino beam \cite{yanagisawa}.
|
---|
| 113 |
|
---|
| 114 | Background can be subtracted for values of $\theta_{13}$ at the CHOOZ limit, understanding of systematic uncertainties becomes yet crucial
|
---|
| 115 |
|
---|
| 116 | as $\theta_{13}$ gets smaller. \\
|
---|
| 117 |
|
---|
| 118 |
|
---|
| 119 |
|
---|
| 120 | Estimated performances can be further improved with a better energy reconstruction for all charged
|
---|
| 121 |
|
---|
| 122 | current events.
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 |
|
---|
| 128 |
|
---|
| 129 |
|
---|
| 130 | \section{Photodetection}
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 | The remarkable successes of SuperK, Kamland, and SNO experiments have triggered
|
---|
| 135 |
|
---|
| 136 | future extrapolated projects aiming the improvement on the accuracy of the
|
---|
| 137 |
|
---|
| 138 | actual neutrinos family parameters, the exploration of the other ones as well as
|
---|
| 139 |
|
---|
| 140 | the search for proton lifetime; sensitive volumes should reach the megaton
|
---|
| 141 |
|
---|
| 142 | scale,
|
---|
| 143 |
|
---|
| 144 | which is an extrapolation by a factor 10-20 of the SK size. In the same
|
---|
| 145 |
|
---|
| 146 | inflatory direction, the detection of very high energy cosmic neutrinos in ice
|
---|
| 147 |
|
---|
| 148 | or water Cerenkov-based detectors will also lead to large numbers of
|
---|
| 149 |
|
---|
| 150 | photomultipliers. It exists then a strong motivation for R\&D trying to decrease
|
---|
| 151 |
|
---|
| 152 | the price of photo-sensitive $cm^2$, which is a major component of projects
|
---|
| 153 |
|
---|
| 154 | budgets. Note that for the calculation of these "surface unit prices", HV,
|
---|
| 155 |
|
---|
| 156 | front-end electronics and cables have of course to be included.
|
---|
| 157 |
|
---|
| 158 |
|
---|
| 159 |
|
---|
| 160 | In another hand, the use of Cerenkov light requires conflicting qualities
|
---|
| 161 |
|
---|
| 162 | concerning the single photoelectron sensitivity, the fast time response
|
---|
| 163 |
|
---|
| 164 | needed for a good vertex determination, the best photodetection efficiency for
|
---|
| 165 |
|
---|
| 166 | setting lower energy thresholds and a robust water pressure resistant
|
---|
| 167 |
|
---|
| 168 | envelop able to work at 10 atmospheres pressure without fatal implosion. The
|
---|
| 169 |
|
---|
| 170 | process of fabrication should also take account of the time needed to built
|
---|
| 171 |
|
---|
| 172 | large quantities ( scale: 100000 u). Clearly common R\&D with industry are
|
---|
| 173 |
|
---|
| 174 | needed.
|
---|
| 175 |
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | Price lowering can follow one or several recepices:
|
---|
| 179 |
|
---|
| 180 | \begin{itemize}
|
---|
| 181 |
|
---|
| 182 | \item
|
---|
| 183 |
|
---|
| 184 | Remove the glass blowing (\cite{ferenc})
|
---|
| 185 |
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | This leads to a very elegant development using sealed glass planes (\cite{ferenc})
|
---|
| 189 |
|
---|
| 190 | \item
|
---|
| 191 |
|
---|
| 192 | Simplify the electron multiplicative element (\cite{ferenc},\cite{sk},\cite{photonis})
|
---|
| 193 |
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | The basic idea is to accelerate photoelectrons from photocathode with a large
|
---|
| 197 |
|
---|
| 198 | potential (10-20 KV); for shaped field, it exists a small surface of
|
---|
| 199 |
|
---|
| 200 | convergence where can be placed either scintillator+small pm (\cite{photonis}),
|
---|
| 201 |
|
---|
| 202 | or an APD ( \cite{sk}). The total gain is then the product of the acceleration gain (
|
---|
| 203 |
|
---|
| 204 | $\sim$ 4500) followed by the detecting device gain ( $\sim$ 30 or more for an APD).
|
---|
| 205 |
|
---|
| 206 | Such system disposes of a fast time response even for large size photocathods
|
---|
| 207 |
|
---|
| 208 | and of an impressive single
|
---|
| 209 |
|
---|
| 210 | p.e performance. The main drawbacks are the problems brought with the isolation of
|
---|
| 211 |
|
---|
| 212 | the very high voltage and a
|
---|
| 213 |
|
---|
| 214 | frontend fast amplification needed for the APD case.
|
---|
| 215 |
|
---|
| 216 | \item
|
---|
| 217 |
|
---|
| 218 | Optimize the unit size (\cite{photonis})
|
---|
| 219 |
|
---|
| 220 |
|
---|
| 221 |
|
---|
| 222 | For classical big pmts, there is a not obvious relation between size, price/$cm^2$
|
---|
| 223 |
|
---|
| 224 | ,time performance, total efficiency and investments for production tools.
|
---|
| 225 |
|
---|
| 226 | Photonis (\cite{photonis}) evaluated this and found as the best candidate a 12
|
---|
| 227 |
|
---|
| 228 | inches tube, compared to bigger ones.
|
---|
| 229 |
|
---|
| 230 | \item
|
---|
| 231 |
|
---|
| 232 | Increase the photocathode efficiencies (\cite{ferenc},\cite{photonis})
|
---|
| 233 |
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 | The use of $\sim$ 20 KV hv permits an excellent collection efficiency. Improvement
|
---|
| 237 |
|
---|
| 238 | of photocathode QE efficiency can be found in the use of reflective photo-cathod
|
---|
| 239 |
|
---|
| 240 | (30-44 $\%$ instead of $\sim 20 \%$)
|
---|
| 241 |
|
---|
| 242 | \end{itemize}
|
---|
| 243 |
|
---|
| 244 |
|
---|
| 245 |
|
---|
| 246 | \begin{thebibliography}{99}
|
---|
| 247 |
|
---|
| 248 |
|
---|
| 249 |
|
---|
| 250 | \bibitem{genie} C. Andreopoulos and H. Gallagher, "Tools for Neutrino Interaction Model Validation", Nucl.Phys.Proc.Suppl.139:247-252,2005
|
---|
| 251 |
|
---|
| 252 | \bibitem{xsectiondata} Mike Whalley, "A New Neutrino Cross Section Data Resource", Nucl.Phys.Proc.Suppl.139:241-246,2005
|
---|
| 253 |
|
---|
| 254 |
|
---|
| 255 |
|
---|
| 256 | \bibitem{costas} Neutrino Interactions and MC Event Generators
|
---|
| 257 |
|
---|
| 258 | Presented by C. Andreopoulos (Rutherford Lab)
|
---|
| 259 |
|
---|
| 260 |
|
---|
| 261 |
|
---|
| 262 | \bibitem{dunmore} Analysis and background aspects in large water Cherenkov detectors
|
---|
| 263 |
|
---|
| 264 | Presented by J. Dunmore (Irvine)
|
---|
| 265 |
|
---|
| 266 | \bibitem{yanagisawa} Background understanding and suppression in Very Long Baseline Neutrino Oscillation experiments with water Cherenkov detectors
|
---|
| 267 |
|
---|
| 268 | Presented by C. Yanagisawa (Stony Brook)
|
---|
| 269 |
|
---|
| 270 |
|
---|
| 271 |
|
---|
| 272 | \bibitem{ferenc}
|
---|
| 273 |
|
---|
| 274 | Development of new large-aera photosensors in the USA
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 |
|
---|
| 278 | Presented by D. Ferenc (Davis)
|
---|
| 279 |
|
---|
| 280 |
|
---|
| 281 |
|
---|
| 282 | \bibitem{sk}
|
---|
| 283 |
|
---|
| 284 | R\&D of a large format hybrid photo-detector (HPD) for a next
|
---|
| 285 |
|
---|
| 286 | generation water Cherenkov detector.
|
---|
| 287 |
|
---|
| 288 |
|
---|
| 289 |
|
---|
| 290 | Presented by H. Aihara ( Tokyo)
|
---|
| 291 |
|
---|
| 292 |
|
---|
| 293 |
|
---|
| 294 | \bibitem{pouthas}
|
---|
| 295 |
|
---|
| 296 | Large photodetector developments in Europe
|
---|
| 297 |
|
---|
| 298 |
|
---|
| 299 |
|
---|
| 300 | Presented by J. Pouthas (Orsay)
|
---|
| 301 |
|
---|
| 302 |
|
---|
| 303 |
|
---|
| 304 | \bibitem{photonis}
|
---|
| 305 |
|
---|
| 306 | Revisiting the optimum PMT size for water Cherenkov megaton detectors
|
---|
| 307 |
|
---|
| 308 |
|
---|
| 309 |
|
---|
| 310 | Presented by C. Marmonier (Photonis)
|
---|
| 311 |
|
---|
| 312 |
|
---|
| 313 |
|
---|
| 314 | \bibitem{hama}
|
---|
| 315 |
|
---|
| 316 | Large formats PMTs from Hamamatsu Photonics
|
---|
| 317 |
|
---|
| 318 |
|
---|
| 319 |
|
---|
| 320 | Presented by M.A. Birkel (Hamamatsu)
|
---|
| 321 |
|
---|
| 322 |
|
---|
| 323 |
|
---|
| 324 | \bibitem{burle}
|
---|
| 325 |
|
---|
| 326 | Burle Indistries: Recent photomultiplier and device developments
|
---|
| 327 |
|
---|
| 328 |
|
---|
| 329 |
|
---|
| 330 | Presented by R. Caracciolo (Burle)
|
---|
| 331 |
|
---|
| 332 |
|
---|
| 333 |
|
---|
| 334 | \bibitem{etube}
|
---|
| 335 |
|
---|
| 336 | Electron Tubes: Detector considerations for neutrino physic
|
---|
| 337 |
|
---|
| 338 |
|
---|
| 339 |
|
---|
| 340 | Presented by T. Wright (Electron Tubes)
|
---|
| 341 |
|
---|
| 342 | \end{thebibliography}
|
---|
| 343 |
|
---|
| 344 |
|
---|
| 345 |
|
---|