| 1 | \documentclass{JINST}
|
|---|
| 2 | \usepackage[pdftex]{graphicx}
|
|---|
| 3 | \graphicspath{{figures/}}
|
|---|
| 4 | \usepackage[figuresright]{rotating}
|
|---|
| 5 | %\usepackage{graphicx}
|
|---|
| 6 | %\usepackage[T1]{fontenc}
|
|---|
| 7 | \usepackage{eurosym}
|
|---|
| 8 | %\usepackage{rotating}
|
|---|
| 9 | %\usepackage[dvips]{color}
|
|---|
| 10 |
|
|---|
| 11 |
|
|---|
| 12 | %used explicitly in the text
|
|---|
| 13 | \newcommand{\refTab}[1]{Tab.~\ref{#1}}
|
|---|
| 14 | \newcommand{\refFig}[1]{Fig.~\ref{#1}}
|
|---|
| 15 | \newcommand{\refSec}[1]{Sec.~\ref{#1}}
|
|---|
| 16 |
|
|---|
| 17 |
|
|---|
| 18 |
|
|---|
| 19 |
|
|---|
| 20 | \title{PARISROC, a Photomultiplier Array Integrated Readout Chip.}
|
|---|
| 21 | %
|
|---|
| 22 |
|
|---|
| 23 | \author{S. Conforti$^a$, Second Author$^b$\thanks{Corresponding
|
|---|
| 24 | author.}~ and Third Author$^b$\\
|
|---|
| 25 | \llap{$^a$}Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud 11,
|
|---|
| 26 | Bât. 200, 91898 Orsay Cedex, France\\
|
|---|
| 27 | \llap{$^b$}Name of Institute,\\
|
|---|
| 28 | Address, Country\\
|
|---|
| 29 | E-mail: \email{conforti@lal.in2p3.fr}}
|
|---|
| 30 |
|
|---|
| 31 |
|
|---|
| 32 |
|
|---|
| 33 |
|
|---|
| 34 | \abstract{
|
|---|
| 35 | PARISROC is a complete read
|
|---|
| 36 | out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
|
|---|
| 37 | \cite{Genolini:2008uc}
|
|---|
| 38 | %[1]
|
|---|
| 39 | , for photomultipliers array. It allows triggerless acquisition for
|
|---|
| 40 | next generation neutrino experiments and it belongs to an R\&D program
|
|---|
| 41 | funded by French national agency for research (ANR) called
|
|---|
| 42 | PMm2: "`Innovative electronics for photodetectors array
|
|---|
| 43 | used in High Energy Physics and Astroparticles"'
|
|---|
| 44 | \cite{PMm2Site:2006}
|
|---|
| 45 | %[2]
|
|---|
| 46 | (ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
|
|---|
| 47 | triggered channels with variable gain and provides charge and time
|
|---|
| 48 | measurement by a 12-bit ADC and a 24-bit Counter. The charge
|
|---|
| 49 | measurement should be performed from 1 up to 300 pe with a good
|
|---|
| 50 | linearity. The time measurement allowed to a coarse time with a 24-bit
|
|---|
| 51 | counter at 10 MHz and a fine time on a 100ns ramp to achieve a
|
|---|
| 52 | resolution of 1 ns. The ASIC sends out only the relevant data through
|
|---|
| 53 | network cables to the central data storage.
|
|---|
| 54 | }%end of abstract
|
|---|
| 55 |
|
|---|
| 56 | %\pacs{13.30.a,14.20.Dh,14.60.Pq,26.65.t+,29.40.Gx,29.40.Ka,29.40.Mc,95.55.Vj,95.85.Ry,
|
|---|
| 57 | %97.60.Bw}
|
|---|
| 58 |
|
|---|
| 59 | %\submitto{Journal of Instrumentation}
|
|---|
| 60 |
|
|---|
| 61 | \keywords{Keyword1; Keyword2; Keyword3}
|
|---|
| 62 |
|
|---|
| 63 | \begin{document}
|
|---|
| 64 | %use BST file provided by SPIRES for JHEP and modify it to forbid "to lower case" title
|
|---|
| 65 | \bibliographystyle{Campagne}
|
|---|
| 66 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 67 | \section{Introduction}
|
|---|
| 68 | \label{sec:Intro}
|
|---|
| 69 | %%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 70 | The PMm2 project: "`Innovative electronics for
|
|---|
| 71 | photodetectors array used in High Energy Physics and
|
|---|
| 72 | Astroparticles"' \cite{PMm2Site:2006}
|
|---|
| 73 | %[2]
|
|---|
| 74 | proposes to segment the large surface of photodetection in macro
|
|---|
| 75 | pixel consisting of an array of 16 photomultipliers connected to an
|
|---|
| 76 | autonomous front-end electronics () and powered by a common High
|
|---|
| 77 | Voltage. These large detectors are used in next generation proton decay
|
|---|
| 78 | and neutrino experiment (i.e. the post-SuperKamiokande detectors as
|
|---|
| 79 | those that will take place in megaton size water tanks) and will
|
|---|
| 80 | require very large surfaces of photo detection and a large volume of
|
|---|
| 81 | data. The micro-electronics group's (OMEGA from the LAL at Orsay)
|
|---|
| 82 | purpose is the front-end electronics conception and
|
|---|
| 83 | realization. This R\&D \cite{PMm2Site:2006}
|
|---|
| 84 | %[2]
|
|---|
| 85 | involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
|
|---|
| 86 | Orsay) and ULB Bruxells for the DAQ. It is funded for three years by
|
|---|
| 87 | the French National Agency for Research (ANR) under the reference
|
|---|
| 88 | ANR-06-BLAN-0186.
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | LAL Orsay is in charge of the design and tests of the readout chip
|
|---|
| 92 | named PARISROC which stands for Photomultiplier ARrray Integrated in
|
|---|
| 93 | Si-Ge Read Out Chip.
|
|---|
| 94 |
|
|---|
| 95 | \begin{figure}[!htbp]
|
|---|
| 96 | \begin{center}
|
|---|
| 97 | \includegraphics[width=0.7\columnwidth,height=6cm]{img1.jpg}
|
|---|
| 98 | \caption{Principal of PMm2 proposal for megaton scale Cerenkov water
|
|---|
| 99 | tank.}
|
|---|
| 100 | \label{fig:1}
|
|---|
| 101 | \end{center}
|
|---|
| 102 | \end{figure}
|
|---|
| 103 |
|
|---|
| 104 | The detectors such as SuperKamiokande, are large tanks covered by a
|
|---|
| 105 | significant number of large photomultipliers (20"),
|
|---|
| 106 | the next generation neutrino experiments will require a bigger surface
|
|---|
| 107 | of photo detection and thus more photomultipliers. As a consequence the
|
|---|
| 108 | total cost has an important relief \cite{Genolini:2008uc}.
|
|---|
| 109 | \begin{itemize}
|
|---|
| 110 | \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
|
|---|
| 111 | a common electronics, even if it induces more electronic channels;
|
|---|
| 112 | \item A common High Voltage for the 16 PMTs so a reduced number of
|
|---|
| 113 | underwater cables, cables that are also used to brought the DATA to
|
|---|
| 114 | the surface;
|
|---|
| 115 | \item The front-end closed to the PMTs that allow a suppression of
|
|---|
| 116 | underwater connector.
|
|---|
| 117 | \end{itemize}
|
|---|
| 118 |
|
|---|
| 119 | The general principle of PMm2 project is that the ASIC and a FPGA
|
|---|
| 120 | manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
|
|---|
| 121 |
|
|---|
| 122 | \begin{center}
|
|---|
| 123 | \begin{figure}[!!htbp]
|
|---|
| 124 | \includegraphics[width=0.7\columnwidth,height=6cm]{img2.jpg}
|
|---|
| 125 | \caption{Principle of the PMm2 project.}
|
|---|
| 126 | \label{fig:2}
|
|---|
| 127 | \end{figure}
|
|---|
| 128 | \end{center}
|
|---|
| 129 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 130 | \section{PARISROC architecture}
|
|---|
| 131 | \label{sec:PARISROCArchi}
|
|---|
| 132 | The ASIC Parisroc is composed of 16 analogue channels managed by a
|
|---|
| 133 | common digital part (\refFig{fig:3}).
|
|---|
| 134 |
|
|---|
| 135 | \begin{center}
|
|---|
| 136 | \begin{figure}[!htbp]
|
|---|
| 137 | \includegraphics[width=0.7\columnwidth,height=6cm]{img3.jpg}
|
|---|
| 138 | \caption{PARISROC global schematic.}
|
|---|
| 139 | \label{fig:3}
|
|---|
| 140 | \end{figure}
|
|---|
| 141 | \end{center}
|
|---|
| 142 |
|
|---|
| 143 | Each analogue channel is made of a low noise preamplifier with
|
|---|
| 144 | variable and adjustable gain. The variable gain is common for all
|
|---|
| 145 | channels and it can change from 8 to 1 on 4 bits. The gain is also
|
|---|
| 146 | tuneable channel by channel to adjust the input detector's gain, up to
|
|---|
| 147 | a factor 4 to an accuracy of 7\% with 8 bits.
|
|---|
| 148 |
|
|---|
| 149 | The preamplifier is followed by a slow channel for the charge
|
|---|
| 150 | measurement in parallel with a fast channel for the trigger output.
|
|---|
| 151 |
|
|---|
| 152 | The slow channel is made by a slow shaper followed by an analogue
|
|---|
| 153 | memory with a depth of 2 to provide a linear charge measurement up to
|
|---|
| 154 | 50~pC; this charge is converted by a 12-bits Wilkinson ADC. One follower
|
|---|
| 155 | OTA is added to deliver an analogue multiplexed charge measurement.
|
|---|
| 156 |
|
|---|
| 157 | The fast channel consists in a fast shaper (15~ns) followed by 2 low
|
|---|
| 158 | offset discriminators to auto-trig down to 50~fC. The thresholds are
|
|---|
| 159 | loaded by 2 internal 10-bit DACs common for the 16 channels and an
|
|---|
| 160 | individual 4bit DAC for one discriminator. The 2 discriminator outputs
|
|---|
| 161 | are multiplexed to provide only 16 trigger outputs. Each output trigger
|
|---|
| 162 | is latched to hold the state of the response until the end of the clock
|
|---|
| 163 | cycle. It is also delayed to open the hold switch at the maximum of the
|
|---|
| 164 | slow shaper. An "`OR"' of the 16 trigger gives a 17th output.
|
|---|
| 165 |
|
|---|
| 166 |
|
|---|
| 167 | For each channel, a fine time measurement is made by an analogue
|
|---|
| 168 | memory with depth of 2 which samples a 12-bit ramp, common for all
|
|---|
| 169 | channels, at the same time of the charge. This time is then converted
|
|---|
| 170 | by a 12 bit Wilkinson ADC.
|
|---|
| 171 |
|
|---|
| 172 | The two ADC discriminators have a common ramp, of 8/10/12 bits, as
|
|---|
| 173 | threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
|
|---|
| 174 |
|
|---|
| 175 | \begin{center}
|
|---|
| 176 | \begin{figure}[!htbp]
|
|---|
| 177 | \includegraphics[width=0.7\columnwidth,height=6cm]{img4.jpg}
|
|---|
| 178 | \caption{PARISROC Layout.}
|
|---|
| 179 | \label{fig:4}
|
|---|
| 180 | \end{figure}
|
|---|
| 181 | \end{center}
|
|---|
| 182 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 183 | \subsection{Analogue Channel description and simulations}
|
|---|
| 184 | \label{ssec:AnalogChannel}
|
|---|
| 185 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 186 | \refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
|
|---|
| 187 | part.
|
|---|
| 188 |
|
|---|
| 189 | \begin{center}
|
|---|
| 190 | \begin{figure}[!htbp]
|
|---|
| 191 | \includegraphics[width=0.7\columnwidth,height=6cm]{img5.jpg}
|
|---|
| 192 | \caption{PARISROC one channel analogue part schematic.}
|
|---|
| 193 | \label{fig:5}
|
|---|
| 194 | \end{figure}
|
|---|
| 195 | \end{center}
|
|---|
| 196 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 197 | \subsection{Preamplifier}
|
|---|
| 198 | \label{ssec:Preamplifier}
|
|---|
| 199 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 200 | The input preamplifier is a low noise preamplifier with variable gain
|
|---|
| 201 | thanks to the switched input ($C_{in}$) and feedback ($C_f$) capacitors that
|
|---|
| 202 | can be adjusted (\refFig{fig:6}).
|
|---|
| 203 |
|
|---|
| 204 | This gain can vary changing $C_{in}$, which is
|
|---|
| 205 | common to the 16 channels, over 4 bits and $C_{f}$, to adjust preamplifier
|
|---|
| 206 | gain channel by channel. This adjustment allows correction of the PMT
|
|---|
| 207 | gain dispersion due to a use of a common HV.
|
|---|
| 208 |
|
|---|
| 209 | \begin{center}
|
|---|
| 210 | \begin{figure}[!htb]
|
|---|
| 211 | \includegraphics[width=0.7\columnwidth,height=6cm]{img6.jpg}
|
|---|
| 212 | \caption{PARISROC preamplifier schematic.}
|
|---|
| 213 | \label{fig:6}
|
|---|
| 214 | \end{figure}
|
|---|
| 215 | \end{center}
|
|---|
| 216 |
|
|---|
| 217 | The preamplifier is designed as a voltage
|
|---|
| 218 | preamplifier in p-type Cascode structure to allow the acquisition of a
|
|---|
| 219 | fast input signal with a large dynamic range.
|
|---|
| 220 |
|
|---|
| 221 | The input transistor is a PMOS in common source
|
|---|
| 222 | configuration: $W = 800~\mu$m; $L = 0.35~\mu$m; the big input transistor is
|
|---|
| 223 | chosen to keep the preamplifier noise contribution low and to achieve a
|
|---|
| 224 | high gm. It supplies the output (the drain terminal) to the input
|
|---|
| 225 | terminal (source terminal) of the second stage transistor: $W = 100~\mu$m;
|
|---|
| 226 | $L = 0.35~\mu$m; the output transistor must be small to reach preamplifier
|
|---|
| 227 | high speed performances. The utility of the cascode preamplifier is in
|
|---|
| 228 | the large input impedance of the common source (with also the
|
|---|
| 229 | characteristic of Current Buffer) and better frequency response of a
|
|---|
| 230 | common Gate. An output buffer stage is designed in order to adapt the
|
|---|
| 231 | output impedance to the loaded impedance. The input dc level is high
|
|---|
| 232 | (about 2.6~V) while the output dc level is low (about 1~V). Because of
|
|---|
| 233 | the single side structure of preamplifier, it is hard to use the
|
|---|
| 234 | external reference voltage to set the dc operating point; the idea is
|
|---|
| 235 | to use an OTA as the dc feedback amplifier.
|
|---|
| 236 |
|
|---|
| 237 | In \refFig{fig:7} are shown preamplifier's output waveforms
|
|---|
| 238 | for fixed gain and different input signal (left panel) and for fixed
|
|---|
| 239 | input signal and different preamplifier gain (right panel).
|
|---|
| 240 |
|
|---|
| 241 | \begin{center}
|
|---|
| 242 | \begin{figure}[!htbp]
|
|---|
| 243 | \begin{tabular}{rl}
|
|---|
| 244 | \includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} &
|
|---|
| 245 | \includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
|
|---|
| 246 | \end{tabular}
|
|---|
| 247 | caption{Simulated preamplifier output waveforms for different input
|
|---|
| 248 | signals with fixed gain (left panel) and for fixed input
|
|---|
| 249 | signal at different gain (different input capacitor values (right
|
|---|
| 250 | panel).}
|
|---|
| 251 | \label{fig:7}
|
|---|
| 252 | \end{figure}
|
|---|
| 253 | \end{center}
|
|---|
| 254 |
|
|---|
| 255 | The input signal, used in simulation, is a triangle signal with 4.5~ns
|
|---|
| 256 | rise and fall time and 5~ns of duration as shown in \refFig{fig:8}. This current
|
|---|
| 257 | signal is sent to an external resistor (50~Ohms) and varies from 0 to 5~mA
|
|---|
| 258 | in order to simulate a PMT charge from 0 to 50~pC which represents 0
|
|---|
| 259 | to 300 photo-electrons when the PM gain is $10^{6}$.
|
|---|
| 260 |
|
|---|
| 261 | \begin{center}
|
|---|
| 262 | \begin{figure}[!htbp]
|
|---|
| 263 | \includegraphics[width=0.7\columnwidth,height=6cm]{img8.jpg}
|
|---|
| 264 | \caption{Simulation input signal.}
|
|---|
| 265 | \label{fig:8}
|
|---|
| 266 | \end{figure}
|
|---|
| 267 | \end{center}
|
|---|
| 268 |
|
|---|
| 269 | The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
|
|---|
| 270 | linearity performance. \refTab{tab:1} lists the residuals obtained for different
|
|---|
| 271 | gains and shows a good linearity (better than $\pm 1\%$).
|
|---|
| 272 |
|
|---|
| 273 | \begin{center}
|
|---|
| 274 | \begin{figure}[!htbp]
|
|---|
| 275 | \includegraphics[width=0.7\columnwidth,height=6cm]{img9.jpg}
|
|---|
| 276 | \caption{Preamplifier linearity.}
|
|---|
| 277 | \label{fig:9}
|
|---|
| 278 | \end{figure}
|
|---|
| 279 | \end{center}
|
|---|
| 280 |
|
|---|
| 281 |
|
|---|
| 282 | \begin{table}
|
|---|
| 283 | \centering
|
|---|
| 284 | \caption{TO BE COMPLETED}
|
|---|
| 285 | \label{tab:1}
|
|---|
| 286 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 287 | \hline
|
|---|
| 288 | $G_{pa}$ & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
|
|---|
| 289 | \hline
|
|---|
| 290 | 8 & 1.394~V & 40~pC/250~pe & -0.6 to 0.2 \\
|
|---|
| 291 | 4 & 0.841~V & 48~pC/300~pe & -0.1 to 0.3 \\
|
|---|
| 292 | 2 & 0.417~V & 48~pC/300~pe & -0.2 to 0.3 \\
|
|---|
| 293 | \hline
|
|---|
| 294 | \end{tabular}
|
|---|
| 295 | \end{table}
|
|---|
| 296 |
|
|---|
| 297 |
|
|---|
| 298 |
|
|---|
| 299 | The \refFig{fig:10} displays the preamplifier noise with an
|
|---|
| 300 | rms value of 13~fC and a Signal to Noise ratio of $\approx 12$.
|
|---|
| 301 | \refTab{tab:2} summarizes the results obtained.
|
|---|
| 302 |
|
|---|
| 303 | \begin{center}
|
|---|
| 304 | \begin{figure}[!htbp]
|
|---|
| 305 | \includegraphics[width=0.7\columnwidth,height=6cm]{img10.jpg}
|
|---|
| 306 | \caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
|
|---|
| 307 | $C_{f}=0.5$~pF.}
|
|---|
| 308 | \end{figure}
|
|---|
| 309 | \label{fig:10}
|
|---|
| 310 | \end{center}
|
|---|
| 311 |
|
|---|
| 312 | \begin{table}
|
|---|
| 313 | \centering
|
|---|
| 314 | \caption{TO BE COMPLETED}
|
|---|
| 315 | \label{tab:2}
|
|---|
| 316 | \begin{tabular}{|c|c|c|}
|
|---|
| 317 | \hline
|
|---|
| 318 | RMS & SNR & $V_{out}(1 p.e)$ \\
|
|---|
| 319 | \hline
|
|---|
| 320 | $468~\mu$V ($\approx 1/12$~p.e, $\approx 13$~fC ) & 11.6 & 5.43~mV\\
|
|---|
| 321 | \hline
|
|---|
| 322 | \end{tabular}
|
|---|
| 323 | \end{table}
|
|---|
| 324 |
|
|---|
| 325 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 326 | \subsection{Trigger output}
|
|---|
| 327 | \label{ssec:Trigger}
|
|---|
| 328 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 329 | The PARISROC is a self-triggered device. The fast channel has been
|
|---|
| 330 | conceived for this purpose.The amplified signal flows in a fast shaper that is a CRRC filter with
|
|---|
| 331 | a time constant of 15~ns. Its high gain allows to send high signal to
|
|---|
| 332 | the discriminator and thus to trigger easily on 1/3 of photo-electron.
|
|---|
| 333 | It has a classical design: differential pair is followed by a buffer.
|
|---|
| 334 |
|
|---|
| 335 | \begin{figure}[!htbp]
|
|---|
| 336 | \centering
|
|---|
| 337 | \includegraphics[width=0.7\columnwidth,height=6cm]{img11.jpg}
|
|---|
| 338 | \caption{Fast shaper schematics.}
|
|---|
| 339 | \label{fig:11}
|
|---|
| 340 | \end{figure}
|
|---|
| 341 |
|
|---|
| 342 | The \refFig{fig:12} represents the fast shaper output
|
|---|
| 343 | waveforms for a variable input signal. The \refTab{tab:3} lists the fast
|
|---|
| 344 | shaper principal characteristics obtained in simulation.
|
|---|
| 345 |
|
|---|
| 346 | \begin{figure}[!htbp]
|
|---|
| 347 | \centering
|
|---|
| 348 | \begin{tabular}{rl}
|
|---|
| 349 | \includegraphics[width=0.5\columnwidth,height=6cm]{img12a.jpg} &
|
|---|
| 350 | \includegraphics[width=0.5\columnwidth,height=6cm]{img12b.jpg}
|
|---|
| 351 | \end{tabular}
|
|---|
| 352 | \caption{Simulated fast shaper outputs ($G_{pa} = 8$ with input from 1-10~pe (left panel)
|
|---|
| 353 | and from 1/3~pe to 2~pe (right panel).}
|
|---|
| 354 | \label{fig:12}
|
|---|
| 355 | \end{figure}
|
|---|
| 356 |
|
|---|
| 357 | \begin{table}
|
|---|
| 358 | \centering
|
|---|
| 359 | \caption{To be completed}
|
|---|
| 360 | \label{tab:3}
|
|---|
| 361 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 362 | \hline
|
|---|
| 363 | RMS & SNR & $V_{out}(1 p.e)$ & $T_p$ \\
|
|---|
| 364 | \hline
|
|---|
| 365 | $2.36~\mu$V ($\approx 1/16$~p.e, $\approx 10$~fC ) & 16 & 37.85~mV & 8~ns\\
|
|---|
| 366 | \hline
|
|---|
| 367 | \end{tabular}
|
|---|
| 368 | \end{table}
|
|---|
| 369 |
|
|---|
| 370 | The fast shaper (15~ns) is followed by a low
|
|---|
| 371 | offset discriminator to auto-trig down to 50~fC (1/3~pe at $10^6$ gain).
|
|---|
| 372 |
|
|---|
| 373 |
|
|---|
| 374 | The two discriminators can be used alone or
|
|---|
| 375 | simultaneously. Their outputs are multiplexed to ease the choice. Both
|
|---|
| 376 | are simple low offset comparators with the same schematic. The
|
|---|
| 377 | difference comes from the way to set the threshold. The first
|
|---|
| 378 | discriminator has the threshold sets by one 10-bit DAC, common to all
|
|---|
| 379 | 16 channels, and one 4-bit DAC for each channel. The second
|
|---|
| 380 | discriminator has the threshold sets by only the 10 bit common DAC.
|
|---|
| 381 | Each output trigger is latched to hold the state of the response in SCA
|
|---|
| 382 | channel. In \refFig{fig:13} are shown the triggers and the zoom of the triggers rise
|
|---|
| 383 | time in order to see the time walk of around 4~ns.
|
|---|
| 384 |
|
|---|
| 385 |
|
|---|
| 386 | \begin{figure}[!htbp]
|
|---|
| 387 | \centering
|
|---|
| 388 | \begin{tabular}{rl}
|
|---|
| 389 | \includegraphics[width=0.5\columnwidth,height=6cm]{img13a.jpg}&
|
|---|
| 390 | \includegraphics[width=0.5\columnwidth,height=6cm]{img13b.jpg}
|
|---|
| 391 | \end{tabular}
|
|---|
| 392 | \caption{Simulated trigger output (input charge from 0 to 10~p.e;
|
|---|
| 393 | threshold at 1/3~p.e). Zoom of trigger rise time on right
|
|---|
| 394 | pannel.}
|
|---|
| 395 | \label{fig:13}
|
|---|
| 396 | \end{figure}
|
|---|
| 397 |
|
|---|
| 398 | Each output trigger is latched to hold the
|
|---|
| 399 | state of the response in SCA channel. SCA channel is the also called
|
|---|
| 400 | "`Analogue memory"'. The SCA has a
|
|---|
| 401 | depth equal to two; this means that there are two T\&H for time
|
|---|
| 402 | measurement as well as for charge measurement.
|
|---|
| 403 |
|
|---|
| 404 | \begin{figure}[!htbp]
|
|---|
| 405 | \centering
|
|---|
| 406 | \includegraphics[width=0.7\columnwidth,height=6cm]{img14.jpg}
|
|---|
| 407 | \caption{SCA (switched capacitor array) scheme.}
|
|---|
| 408 | \label{fig:14}
|
|---|
| 409 | \end{figure}
|
|---|
| 410 |
|
|---|
| 411 | The voltage level of the signal coming from
|
|---|
| 412 | slow shaper or ramp TDC cell is memorised in the T\&H capacitor (500~fF)
|
|---|
| 413 | so "`Track \& Hold Cell"' allows
|
|---|
| 414 | to lock the capacitor value only when a calibrated trigger (from fast
|
|---|
| 415 | channel) occurs within the selected column. The SCA column is selected, read and erased by
|
|---|
| 416 | the digital part.
|
|---|
| 417 |
|
|---|
| 418 | \begin{figure}[!htbp]
|
|---|
| 419 | \centering
|
|---|
| 420 | \includegraphics[width=0.7\columnwidth,height=6cm]{img15.jpg}
|
|---|
| 421 | \caption{Operation of T\&H cell.}
|
|---|
| 422 | \label{fig:15}
|
|---|
| 423 | \end{figure}
|
|---|
| 424 |
|
|---|
| 425 | On \refFig{fig:15} is illustrated the T\&H cell mode of
|
|---|
| 426 | operation: when a signal arrives in the discriminator cell is detected
|
|---|
| 427 | and the output trigger signal is sent to the T\&H cell.
|
|---|
| 428 | The output trigger is delayed and calibrated before being sent.
|
|---|
| 429 |
|
|---|
| 430 |
|
|---|
| 431 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 432 | \subsection{Charge channel}
|
|---|
| 433 | \label{ssec:Charge}
|
|---|
| 434 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 435 | The charge channel is the slow channel: the signal amplified by the
|
|---|
| 436 | variable gain preamplifier is sent to the slow shaper, a typical
|
|---|
| 437 | $\mathrm{CRRC}^2$ filter with variable peaking time. The
|
|---|
| 438 | peaking time can be set from 50~ns (default value) to 200~ns thanks to
|
|---|
| 439 | the switched feedback capacitors.
|
|---|
| 440 |
|
|---|
| 441 | On left part of \refFig{fig:16} are represented the slow shaper waveforms for
|
|---|
| 442 | different shaping times and the same input signal. The noise value (\refTab{tab:4}
|
|---|
| 443 | and right part of \refFig{fig:16}), from $980~\mu$V to $1.6$~mV (simulation results), foresee
|
|---|
| 444 | good noise performance.
|
|---|
| 445 |
|
|---|
| 446 | \begin{figure}[!htbp]
|
|---|
| 447 | \centering
|
|---|
| 448 | \begin{tabular}{rl}
|
|---|
| 449 | \includegraphics[width=0.5\columnwidth,height=6cm]{img16a.jpg}&
|
|---|
| 450 | \includegraphics[width=0.5\columnwidth,height=6cm]{img16b.jpg}
|
|---|
| 451 | \end{tabular}
|
|---|
| 452 | \caption{Slow shaper output waveforms simulation (left panel). Slow shaper
|
|---|
| 453 | output noise simulation (right panel).}
|
|---|
| 454 | \label{fig:16}
|
|---|
| 455 | \end{figure}
|
|---|
| 456 |
|
|---|
| 457 | \begin{table}
|
|---|
| 458 | \centering
|
|---|
| 459 | \caption{TO BE COMPLETED. $G_{pa} = 8$}
|
|---|
| 460 | \label{tab:4}
|
|---|
| 461 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 462 | \hline
|
|---|
| 463 | Time constant & RMS & SNR & $V_{out}(1 p.e)$ \\
|
|---|
| 464 | \hline
|
|---|
| 465 | 50~ns & \parbox[t]{20mm}{$1.68$~mV \\ $\approx 1/17$~p.e \\ $ \approx 9$~fC}
|
|---|
| 466 | & 11
|
|---|
| 467 | & \parbox[t]{20mm}{$29$~mV \\ $T_p = 48$~ns } \\
|
|---|
| 468 | 100~ns & \parbox[t]{20mm}{$1.26$~mV\\$\approx 1/12$~p.e \\ $ \approx 20$~fC}
|
|---|
| 469 | & 8
|
|---|
| 470 | & \parbox[t]{20mm}{$15$~mV \\ $T_p = 78$~ns }\\
|
|---|
| 471 | 200~ns & \parbox[t]{20mm}{$0.98$~mV\\$\approx 1/5$~p.e \\ $ \approx 32$~fC}
|
|---|
| 472 | & 5
|
|---|
| 473 | & \parbox[t]{23mm}{$8$~mV \\ $ T_p = 141.5$~ns } \\
|
|---|
| 474 | \hline
|
|---|
| 475 | \end{tabular}
|
|---|
| 476 | \end{table}
|
|---|
| 477 |
|
|---|
| 478 | The \refFig{fig:17} and \refTab{tab:5} illustrate the linearity performance for
|
|---|
| 479 | different time constants. Simulations show a good linearity with
|
|---|
| 480 | residuals from -0.5\% to 0.2\% at $T_p = 50$~ns, from
|
|---|
| 481 | -1\% to 0.3\% at $T_p =100$~ns and -0.7\% to 0.3\% at
|
|---|
| 482 | $T_p=200$~ns.
|
|---|
| 483 |
|
|---|
| 484 | \begin{figure}[!htbp]
|
|---|
| 485 | \centering
|
|---|
| 486 | \includegraphics[width=0.7\columnwidth,height=6cm]{img17.jpg}
|
|---|
| 487 | \caption{Slow shaper linearity simulation.}
|
|---|
| 488 | \label{fig:17}
|
|---|
| 489 | \end{figure}
|
|---|
| 490 |
|
|---|
| 491 | \begin{table}
|
|---|
| 492 | \centering
|
|---|
| 493 | \caption{TO BE COMPLETED}
|
|---|
| 494 | \label{tab:5}
|
|---|
| 495 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 496 | \hline
|
|---|
| 497 | Time constante & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
|
|---|
| 498 | \hline
|
|---|
| 499 | 50~ns & 1.437~V & 13~pC/80~pe & -0.5 to 0.2 \\
|
|---|
| 500 | 100~ns & 1.493~V & 24~pC/150~pe & -1.0 to 0.3 \\
|
|---|
| 501 | 200~ns & 1.385~V & 48~pC/300~pe & -0.7 to 0.3 \\
|
|---|
| 502 | \hline
|
|---|
| 503 | \end{tabular}
|
|---|
| 504 | \end{table}
|
|---|
| 505 |
|
|---|
| 506 | The Slow shaper maximum value, therefore the charge value, is then
|
|---|
| 507 | memorized in the analogue memory, with a depth of 2, thanks to the
|
|---|
| 508 | delayed trigger. \refFig{fig:18} gives the simulated slow shaper and SCA
|
|---|
| 509 | signals.
|
|---|
| 510 |
|
|---|
| 511 | \begin{figure}[!htbp]
|
|---|
| 512 | \centering
|
|---|
| 513 | \includegraphics[width=0.7\columnwidth,height=6cm]{img18.jpg}
|
|---|
| 514 | \caption{Slow shaper \& SCA simulation.}
|
|---|
| 515 | \label{fig:18}
|
|---|
| 516 | \end{figure}
|
|---|
| 517 | This charge, stored as a voltage value, is then converted in digital
|
|---|
| 518 | value thanks to the 8/10/12 bit Wilkinson ADC.
|
|---|
| 519 |
|
|---|
| 520 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 521 | \subsection{Time measurement}
|
|---|
| 522 | \label{ssec:Timemeas}
|
|---|
| 523 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 524 | For each channel, a fine time measurement is performed by the analogue
|
|---|
| 525 | memory with a depth of 2 which samples a 12 bit ramp (100~ns), common
|
|---|
| 526 | for all channels, at the same time of the charge.
|
|---|
| 527 |
|
|---|
| 528 | In \refFig{fig:19} is represented the TDC Ramp general schematic. The current,
|
|---|
| 529 | which flows in feedback, charges the capacitance $C_f$ when the switch is
|
|---|
| 530 | off. When the switch is turned off, $C_f$ discharges. Signals \verb|start\_ramp| and
|
|---|
| 531 | \verb|start\_ramp\_b| manage the switches. The rising signal starts the ramp
|
|---|
| 532 | and the falling signal stop the ramp (\refFig{fig:19}).
|
|---|
| 533 |
|
|---|
| 534 | \begin{figure}[!htbp]
|
|---|
| 535 | \centering
|
|---|
| 536 | \begin{tabular}{rl}
|
|---|
| 537 | \includegraphics[width=0.5\columnwidth,height=6cm]{img19a.jpg}&
|
|---|
| 538 | \includegraphics[width=0.5\columnwidth,height=6cm]{img19b.jpg}
|
|---|
| 539 | \end{tabular}
|
|---|
| 540 | \caption{TDC Ramp general schematic.}
|
|---|
| 541 | \label{fig:19}
|
|---|
| 542 | \end{figure}
|
|---|
| 543 | In order to avoid the large falling time of the ramp due to the $C_f$
|
|---|
| 544 | discharge time and the problem of non linearity at the start and the
|
|---|
| 545 | end of ramp signal (\refFig{fig:20}), the real ramp is created from two
|
|---|
| 546 | ramps.
|
|---|
| 547 |
|
|---|
| 548 | \begin{figure}[!htbp]
|
|---|
| 549 | \centering
|
|---|
| 550 | \includegraphics[width=0.7\columnwidth,height=6cm]{img20.jpg}
|
|---|
| 551 | \caption{TDC Ramp.}
|
|---|
| 552 | \label{fig:20}
|
|---|
| 553 | \end{figure}
|
|---|
| 554 |
|
|---|
| 555 | The signal start ramp, coming from the digital
|
|---|
| 556 | part, enters in two delay cells. The two delayed signals create the
|
|---|
| 557 | first and second ramps. Commutating alternatively two switches the 100~ns ramp TDC is created
|
|---|
| 558 | (\refFig{fig:21} and \refFig{fig:22}).
|
|---|
| 559 |
|
|---|
| 560 | \begin{figure}[!htbp]
|
|---|
| 561 | \centering
|
|---|
| 562 | \includegraphics[width=0.7\columnwidth,height=6cm]{img21.jpg}
|
|---|
| 563 | \caption{TDC Ramp scheme.}
|
|---|
| 564 | \label{fig:21}
|
|---|
| 565 | \end{figure}
|
|---|
| 566 |
|
|---|
| 567 | \begin{figure}[!htbp]
|
|---|
| 568 | \centering
|
|---|
| 569 | \includegraphics[width=0.7\columnwidth,height=6cm]{img22.jpg}
|
|---|
| 570 | \caption{TDC Ramp simulation.}
|
|---|
| 571 | \label{fig:22}
|
|---|
| 572 | \end{figure}
|
|---|
| 573 |
|
|---|
| 574 | This time value, stored as a voltage value, is then converted in
|
|---|
| 575 | digital value tanks to the 8/10/12 bit Wilkinson ADC.
|
|---|
| 576 |
|
|---|
| 577 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 578 | \subsection{ADC ramp}
|
|---|
| 579 | \label{ssec:ADCramp}
|
|---|
| 580 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 581 | In \refFig{fig:23} is represented the Ramp ADC general scheme. It is the
|
|---|
| 582 | same as TDC ramp one, the difference is in a variable current source
|
|---|
| 583 | which allows obtaining 8bit/10bit/12bit ADC according to the injected
|
|---|
| 584 | current. \refTab{tab:6} gives, for each ramp, the time duration to reach 3.3~V.
|
|---|
| 585 |
|
|---|
| 586 | \begin{figure}[!htbp]
|
|---|
| 587 | \centering
|
|---|
| 588 | \includegraphics[width=0.7\columnwidth,height=6cm]{img23.jpg}
|
|---|
| 589 | \caption{ADC ramp schematic.}
|
|---|
| 590 | \label{fig:23}
|
|---|
| 591 | \end{figure}
|
|---|
| 592 |
|
|---|
| 593 | \begin{table}
|
|---|
| 594 | \centering
|
|---|
| 595 | \caption{TO BE COMPLETED}
|
|---|
| 596 | \label{tab:6}
|
|---|
| 597 | \begin{tabular}{|l|l|}
|
|---|
| 598 | \hline
|
|---|
| 599 | Header 1 & Header 2 \\
|
|---|
| 600 | 12 bit ADC & From 0.9~V to 3.3~V in $102.0~\mu{}$s \\
|
|---|
| 601 | 10 bit ADC & From 0.9~V to 3.3~V in $25.6~\mu{}$s \\
|
|---|
| 602 | \phantom{ }8 bit ADC & From 0.9~V to 3.3~V in $6.4~\mu{}$s \\
|
|---|
| 603 | \hline
|
|---|
| 604 | \end{tabular}
|
|---|
| 605 | \end{table}
|
|---|
| 606 |
|
|---|
| 607 | Then the ADC ramp is compared thanks to a Discriminator to the voltage
|
|---|
| 608 | values, which corresponds to charge and fine time values, stored in the
|
|---|
| 609 | SCA. The digital converted DATA are then treated by the digital part.
|
|---|
| 610 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 611 | \subsection{Digital part}
|
|---|
| 612 | \label{ssec:Digital}
|
|---|
| 613 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 614 | The digital part of PARISROC is built around 4 modules which are "`acquisition"', "`conversion"', "`readout"' and "`top manager"'. Actually, PARISROC is based on 2 memories. During acquisition,
|
|---|
| 615 | discriminated analog signals are stored into an analog memory (the SCA:
|
|---|
| 616 | switched capacitor array). The analog to digital conversion module
|
|---|
| 617 | converts analog charges and times from SCA into 12 bits digital values.
|
|---|
| 618 | These digital values are saved into registers (RAM). At the end of the
|
|---|
| 619 | cycle, the RAM is readout by an external system. The block diagram is
|
|---|
| 620 | given on \refFig{fig:24}.
|
|---|
| 621 |
|
|---|
| 622 |
|
|---|
| 623 | \begin{figure}[!htbp]
|
|---|
| 624 | \centering
|
|---|
| 625 | \includegraphics[width=0.7\columnwidth,height=6cm]{img24.jpg}
|
|---|
| 626 | \caption{Block diagram of the digital part.}
|
|---|
| 627 | \label{fig:24}
|
|---|
| 628 | \end{figure}
|
|---|
| 629 |
|
|---|
| 630 | This sequence is made thanks to the top manager module which controls
|
|---|
| 631 | the 3 other ones. When 1 or more channels are hit, it starts ADC
|
|---|
| 632 | conversion and then the readout of digitized data. The maximum cycle
|
|---|
| 633 | length is about $200~\mu$s. During
|
|---|
| 634 | conversion and readout, acquisition is never stopped. It means that
|
|---|
| 635 | discriminated analog signals can be stored in the SCA at any time of
|
|---|
| 636 | the sequence shown in on \refFig{fig:25}.
|
|---|
| 637 |
|
|---|
| 638 | \begin{figure}[!htbp]
|
|---|
| 639 | \centering
|
|---|
| 640 | \includegraphics[width=0.7\columnwidth,height=6cm]{img25.jpg}
|
|---|
| 641 | \caption{Top manager sequence.}
|
|---|
| 642 | \label{fig:25}
|
|---|
| 643 | \end{figure}
|
|---|
| 644 |
|
|---|
| 645 | The first module in the sequence is the acquisition
|
|---|
| 646 | which is dedicated to charge and fine time measurements. It manages the
|
|---|
| 647 | SCA where charge and fine time are stored as a voltage like. It also
|
|---|
| 648 | integrates the coarse time measurement thanks to a 24-bit gray counter
|
|---|
| 649 | with a resolution of 100~ns. Each channel has a depth of 2 for the SCA
|
|---|
| 650 | and they are managed individually. Besides, SCA is treated like a FIFO
|
|---|
| 651 | memory: analog voltage can be written, read and erased from this
|
|---|
| 652 | memory.
|
|---|
| 653 |
|
|---|
| 654 |
|
|---|
| 655 | \begin{figure}[!htbp]
|
|---|
| 656 | \centering
|
|---|
| 657 | \includegraphics[width=0.7\columnwidth,height=6cm]{img26.jpg}
|
|---|
| 658 | \caption{SCA analogue voltage}
|
|---|
| 659 | \label{fig:26}
|
|---|
| 660 | \end{figure}
|
|---|
| 661 |
|
|---|
| 662 | Then, the conversion module converts analog values stored in
|
|---|
| 663 | the SCA (charge and fine time: cf. \`refFig{fig:26}) in digital ones thanks to a 12-bit
|
|---|
| 664 | Wilkinson ADC. The counter clock frequency is 40~MHz, it implies a
|
|---|
| 665 | maximum ADC conversion time of $103~\mu$s
|
|---|
| 666 | when it overflows. This module makes 32 conversions in 1 run (16
|
|---|
| 667 | charges and 16 fine times).
|
|---|
| 668 |
|
|---|
| 669 | Finally, the readout module permits to empty all the registers
|
|---|
| 670 | to an external system. As it will only transfer hit channels, this
|
|---|
| 671 | module will tag each frame with its channel number: it works as a
|
|---|
| 672 | selective readout. The pattern used is composed of 4 data: 4-bit
|
|---|
| 673 | channel number, 24-bit coarse time, 12-bit charge and 12-bit fine time.
|
|---|
| 674 | The total length of one frame is 52 bits. The maximum readout time
|
|---|
| 675 | appears when all channels are hit. About 832 bits of data are
|
|---|
| 676 | transferred to the concentrator with a 10~MHz clock: the readout takes
|
|---|
| 677 | about $100~\mu$s with $1~\mu$s between 2 frames.
|
|---|
| 678 |
|
|---|
| 679 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 680 | \section{ASIC Laboratory tests}
|
|---|
| 681 | \label{sec:ASICLAbTest}
|
|---|
| 682 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 683 | The PARISROC has been submitted in June 2008; a first batch of 6 ASICs
|
|---|
| 684 | has been produced and received in January 2009 (a second batch of 14
|
|---|
| 685 | ASICs in May 2009.
|
|---|
| 686 |
|
|---|
| 687 | The ASIC test has been a critical step in the PARISROC planning due to
|
|---|
| 688 | the ASIC complexity.A dedicated test board has been designed and realized for this purpose
|
|---|
| 689 | (\refFig{fig:27}). Its role is to allow the characterization of the chip and the
|
|---|
| 690 | communication between photomultipliers and ASIC. This is possible
|
|---|
| 691 | thanks to a dedicated Labview program that allows sending the ASIC
|
|---|
| 692 | configuration (slow control parameters; ASIC parameters, etc) and
|
|---|
| 693 | receiving the output bits via a USB cable connected to the test board.
|
|---|
| 694 | The Labview is developed by LAL.
|
|---|
| 695 |
|
|---|
| 696 | \begin{figure}[!htbp]
|
|---|
| 697 | \centering
|
|---|
| 698 | \includegraphics[width=0.7\columnwidth,height=6cm]{img27.jpg}
|
|---|
| 699 | \caption{Test Board.}
|
|---|
| 700 | \label{fig:27}
|
|---|
| 701 | \end{figure}
|
|---|
| 702 |
|
|---|
| 703 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 704 | \subsection{General tests}
|
|---|
| 705 | \label{ssec:GeneralTest}
|
|---|
| 706 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 707 | On \refFig{fig:28} is shown the Test Bench used in laboratory. It is composed by a
|
|---|
| 708 | test board, a signal generator, an oscilloscope, multimeters and PC to
|
|---|
| 709 | run labview program.
|
|---|
| 710 |
|
|---|
| 711 | \begin{figure}[!htbp]
|
|---|
| 712 | \centering
|
|---|
| 713 | \includegraphics[width=0.7\columnwidth,height=6cm]{img28.jpg}
|
|---|
| 714 | \caption{Test Bench.}
|
|---|
| 715 | \label{fig:28}
|
|---|
| 716 | \end{figure}
|
|---|
| 717 |
|
|---|
| 718 | The signal generator is a TEKTRONIX single
|
|---|
| 719 | channel function generator. It is used to create the input charge
|
|---|
| 720 | injected in the ASIC. The signal injected has the shaping as similar as
|
|---|
| 721 | possible to the PMT signal. On \refFig{fig:28} is represented the generator input
|
|---|
| 722 | signal and its characteristics.
|
|---|
| 723 |
|
|---|
| 724 | \begin{figure}[!htbp]
|
|---|
| 725 | \centering
|
|---|
| 726 | \includegraphics[width=0.7\columnwidth,height=6cm]{img29.jpg}
|
|---|
| 727 | %%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
|
|---|
| 728 | \caption{Input signals}
|
|---|
| 729 | \label{fig:29}
|
|---|
| 730 | \end{figure}
|
|---|
| 731 |
|
|---|
| 732 | At the beginning all the standard electrical
|
|---|
| 733 | characteristics have been tested: DC levels, analogue output signals,
|
|---|
| 734 | the analogue part characteristics and then the pedestals, the DAC
|
|---|
| 735 | linearity, S\-curves (trigger efficiency as a function of the injected
|
|---|
| 736 | charge or the threshold), the ADC linearity. The first purpose is the
|
|---|
| 737 | comparison between simulation results and test measurements; most of
|
|---|
| 738 | them are in agreement with the ASIC characteristics, obtained in
|
|---|
| 739 | simulation.
|
|---|
| 740 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 741 | \subsection{Analogue tests}
|
|---|
| 742 | \label{ssec:AnalogueTest}
|
|---|
| 743 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 744 | The DC level characterization is the first step in ASIC
|
|---|
| 745 | characterization; in particular the DC uniformity of the analogue part
|
|---|
| 746 | DC level for the different channels has to be measured.
|
|---|
| 747 |
|
|---|
| 748 | In \refFig{fig:30} are represented the preamplifier, slow
|
|---|
| 749 | shaper and fast shaper DC uniformity plots. The DC uniformity test has a small dispersion
|
|---|
| 750 | of 0.4\%, 0.1\% and 0.05\% respectively for the preamplifier, the slow
|
|---|
| 751 | shaper and the fast shaper (\refTab{tab:7}).
|
|---|
| 752 |
|
|---|
| 753 | \begin{figure}[!htbp]
|
|---|
| 754 | \centering
|
|---|
| 755 | \begin{tabular}{c}
|
|---|
| 756 | \includegraphics[width=0.7\columnwidth,height=6cm]{img30a.jpg}\\
|
|---|
| 757 | \includegraphics[width=0.7\columnwidth,height=6cm]{img30b.jpg}\\
|
|---|
| 758 | \includegraphics[width=0.7\columnwidth,height=6cm]{img30c.jpg}
|
|---|
| 759 | \end{tabular}
|
|---|
| 760 | \caption{DC uniformity.}
|
|---|
| 761 | \label{fig:30}
|
|---|
| 762 | \end{figure}
|
|---|
| 763 |
|
|---|
| 764 | \begin{table}
|
|---|
| 765 | \centering
|
|---|
| 766 | \caption{TO BE COMPLETED}
|
|---|
| 767 | \label{tab:7}
|
|---|
| 768 | \begin{tabular}{|l|c|c|c|}
|
|---|
| 769 | \hline
|
|---|
| 770 | DC level & RMS \\
|
|---|
| 771 | Preamplifier & 3.8~mV (0.40~\%) \\
|
|---|
| 772 | Slow shaper & 1.3~mV (0.10~\%) \\
|
|---|
| 773 | Fast shaper & 1.0~mV (0.05\%) \\
|
|---|
| 774 | \hline
|
|---|
| 775 | \end{tabular}
|
|---|
| 776 | \end{table}
|
|---|
| 777 |
|
|---|
| 778 | The second step is the analogue part output signals: Injecting a
|
|---|
| 779 | charge equivalent to 10~pe, and setting a preamplifier gain at 8, are
|
|---|
| 780 | observed and compared with simulation results all the output waveforms.
|
|---|
| 781 |
|
|---|
| 782 | There is a good agreement in preamplifier results ( \refFig{fig:31} and \refTab{tab:8}), the
|
|---|
| 783 | amplitude has the same value while time rise value has a difference of
|
|---|
| 784 | 3~ns. This difference is due to the output buffer placed in the test
|
|---|
| 785 | board.
|
|---|
| 786 |
|
|---|
| 787 | \begin{figure}[!htbp]
|
|---|
| 788 | \centering
|
|---|
| 789 | \begin{tabular}{rl}
|
|---|
| 790 | \includegraphics[width=0.5\columnwidth,height=6cm]{img31a.jpg}&
|
|---|
| 791 | \includegraphics[width=0.5\columnwidth,height=6cm]{img31b.jpg}
|
|---|
| 792 | \end{tabular}
|
|---|
| 793 | \caption{Measurement and simulation of the preamplifier output for
|
|---|
| 794 | an input charge of 10~pe.}
|
|---|
| 795 | \label{fig:31}
|
|---|
| 796 | \end{figure}
|
|---|
| 797 |
|
|---|
| 798 | \begin{table}
|
|---|
| 799 | \centering
|
|---|
| 800 | \caption{TO BE COMPLETED. Preamplifier parameters.... $G_{pa} = 8$. WHY not same parameters 1~pe and 10~p.e}
|
|---|
| 801 | \label{tab:8}
|
|---|
| 802 | \begin{tabular}{|l|c|c|}
|
|---|
| 803 | \hline
|
|---|
| 804 | & Measurement & Simulation \\
|
|---|
| 805 | \hline
|
|---|
| 806 | Maximum voltage (10~pe) & 50.00~mV & 50.83~mV \\
|
|---|
| 807 | Rise time (10~pe) & 7.78~ns & 4.79~ns \\
|
|---|
| 808 | RMS noise & 1~mV & 0.47~mV \\
|
|---|
| 809 | without USB cable & 0.66~mV & \\
|
|---|
| 810 | Noise in pe & 0.2 & 0.086 \\
|
|---|
| 811 | without USB cable & 0.132 & \\
|
|---|
| 812 | Maximum voltage (1~pe) & 5.00~mV & 5.43~mV \\
|
|---|
| 813 | SNR (1~pe ????) & 5 & 11.6 \\
|
|---|
| 814 | without USB cable & 7.5 & \\
|
|---|
| 815 | \hline
|
|---|
| 816 | \end{tabular}
|
|---|
| 817 | \end{table}
|
|---|
| 818 |
|
|---|
| 819 | The slow shaper waveforms are shown in \refFig{fig:32} while \refTab{tab:9}
|
|---|
| 820 | summarizes the results. The first differences appear: a different value
|
|---|
| 821 | in amplitude for slow shaper signal and fast shaper signal that is
|
|---|
| 822 | probably associate, also, to the Output Buffer. The second relevant
|
|---|
| 823 | difference is in noise value, in particular in slow shaper noise
|
|---|
| 824 | performance (\refTab{tab:9}).
|
|---|
| 825 |
|
|---|
| 826 | \begin{figure}[!htbp]
|
|---|
| 827 | \centering
|
|---|
| 828 | \begin{tabular}{rl}
|
|---|
| 829 | \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}
|
|---|
| 830 | \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
|
|---|
| 831 | \end{tabular}
|
|---|
| 832 | \caption{Measurement and simulation of the slow shaper output for an
|
|---|
| 833 | input charge of 10~pe.}
|
|---|
| 834 | \label{fig:32}
|
|---|
| 835 | \end{figure}
|
|---|
| 836 |
|
|---|
| 837 | \begin{table}
|
|---|
| 838 | \centering
|
|---|
| 839 | \caption{TO BE COMPLETED. $G_{pa} = 8$ and $RC = 50$~ns.}
|
|---|
| 840 | \label{tab:9}
|
|---|
| 841 | \begin{tabular}{|l|c|c|}
|
|---|
| 842 | \hline
|
|---|
| 843 | & Measurement & Simulation \\
|
|---|
| 844 | \hline
|
|---|
| 845 | Maximum Voltage (10~pe) & 117~mV & 290~mV \\
|
|---|
| 846 | Rise time (10~pe) & 18.0~ns & 19.1~ns \\
|
|---|
| 847 | RMS noise & 4.0~mV & 1.7~mV \\
|
|---|
| 848 | Noise in pe & 0.3 & 0.08 \\
|
|---|
| 849 | Maximum Voltage (1~pe) & 12~mV & 19~mV \\
|
|---|
| 850 | SNR & 3 & 11 \\
|
|---|
| 851 | \hline
|
|---|
| 852 | \end{tabular}
|
|---|
| 853 | \end{table}
|
|---|
| 854 |
|
|---|
| 855 | The Fast shaper results are shown in \refFig{fig:33}
|
|---|
| 856 | and \refTab{tab:10}.
|
|---|
| 857 | \begin{figure}[!htb]
|
|---|
| 858 | \centering
|
|---|
| 859 | \begin{tabular}{rl}
|
|---|
| 860 | \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}
|
|---|
| 861 | \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
|
|---|
| 862 | \end{tabular}
|
|---|
| 863 | \caption{Measurement and simulation of the fast shaper output for an
|
|---|
| 864 | input charge of 1 pe.}
|
|---|
| 865 | \label{fig:33}
|
|---|
| 866 | \end{figure}
|
|---|
| 867 |
|
|---|
| 868 |
|
|---|
| 869 | \begin{table}
|
|---|
| 870 | \centering
|
|---|
| 871 | \caption{TO BE COMPLETED. $G_{pa} = 8$.}
|
|---|
| 872 | \label{tab:10}
|
|---|
| 873 | \begin{tabular}{|l|c|c|}
|
|---|
| 874 | \hline
|
|---|
| 875 | & Measurement & Simulation \\
|
|---|
| 876 | \hline
|
|---|
| 877 | RMS noise & 2.5~mV & 2.4~mV \\
|
|---|
| 878 | Noise in pe & 0.08 & 0.05 \\
|
|---|
| 879 | Maximum Voltage (1~pe) & 30~mV & 42~mV \\
|
|---|
| 880 | SNR & 12 & 18 \\
|
|---|
| 881 | \hline
|
|---|
| 882 | \end{tabular}
|
|---|
| 883 | \end{table}
|
|---|
| 884 | Another important characteristic is the
|
|---|
| 885 | linearity. The output voltage in function of the input injected charge
|
|---|
| 886 | is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
|
|---|
| 887 | the preamplifier at different gains. \refTab{tab:11} summarizes the fit
|
|---|
| 888 | results of these linearities. Good linearity performances are shown by
|
|---|
| 889 | residuals (better than $\pm 2~\%$) value but for a
|
|---|
| 890 | smaller dynamic range than simulation.
|
|---|
| 891 |
|
|---|
| 892 | \begin{figure}[!htbp]
|
|---|
| 893 | \centering
|
|---|
| 894 | \begin{tabular}{c}
|
|---|
| 895 | \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}
|
|---|
| 896 | \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}
|
|---|
| 897 | \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}
|
|---|
| 898 | \end{tabular}
|
|---|
| 899 | \caption{Preamplifier linearity for different gains.}
|
|---|
| 900 | \label{fig:34}
|
|---|
| 901 | \end{figure}
|
|---|
| 902 |
|
|---|
| 903 | \begin{table}
|
|---|
| 904 | \centering
|
|---|
| 905 | \caption{TO BE COMPLETED}
|
|---|
| 906 | \label{tab:11}
|
|---|
| 907 | \begin{tabular}{|c|c|c|c|}
|
|---|
| 908 | \hline
|
|---|
| 909 | Preamplifier Gains & Maximum voltage & Charge/Nb of pe & Residuals \\
|
|---|
| 910 | \hline
|
|---|
| 911 | 8 & 0.52~V & 12~pC / 78~pe & -1.0~\% to 0.8~\% \\
|
|---|
| 912 | 4 & 0.64~V & 32~pC / 198~pe & -1.0~\% to 1.0~\% \\
|
|---|
| 913 | 2 & 0.51~V & 50~pC / 312~pe & -2.0~\% to 1.5~\% \\
|
|---|
| 914 | \hline
|
|---|
| 915 | \end{tabular}
|
|---|
| 916 | \end{table}
|
|---|
| 917 |
|
|---|
| 918 |
|
|---|
| 919 | \refFig{fig:35} represents an example of slow shaper
|
|---|
| 920 | linearity for a time constant of 50~ns and a preamplifier gain of 8
|
|---|
| 921 | with residuals better than $pm 1~\%$.
|
|---|
| 922 |
|
|---|
| 923 | \begin{figure}[!htbp]
|
|---|
| 924 | \centering
|
|---|
| 925 | \includegraphics[width=0.7\columnwidth,height=6cm]{img35.jpg}
|
|---|
| 926 | \caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
|
|---|
| 927 | \label{fig:35}
|
|---|
| 928 | \end{figure}
|
|---|
| 929 |
|
|---|
| 930 | \refFig{fig:36} gives an example of the fast shaper linearity until an injected
|
|---|
| 931 | charge of 10~pe. Residuals better than $ \pm 2~\%$
|
|---|
| 932 | are obtained.
|
|---|
| 933 |
|
|---|
| 934 | \begin{figure}[!htbp]
|
|---|
| 935 | \centering
|
|---|
| 936 | \includegraphics[width=0.7\columnwidth,height=6cm]{img36.jpg}
|
|---|
| 937 | \caption{Fast shaper linearity up to 10~pe.}
|
|---|
| 938 | \label{fig:36}
|
|---|
| 939 | \end{figure}
|
|---|
| 940 |
|
|---|
| 941 | The preamplifier linearity in function of
|
|---|
| 942 | variable feedback capacitor value with an input charge of 10~pe and
|
|---|
| 943 | with residuals from $-2.5~\%$ to $1.4~\%$ is represented on \refFig{fig:37} . The gain
|
|---|
| 944 | adjustment linearity is nice at 2~\% on 8 bits.
|
|---|
| 945 |
|
|---|
| 946 | \begin{figure}[!htbp]
|
|---|
| 947 | \centering
|
|---|
| 948 | \includegraphics[width=0.7\columnwidth,height=6cm]{img37.jpg}
|
|---|
| 949 | \caption{Preamplifier linearity vs feedback capacitor value.}
|
|---|
| 950 | \label{fig:37}
|
|---|
| 951 | \end{figure}
|
|---|
| 952 |
|
|---|
| 953 | On \refFig{fig:38} is given the gain uniformity. For the
|
|---|
| 954 | different preamplifier gains is plotted the maximum voltage value for
|
|---|
| 955 | all channels in order to investigate the homogeneity among the whole
|
|---|
| 956 | chip, essential for a multichannels ASIC. Residual dispersion of 0.05~\%,
|
|---|
| 957 | 0.013~\% and 0.012~\% have respectively been obtained for gain 8, 4 and
|
|---|
| 958 | 2.
|
|---|
| 959 |
|
|---|
| 960 | \begin{figure}[!htbp]
|
|---|
| 961 | \centering
|
|---|
| 962 | \includegraphics[width=0.7\columnwidth,height=6cm]{img38.jpg}
|
|---|
| 963 | \caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
|
|---|
| 964 | \label{fig:38}
|
|---|
| 965 | \end{figure}
|
|---|
| 966 |
|
|---|
| 967 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 968 | \subsection{DAC linearity}
|
|---|
| 969 | \label{ssec:DAClinearity}
|
|---|
| 970 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 971 | The DAC linearity has been measured and it consists in measuring the
|
|---|
| 972 | voltage DAC ($V_{dac}$) amplitude obtained for different DAC register
|
|---|
| 973 | values. \refFig{fig:39} gives the evolution of $V_{dac}$ as a function of the register for the two
|
|---|
| 974 | DACs and residuals from $-0.1~\%$ to $0.1~\%$.
|
|---|
| 975 |
|
|---|
| 976 | \begin{figure}[!htbp]
|
|---|
| 977 | \centering
|
|---|
| 978 | \begin{tabular}{rl}
|
|---|
| 979 | \includegraphics[width=0.5\columnwidth,height=6cm]{img39a.jpg}&
|
|---|
| 980 | \includegraphics[width=0.5\columnwidth,height=6cm]{img39b.jpg}
|
|---|
| 981 | \end{tabular}
|
|---|
| 982 | \caption{DAC linearity; DAC1 and DAC2 respectively.}
|
|---|
| 983 | \label{fig:39}
|
|---|
| 984 | \end{figure}
|
|---|
| 985 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 986 | \subsection{Trigger output}
|
|---|
| 987 | \label{ssec:TriggerMeas}
|
|---|
| 988 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 989 | The trigger output behavior was studied scanning the threshold for
|
|---|
| 990 | different injected charges. At first no charge was injected which
|
|---|
| 991 | corresponds to measure the fast shaper pedestal. The result is
|
|---|
| 992 | represented on \refFig{fig:40} for each channel. The S-curves
|
|---|
| 993 | are superimposed meaning good homogeneity. The spread
|
|---|
| 994 | is of one DAC count ($LSB DAC = 1.78$~mV) or 0.06~pe.
|
|---|
| 995 |
|
|---|
| 996 | \begin{figure}[!htbp]
|
|---|
| 997 | \centering
|
|---|
| 998 | \includegraphics[width=0.7\columnwidth,height=6cm]{img40.jpg}
|
|---|
| 999 | \caption{Pedestal S-curves for channel 1 to 16.}
|
|---|
| 1000 | \label{fig:40}
|
|---|
| 1001 | \end{figure}
|
|---|
| 1002 |
|
|---|
| 1003 | The trigger efficiency was then measured for a
|
|---|
| 1004 | fixed injected charge of 10~pe. On \refFig{fig:41} are represented the S-curves
|
|---|
| 1005 | obtained with 200 measurements of the trigger for all channels varying
|
|---|
| 1006 | the threshold. The homogeneity is proved by a spread of 7 DAC unit (0.4~pe) and a noise of 0.07 pe ($RMS =2.19$).
|
|---|
| 1007 |
|
|---|
| 1008 | \begin{figure}[!htbp]
|
|---|
| 1009 | \centering
|
|---|
| 1010 | \begin{tabular}{rl}
|
|---|
| 1011 | \multicolumn{2}{c}{\includegraphics[width=0.5\columnwidth,height=6cm]{img41a.jpg}}\\
|
|---|
| 1012 | \includegraphics[width=0.5\columnwidth,height=6cm]{img41b.jpg}&
|
|---|
| 1013 | \includegraphics[width=0.5\columnwidth,height=6cm]{img41c.jpg}
|
|---|
| 1014 | \end{tabular}
|
|---|
| 1015 | \caption{Fast shaper and trigger (top panel); S-curves for input of 10~pe (left panel);
|
|---|
| 1016 | uniformity plot for channel 1 to 16 (right panel).}
|
|---|
| 1017 | \label{fig:41}
|
|---|
| 1018 | \end{figure}
|
|---|
| 1019 |
|
|---|
| 1020 | The trigger output is studied also by scanning
|
|---|
| 1021 | the threshold for a fixed channel and changing the injected charge. On \refFig{fig:42}
|
|---|
| 1022 | on the left panel is shown the trigger efficiency versus the DAC unit and on
|
|---|
| 1023 | the right panel is plotted the threshold versus the injected charge but only
|
|---|
| 1024 | until 0.5~pC. From these measurements a noise of 10~fC has been
|
|---|
| 1025 | extrapolated. Therefore the threshold is only possible above $10~\sigma$ of the noise due to the discriminator coupling
|
|---|
| 1026 | (\refFig{fig:43}).
|
|---|
| 1027 |
|
|---|
| 1028 | \begin{figure}[!htbp]
|
|---|
| 1029 | \centering
|
|---|
| 1030 | \begin{tabular}{rl}
|
|---|
| 1031 | \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}
|
|---|
| 1032 | \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
|
|---|
| 1033 | \end{tabular}
|
|---|
| 1034 | \caption{Trigger efficiency vs DAC count up to 300~pe (left panel) and
|
|---|
| 1035 | until 3~pe (right panel).}
|
|---|
| 1036 | \label{fig:42}
|
|---|
| 1037 | \end{figure}
|
|---|
| 1038 |
|
|---|
| 1039 | \begin{figure}[!htbp]
|
|---|
| 1040 | \centering
|
|---|
| 1041 | \includegraphics[width=0.7\columnwidth,height=6cm]{img43.jpg}
|
|---|
| 1042 | \caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
|
|---|
| 1043 | \label{fig:43}
|
|---|
| 1044 | \end{figure}
|
|---|
| 1045 |
|
|---|
| 1046 | The trigger coupling illustrated in \refFig{fig:44} with the
|
|---|
| 1047 | injected charge in channel 1 and output signal observed in channel 2,
|
|---|
| 1048 | shows a coupling signal around 25~mV (10~fC). This coupling signal is
|
|---|
| 1049 | due, probably, to the input power supply ($V_{dd-pa}$ and $V_{ss}$).
|
|---|
| 1050 |
|
|---|
| 1051 | \begin{figure}[!htbp]
|
|---|
| 1052 | \includegraphics[width=0.7\columnwidth,height=6cm]{img44.jpg}
|
|---|
| 1053 | \caption{Trigger coupling signal.}
|
|---|
| 1054 | \label{fig:44}
|
|---|
| 1055 | \end{figure}
|
|---|
| 1056 |
|
|---|
| 1057 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1058 | \subsection{ADC characterisation}
|
|---|
| 1059 | \label{ssec:ADCMeas}
|
|---|
| 1060 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1061 | The ADC performance has been studied alone and with the whole chain. Injecting to the
|
|---|
| 1062 | ADC input directly a DC voltage by the internal DAC,
|
|---|
| 1063 | in order to have a voltage level as stable as possible, were measured
|
|---|
| 1064 | the ADC values for all channels (\refFig{fig:45}).
|
|---|
| 1065 |
|
|---|
| 1066 | The measurement is repeated 10000 times for
|
|---|
| 1067 | each channel and in the first plot of the LabView front panel window (\refFig{fig:45}). The
|
|---|
| 1068 | minimal, maximal and mean values, over all acquisitions, for each
|
|---|
| 1069 | channel are plotted. In the second plot there is the rms charge value
|
|---|
| 1070 | versus channel number with a value in the range $[0.5, 1]$ ADC unit.
|
|---|
| 1071 | Finally the third plot shows an example of charge amplitude
|
|---|
| 1072 | distribution for a single channel: a spread of 5 ADC counts is
|
|---|
| 1073 | obtained.
|
|---|
| 1074 |
|
|---|
| 1075 | \begin{figure}[!htbp]
|
|---|
| 1076 | \centering
|
|---|
| 1077 | \includegraphics[width=0.7\columnwidth,height=6cm]{img45.jpg}
|
|---|
| 1078 | \caption{ADC measurements with DC input 1.45~V (middle scale).}
|
|---|
| 1079 | \label{fig:45}
|
|---|
| 1080 | \end{figure}
|
|---|
| 1081 |
|
|---|
| 1082 | The ADC is suited to a multichannel conversion
|
|---|
| 1083 | so the uniformity and linearity are studied in order to characterize
|
|---|
| 1084 | the ADC behaviour. On \refFig{fig:46} is represented the ADC transfer function for the
|
|---|
| 1085 | 10-bit ADC versus the input voltage level. All channels are represented
|
|---|
| 1086 | and have plots superimposed.
|
|---|
| 1087 |
|
|---|
| 1088 | \begin{figure}[!htbp]
|
|---|
| 1089 | \centering
|
|---|
| 1090 | \includegraphics[width=0.7\columnwidth,height=6cm]{img46.jpg}
|
|---|
| 1091 | \caption{10 bits ADC transfer function vs input charge.}
|
|---|
| 1092 | \label{fig:46}
|
|---|
| 1093 | \end{figure}
|
|---|
| 1094 |
|
|---|
| 1095 | The good homogeneity observed is confirmed by
|
|---|
| 1096 | the linear fit parameters comparison. In are plotted the slope and the
|
|---|
| 1097 | intercept distributions for all channels. The RMS slope value of 0.143
|
|---|
| 1098 | and the RMS intercept value of 0.3 confirm the 10-bits ADC uniformity
|
|---|
| 1099 | (\refTab{tab:12}).
|
|---|
| 1100 |
|
|---|
| 1101 | \begin{figure}[!htbp]
|
|---|
| 1102 | \centering
|
|---|
| 1103 | \begin{tabular}{rl}
|
|---|
| 1104 | \includegraphics[width=0.5\columnwidth,height=6cm]{img47a.jpg}&
|
|---|
| 1105 | \includegraphics[width=0.5\columnwidth,height=6cm]{img47b.jpg}
|
|---|
| 1106 | \end{tabular}
|
|---|
| 1107 | \caption{Evolution of the fit parameters (slope on the
|
|---|
| 1108 | left panel and intercept on the right panel) as a function of the channel
|
|---|
| 1109 | number.}
|
|---|
| 1110 | \label{fig:47}
|
|---|
| 1111 | \end{figure}
|
|---|
| 1112 |
|
|---|
| 1113 | \begin{table}
|
|---|
| 1114 | \centering
|
|---|
| 1115 | \caption{TO BE COMPLETED. 10 bits ADC parameter fits.... 25 acquisitions per channel, $LSB = 1.06$~mV...}
|
|---|
| 1116 | \label{tab:12}
|
|---|
| 1117 | \begin{tabular}{|l|c|c|}
|
|---|
| 1118 | \hline
|
|---|
| 1119 | & Slope & Intercept \\
|
|---|
| 1120 | Mean & 936.17 & 859.8 \\
|
|---|
| 1121 | RMS & 0.14 & 0.3 \\
|
|---|
| 1122 | \hline
|
|---|
| 1123 | \end{tabular}
|
|---|
| 1124 | \end{table}
|
|---|
| 1125 |
|
|---|
| 1126 | In \refFig{fig:48} are shown respectively the 12, 10 and 8 bits ADC
|
|---|
| 1127 | linearity plots with the 25 measurements made for each input voltage
|
|---|
| 1128 | level. The average ADC count value is plotted versus the input signal.
|
|---|
| 1129 | The residuals from $-1.5$ to $0.9$ ADC units for the 12-bits ADC; from $-0.5$
|
|---|
| 1130 | to $0.4$ for the 10-bit ADC and from $-0.5$ to $0.5$ for the 8-bit ADC. This prove
|
|---|
| 1131 | the good ADC behaviour in terms of Integral non linearity.
|
|---|
| 1132 |
|
|---|
| 1133 | \begin{figure}[!htbp]
|
|---|
| 1134 | \centering
|
|---|
| 1135 | \begin{tabular}{c}
|
|---|
| 1136 | \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
|
|---|
| 1137 | \includegraphics[width=0.5\columnwidth,height=6cm]{img48b.jpg}\\
|
|---|
| 1138 | \includegraphics[width=0.5\columnwidth,height=6cm]{img48c.jpg}
|
|---|
| 1139 | \end{tabular}
|
|---|
| 1140 | \caption{12, 10, 8 bit ADC linearity.}
|
|---|
| 1141 | \label{fig:48}
|
|---|
| 1142 | \end{figure}
|
|---|
| 1143 | In terms of Differential non linearity, the
|
|---|
| 1144 | value from $-1.0$ to $0.65$ for the 10 bit ADC and from $-0.3$ to $0.2$ for the 8
|
|---|
| 1145 | bit ADC, show us a good behaviour even if the plots are the results of
|
|---|
| 1146 | preliminary measurements.
|
|---|
| 1147 |
|
|---|
| 1148 | \begin{figure}[!htb]
|
|---|
| 1149 | \centering
|
|---|
| 1150 | \begin{tabular}{rl}
|
|---|
| 1151 | \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}
|
|---|
| 1152 | \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
|
|---|
| 1153 | \end{tabular}
|
|---|
| 1154 | \caption{Differential non linearity.}
|
|---|
| 1155 | \label{fig:49}
|
|---|
| 1156 | \end{figure}
|
|---|
| 1157 |
|
|---|
| 1158 | Once the ADC performances have been tested
|
|---|
| 1159 | separately, the measurements are performed on the complete chain. The
|
|---|
| 1160 | results of the input signal autotriggered, held in the T\&H and
|
|---|
| 1161 | converted in the ADC are illustrated in where are plotted the 10-bit
|
|---|
| 1162 | ADC counts in function of the variable input charge (up to 50~pe). A
|
|---|
| 1163 | good linearity of $1.4~\%$ and a noise of 6 ADC units are obtained. In \refTab{tab:13}
|
|---|
| 1164 | are listed the setting value for measurements.
|
|---|
| 1165 |
|
|---|
| 1166 | \begin{table}
|
|---|
| 1167 | \centering
|
|---|
| 1168 | \caption{TO BE COMPELTED. $G_{pa}=14$ ($C_{in}=7$~pF , $C_f=0.5$~pF),
|
|---|
| 1169 | Slow shaper $RC=50$~ns,
|
|---|
| 1170 | DAC delay: $bit<0> = 1$ \& $bit<2> = 1$.
|
|---|
| 1171 | }
|
|---|
| 1172 | \label{tab:13}
|
|---|
| 1173 | \begin{tabular}{|l|c|c|c|}
|
|---|
| 1174 | \hline
|
|---|
| 1175 | Parameters & 12 bits ADC & 10 bits ADC & 8 bits ADC\\
|
|---|
| 1176 | \hline
|
|---|
| 1177 | LSB & $0.27$ & $1.06$~mV & $4.26$~mV\\
|
|---|
| 1178 | Min ADC count at 3~pe& $509$ & $132$ & $33$ \\
|
|---|
| 1179 | Max ADC count at 50~pe & $3873$ & $989$ & $241$ \\
|
|---|
| 1180 | Residuals in ADC units &$[21,54]$ & $[6,14]$ & $[2,3]$ \\
|
|---|
| 1181 | \hline
|
|---|
| 1182 | \end{tabular}
|
|---|
| 1183 | \end{table}
|
|---|
| 1184 |
|
|---|
| 1185 | \begin{figure}[!htbp]
|
|---|
| 1186 | \centering
|
|---|
| 1187 | \includegraphics[width=0.7\columnwidth,height=6cm]{img50.jpg}
|
|---|
| 1188 | \caption{10 bit ADC linearity.}
|
|---|
| 1189 | \label{fig:50}
|
|---|
| 1190 | \end{figure}
|
|---|
| 1191 |
|
|---|
| 1192 | On \refFig{fig:51} is plotted the 8-bit linearity at $1.4~\%$
|
|---|
| 1193 | and a noise of 1.53 ADC unit. In \refTab{tab:13} are listed the setting value for
|
|---|
| 1194 | measurements.
|
|---|
| 1195 |
|
|---|
| 1196 | \begin{figure}[!htbp]
|
|---|
| 1197 | \centering
|
|---|
| 1198 | \includegraphics[width=0.7\columnwidth,height=6cm]{img51.jpg}
|
|---|
| 1199 | \caption{8 bit ADC linearity.}
|
|---|
| 1200 | \label{fig:51}
|
|---|
| 1201 | \end{figure}
|
|---|
| 1202 |
|
|---|
| 1203 | On \refFig{fig:53} is plotted the 12-bit linearity
|
|---|
| 1204 | at $1.4~\%$ and a noise of 23.69 ADC unit. In \refTab{tab:13} are listed the setting
|
|---|
| 1205 | value for measurements.
|
|---|
| 1206 |
|
|---|
| 1207 | \begin{figure}[!htbp]
|
|---|
| 1208 | \centering
|
|---|
| 1209 | \includegraphics[width=0.7\columnwidth,height=6cm]{img52.jpg}
|
|---|
| 1210 | \caption{12 bit ADC linearity.}
|
|---|
| 1211 | \label{fig:52}
|
|---|
| 1212 | \end{figure}
|
|---|
| 1213 |
|
|---|
| 1214 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1215 | \section{Measurements with PMTs}
|
|---|
| 1216 | \label{sec:MeasWithPMT}
|
|---|
| 1217 | %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1218 | The first measurements with a photomultiplier at input are started in
|
|---|
| 1219 | IPNO at Orsay.
|
|---|
| 1220 |
|
|---|
| 1221 | \begin{figure}[!htbp]
|
|---|
| 1222 | \centering
|
|---|
| 1223 | \includegraphics[width=0.7\columnwidth,height=6cm]{img53.jpg}
|
|---|
| 1224 | \caption{TO BE COMPLETED}
|
|---|
| 1225 | \label{fig:53}
|
|---|
| 1226 | \end{figure}
|
|---|
| 1227 |
|
|---|
| 1228 | \acknowledgments
|
|---|
| 1229 | %\begin{acknowledgments}
|
|---|
| 1230 | This work, especially one of the author, is supported by the National Reasaerch Agency under contract ANR-06-BLAN-0186.
|
|---|
| 1231 | %\end{acknowledgments}
|
|---|
| 1232 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|---|
| 1233 | \newpage
|
|---|
| 1234 | %\section*{References}
|
|---|
| 1235 | \bibliography{campagne}
|
|---|
| 1236 | \end{document}
|
|---|
| 1237 |
|
|---|
| 1238 |
|
|---|