source: Selma/PARISROC/parisroc-jinst.tex @ 476

Last change on this file since 476 was 476, checked in by conforti, 15 years ago

Modif de Selma (test)

File size: 44.5 KB
Line 
1\documentclass{JINST}
2\usepackage[pdftex]{graphicx}
3\graphicspath{{figures/}}
4\usepackage[figuresright]{rotating}
5%\usepackage{graphicx}
6%\usepackage[T1]{fontenc}
7\usepackage{eurosym}
8%\usepackage{rotating}
9%\usepackage[dvips]{color}
10
11
12%used explicitly in the text
13\newcommand{\refTab}[1]{Tab.~\ref{#1}}
14\newcommand{\refFig}[1]{Fig.~\ref{#1}}
15\newcommand{\refSec}[1]{Sec.~\ref{#1}}
16
17
18
19
20\title{PARISROC, a Photomultiplier Array Integrated Readout Chip.}
21%
22
23\author{S. Conforti$^a$, Second Author$^b$\thanks{Corresponding
24author.}~ and Third Author$^b$\\
25\llap{$^a$}Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud 11,
26Bât. 200, 91898 Orsay Cedex, France\\
27\llap{$^b$}Name of Institute,\\
28  Address, Country\\
29  E-mail: \email{conforti@lal.in2p3.fr}}
30
31
32
33
34\abstract{
35PARISROC is a complete read
36out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
37\cite{ref1}
38%[1]
39, for photomultipliers array. It allows triggerless acquisition for
40next generation neutrino experiments and it belongs to an R\&D program
41funded by French national agency for research (ANR) called
42PMm2: "`Innovative electronics for photodetectors array
43used in High Energy Physics and Astroparticles"'
44\cite{ref2}
45%[2]
46(ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
47triggered channels with variable gain and provides charge and time
48measurement by a 12-bit ADC and a 24-bit Counter. The charge
49measurement should be performed from 1 up to 300 pe with a good
50linearity. The time measurement allowed to a coarse time with a 24-bit
51counter at 10 MHz and a fine time on a 100ns ramp to achieve a
52resolution of 1 ns. The ASIC sends out only the relevant data through
53network cables to the central data storage.
54}%end of abstract
55
56%\pacs{13.30.a,14.20.Dh,14.60.Pq,26.65.t+,29.40.Gx,29.40.Ka,29.40.Mc,95.55.Vj,95.85.Ry,
57%97.60.Bw}
58
59%\submitto{Journal of Instrumentation}
60
61\keywords{Keyword1; Keyword2; Keyword3}
62
63\begin{document}
64%use BST file provided by SPIRES for JHEP and modify it to forbid "to lower case" title
65\bibliographystyle{Campagne}
66%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67\section{Introduction}
68\label{sec:Intro}
69%%%%%%%%%%%%%%%%%%%%%%
70Modif de selma
71The PMm2 project: "`Innovative electronics for
72photodetectors array used in High Energy Physics and
73Astroparticles"' \cite{ref2}
74%[2]
75proposes to segment the large surface of photodetection in macro
76pixel consisting of an array of 16 photomultipliers connected to an
77autonomous front-end electronics () and powered by a common High
78Voltage. These large detectors are used in next generation proton decay
79and neutrino experiment (i.e. the post-SuperKamiokande detectors as
80those that will take place in megaton size water tanks) and will
81require very large surfaces of photo detection and a large volume of
82data. The micro-electronics group's (OMEGA from the LAL at Orsay)
83purpose is the front-end electronics conception and
84realization. This R\&D \cite{ref2}
85%[2]
86involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
87Orsay) and ULB Bruxells for the DAQ. It is funded for three years by
88the French National Agency for Research (ANR) under the reference
89ANR-06-BLAN-0186.
90
91
92LAL Orsay is in charge of the design and tests of the readout chip
93named PARISROC which stands for Photomultiplier ARrray Integrated in
94Si-Ge Read Out Chip.
95
96\begin{figure}[!htbp]
97\begin{center}
98\includegraphics[width=0.7\columnwidth,height=6cm]{img1.jpg}
99\caption{Principal of PMm2 proposal for megaton scale Cerenkov water
100tank.}
101\label{fig:1}
102\end{center}
103\end{figure}
104
105The detectors such as SuperKamiokande, are large tanks covered by a
106significant number of large photomultipliers (20"),
107the next generation neutrino experiments will require a bigger surface
108of photo detection and thus more photomultipliers. As a consequence the
109total cost has an important relief \cite{ref1}.
110\begin{itemize}
111        \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
112a common electronics, even if it induces more electronic channels;
113        \item A common High Voltage for the 16 PMTs so a reduced number of
114underwater cables, cables  that are also used to brought the DATA to
115the surface;
116        \item The front-end closed to the PMTs that allow a suppression of
117underwater connector.
118\end{itemize}
119
120The general principle of PMm2 project is that the ASIC and a FPGA
121manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
122
123\begin{center}
124\begin{figure}[!!htbp]
125\includegraphics[width=0.7\columnwidth,height=6cm]{img2.jpg}
126\caption{Principle of the PMm2 project.}
127\label{fig:2}
128\end{figure}
129\end{center}
130%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131\section{PARISROC architecture}
132\label{sec:PARISROCArchi}
133The ASIC Parisroc is composed of 16 analogue channels managed by a
134common digital part (\refFig{fig:3}).
135
136\begin{center}
137\begin{figure}[!htbp]
138\includegraphics[width=0.7\columnwidth,height=6cm]{img3.jpg}
139\caption{PARISROC global schematic.}
140\label{fig:3}
141\end{figure}
142\end{center}
143
144Each analogue channel is made of a low noise preamplifier with
145variable and adjustable gain. The variable gain is common for all
146channels and it can change from 8 to 1 on 4 bits. The gain is also
147tuneable channel by channel to adjust the input detector's gain, up to
148a factor 4 to an accuracy of 7\% with 8 bits.
149
150The preamplifier is followed by a slow channel for the charge
151measurement in parallel with a fast channel for the trigger output.
152
153The slow channel is made by a slow shaper followed by an analogue
154memory with a depth of 2 to provide a linear charge measurement up to
15550~pC; this charge is converted by a 12-bits Wilkinson ADC. One follower
156OTA is added to deliver an analogue multiplexed charge measurement.
157
158The fast channel consists in a fast shaper (15~ns) followed by 2 low
159offset discriminators to auto-trig down to 50~fC. The thresholds are
160loaded by 2 internal 10-bit DACs common for the 16 channels and an
161individual 4bit DAC for one discriminator. The 2 discriminator outputs
162are multiplexed to provide only 16 trigger outputs. Each output trigger
163is latched to hold the state of the response until the end of the clock
164cycle. It is also delayed to open the hold switch at the maximum of the
165slow shaper. An "`OR"' of the 16 trigger gives a 17th output.
166
167
168For each channel, a fine time measurement is made by an analogue
169memory with depth of 2 which samples a 12-bit ramp, common for all
170channels, at the same time of the charge. This time is then converted
171by a 12 bit Wilkinson ADC.
172
173The two ADC discriminators have a common ramp, of 8/10/12 bits, as
174threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
175
176\begin{center}
177\begin{figure}[!htbp]
178\includegraphics[width=0.7\columnwidth,height=6cm]{img4.jpg}
179\caption{PARISROC Layout.}
180\label{fig:4}
181\end{figure}
182\end{center}
183%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
184\subsection{Analogue Channel description and simulations}
185\label{ssec:AnalogChannel}
186%%%%%%%%%%%%%%%%%%%%%%%%%%%
187\refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
188part.
189
190\begin{center}
191\begin{figure}[!htbp]
192\includegraphics[width=0.7\columnwidth,height=6cm]{img5.jpg}
193\caption{PARISROC one channel analogue part schematic.}
194\label{fig:5}
195\end{figure}
196\end{center}
197%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
198\subsection{Preamplifier}
199\label{ssec:Preamplifier}
200%%%%%%%%%%%%%%%%%%%%%%%%%%%
201The input preamplifier is a low noise preamplifier with variable gain
202thanks to the switched input ($C_{in}$) and feedback ($C_f$) capacitors that
203can be adjusted (\refFig{fig:6}).
204
205This gain can vary changing $C_{in}$, which is
206common to the 16 channels, over 4 bits and $C_{f}$, to adjust preamplifier
207gain channel by channel. This adjustment allows correction of the PMT
208gain dispersion due to a use of a common HV.
209
210\begin{center}
211\begin{figure}[!htb]
212\includegraphics[width=0.7\columnwidth,height=6cm]{img6.jpg}
213        \caption{PARISROC preamplifier schematic.}
214        \label{fig:6}
215\end{figure}
216\end{center}
217
218The preamplifier is designed as a voltage
219preamplifier in p-type Cascode structure to allow the acquisition of a
220fast input signal with a large dynamic range.
221
222The input transistor is a PMOS in common source
223configuration: $W = 800~\mu$m; $L = 0.35~\mu$m; the big input transistor is
224chosen to keep the preamplifier noise contribution low and to achieve a
225high gm. It supplies the output (the drain terminal) to the input
226terminal (source terminal) of the second stage transistor: $W = 100~\mu$m;
227$L = 0.35~\mu$m; the output transistor must be small to reach preamplifier
228high speed performances. The utility of the cascode preamplifier is in
229the large input impedance of the common source (with also the
230characteristic of Current Buffer) and better frequency response of a
231common Gate. An output buffer stage is designed in order to adapt the
232output impedance to the loaded impedance. The input dc level is high
233(about 2.6~V) while the output dc level is low (about 1~V). Because of
234the single side structure of preamplifier, it is hard to use the
235external reference voltage to set the dc operating point; the idea is
236to use an OTA as the dc feedback amplifier.
237
238In  \refFig{fig:7} are shown preamplifier's output waveforms
239for fixed gain and different input signal (left panel) and for fixed
240input signal and different preamplifier gain (right panel).
241
242\begin{center}
243\begin{figure}[!htbp]
244\begin{tabular}{rl}
245\includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} & 
246\includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
247\end{tabular} 
248caption{Simulated preamplifier output waveforms for different input
249signals with fixed gain (left panel) and for fixed input
250signal at different gain (different input capacitor values (right
251panel).}
252\label{fig:7}
253\end{figure}
254\end{center}
255
256The input signal, used in simulation, is a triangle signal with 4.5~ns
257rise and fall time and 5~ns of duration as shown in \refFig{fig:8}. This current
258signal is sent to an external resistor (50~Ohms) and varies from 0 to 5~mA
259in order to simulate a PMT charge from 0 to 50~pC which represents 0
260to 300 photo-electrons when the PM gain is $10^{6}$.
261
262\begin{center}
263\begin{figure}[!htbp]
264\includegraphics[width=0.7\columnwidth,height=6cm]{img8.jpg}
265\caption{Simulation input signal.}
266\label{fig:8}
267\end{figure}
268\end{center}
269
270The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
271linearity performance. \refTab{tab:1} lists the residuals obtained for different
272gains and shows a good linearity (better than $\pm 1\%$).
273
274\begin{center}
275\begin{figure}[!htbp]
276\includegraphics[width=0.7\columnwidth,height=6cm]{img9.jpg}
277\caption{Preamplifier linearity.}
278\label{fig:9}
279\end{figure}
280\end{center}
281
282
283\begin{table}
284\centering
285        \caption{TO BE COMPLETED}
286        \label{tab:1}
287\begin{tabular}{|c|c|c|c|}
288\hline
289$G_{pa}$ &  $V_{out-max}$ &  $Qi_{max}/n_{pe}$ & Residuals (\%) \\
290\hline
291 8 & 1.394~V  & 40~pC/250~pe & -0.6 to 0.2 \\
292 4 & 0.841~V  & 48~pC/300~pe & -0.1 to 0.3 \\
293 2 & 0.417~V  & 48~pC/300~pe & -0.2 to 0.3 \\
294\hline
295\end{tabular}
296\end{table}
297
298
299 
300The \refFig{fig:10} displays the preamplifier noise with an
301rms value of 13~fC and a Signal to Noise ratio of $\approx 12$.
302\refTab{tab:2} summarizes the results obtained.
303
304\begin{center}
305\begin{figure}[!htbp]
306\includegraphics[width=0.7\columnwidth,height=6cm]{img10.jpg}
307\caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
308$C_{f}=0.5$~pF.}
309\end{figure}
310\label{fig:10}
311\end{center}
312
313\begin{table}
314\centering
315\caption{TO BE COMPLETED}
316\label{tab:2}
317\begin{tabular}{|c|c|c|}
318\hline
319RMS  & SNR & $V_{out}(1 p.e)$  \\
320\hline
321$468~\mu$V ($\approx 1/12$~p.e, $\approx 13$~fC ) & 11.6 & 5.43~mV\\
322\hline
323\end{tabular}
324\end{table}
325
326%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
327\subsection{Trigger output}
328\label{ssec:Trigger}
329%%%%%%%%%%%%%%%%%%%%%%%%%%%
330The PARISROC is a self-triggered device. The fast channel has been
331conceived for this purpose.The amplified signal flows in a fast shaper that is a CRRC filter with
332a time constant of 15~ns. Its high gain allows to send high signal to
333the discriminator and thus to trigger easily on 1/3 of photo-electron.
334It has a classical design: differential pair is followed by a buffer.
335
336\begin{figure}[!htbp]
337\centering
338\includegraphics[width=0.7\columnwidth,height=6cm]{img11.jpg}
339\caption{Fast shaper schematics.}
340\label{fig:11}
341\end{figure}
342
343The \refFig{fig:12} represents the fast shaper output
344waveforms for a variable input signal. The \refTab{tab:3} lists the fast
345shaper principal characteristics obtained in simulation.
346
347\begin{figure}[!htbp]
348\centering
349\begin{tabular}{rl}
350\includegraphics[width=0.5\columnwidth,height=6cm]{img12a.jpg} &
351\includegraphics[width=0.5\columnwidth,height=6cm]{img12b.jpg}
352\end{tabular}
353\caption{Simulated fast shaper outputs ($G_{pa} = 8$ with input from 1-10~pe (left panel) 
354and from 1/3~pe to 2~pe (right panel).}
355\label{fig:12}
356\end{figure}
357
358\begin{table}
359\centering
360        \caption{To be completed}
361        \label{tab:3}
362        \begin{tabular}{|c|c|c|c|}
363        \hline
364RMS  & SNR & $V_{out}(1 p.e)$  & $T_p$  \\
365\hline
366$2.36~\mu$V ($\approx 1/16$~p.e, $\approx 10$~fC ) & 16 & 37.85~mV & 8~ns\\
367        \hline
368        \end{tabular}
369\end{table}
370
371The fast shaper (15~ns) is followed by a low
372offset discriminator to auto-trig down to 50~fC (1/3~pe at $10^6$ gain).
373
374
375The two discriminators can be used alone or
376simultaneously. Their outputs are multiplexed to ease the choice. Both
377are simple low offset comparators with the same schematic. The
378difference comes from the way to set the threshold. The first
379discriminator has the threshold sets by one 10-bit DAC, common to all
38016 channels, and one 4-bit DAC for each channel. The second
381discriminator has the threshold sets by only the 10 bit common DAC.
382Each output trigger is latched to hold the state of the response in SCA
383channel. In  \refFig{fig:13} are shown the triggers and the zoom of the triggers rise
384time in order to see the time walk of around 4~ns.
385
386
387\begin{figure}[!htbp]
388\centering
389                \begin{tabular}{rl}
390                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13a.jpg}&
391                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13b.jpg}
392                \end{tabular}
393\caption{Simulated trigger output (input charge from 0 to 10~p.e;
394threshold at 1/3~p.e). Zoom of trigger rise time on right
395pannel.}
396\label{fig:13}
397\end{figure}
398
399Each output trigger is latched to hold the
400state of the response in SCA channel.  SCA channel is the also called
401"`Analogue memory"'. The SCA has a
402depth equal to two; this means that there are two T\&H for time
403measurement as well as for charge measurement.
404
405\begin{figure}[!htbp]
406\centering
407\includegraphics[width=0.7\columnwidth,height=6cm]{img14.jpg}
408\caption{SCA (switched capacitor array) scheme.}
409\label{fig:14}
410\end{figure}
411
412The voltage level of the signal coming from
413slow shaper or ramp TDC cell is memorised in the T\&H capacitor (500~fF)
414so "`Track \& Hold Cell"' allows
415to lock the capacitor value only when a calibrated trigger (from fast
416channel) occurs within the selected column. The SCA column is selected, read and erased by
417the digital part.
418
419\begin{figure}[!htbp]
420\centering
421\includegraphics[width=0.7\columnwidth,height=6cm]{img15.jpg}
422\caption{Operation of T\&H cell.}
423\label{fig:15}
424\end{figure}
425
426On  \refFig{fig:15} is illustrated the T\&H cell mode of
427operation: when a signal arrives in the discriminator cell is detected
428and the output trigger signal is sent to the T\&H cell.
429The output trigger is delayed and calibrated before being sent.
430
431
432%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
433\subsection{Charge channel}
434\label{ssec:Charge}
435%%%%%%%%%%%%%%%%%%%%%%%%%%%
436The charge channel is the slow channel: the signal amplified by the
437variable gain preamplifier is sent to the slow shaper, a typical
438$\mathrm{CRRC}^2$ filter with variable peaking time. The
439peaking time can be set from 50~ns (default value) to 200~ns thanks to
440the switched feedback capacitors.
441
442On left part of \refFig{fig:16} are represented the slow shaper waveforms for
443different shaping times and the same input signal. The noise value (\refTab{tab:4}
444and right part of \refFig{fig:16}), from $980~\mu$V to $1.6$~mV (simulation results), foresee
445good noise performance.
446
447\begin{figure}[!htbp]
448\centering
449                \begin{tabular}{rl}
450                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16a.jpg}&
451                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16b.jpg}
452                \end{tabular}
453\caption{Slow shaper output waveforms simulation (left panel). Slow shaper
454output noise simulation (right panel).}
455\label{fig:16}
456\end{figure}
457
458\begin{table}
459\centering
460\caption{TO BE COMPLETED. $G_{pa} = 8$}
461\label{tab:4}
462\begin{tabular}{|c|c|c|c|}
463\hline
464Time constant & RMS  & SNR & $V_{out}(1 p.e)$ \\
465\hline
46650~ns & \parbox[t]{20mm}{$1.68$~mV \\ $\approx 1/17$~p.e \\ $ \approx 9$~fC}
467     &  11
468                        & \parbox[t]{20mm}{$29$~mV \\ $T_p = 48$~ns } \\
469100~ns & \parbox[t]{20mm}{$1.26$~mV\\$\approx 1/12$~p.e \\ $ \approx 20$~fC}
470     &  8
471                        & \parbox[t]{20mm}{$15$~mV \\ $T_p = 78$~ns }\\
472200~ns & \parbox[t]{20mm}{$0.98$~mV\\$\approx 1/5$~p.e \\ $ \approx 32$~fC}
473     &  5
474                        & \parbox[t]{23mm}{$8$~mV \\ $ T_p = 141.5$~ns } \\
475\hline                 
476\end{tabular}
477\end{table}
478
479The \refFig{fig:17}  and \refTab{tab:5} illustrate the linearity performance for
480different time constants.  Simulations show a good linearity with
481residuals from -0.5\% to 0.2\% at $T_p = 50$~ns, from
482-1\% to 0.3\% at $T_p =100$~ns and -0.7\% to 0.3\% at
483$T_p=200$~ns.
484
485\begin{figure}[!htbp]
486\centering
487\includegraphics[width=0.7\columnwidth,height=6cm]{img17.jpg}
488\caption{Slow shaper linearity simulation.}
489\label{fig:17}
490\end{figure}
491
492\begin{table}
493\centering
494\caption{TO BE COMPLETED}
495\label{tab:5}
496\begin{tabular}{|c|c|c|c|}
497\hline
498Time constante & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
499\hline
500 50~ns &  1.437~V &  13~pC/80~pe &  -0.5 to 0.2 \\
501100~ns &  1.493~V &  24~pC/150~pe &  -1.0 to 0.3 \\
502200~ns &  1.385~V &  48~pC/300~pe &  -0.7 to 0.3 \\
503\hline
504\end{tabular}
505\end{table}
506
507The Slow shaper maximum value, therefore the charge value, is then
508memorized in the analogue memory, with a depth of 2, thanks to the
509delayed trigger. \refFig{fig:18} gives the simulated slow shaper and SCA
510signals.
511
512\begin{figure}[!htbp]
513\centering
514\includegraphics[width=0.7\columnwidth,height=6cm]{img18.jpg}
515\caption{Slow shaper \& SCA simulation.}
516\label{fig:18}
517\end{figure}
518This charge, stored as a voltage value, is then converted in digital
519value thanks to the 8/10/12 bit Wilkinson ADC.
520
521%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
522\subsection{Time measurement}
523\label{ssec:Timemeas}
524%%%%%%%%%%%%%%%%%%%%%%%%%%%
525For each channel, a fine time measurement is performed by the analogue
526memory with a depth of 2 which samples a 12 bit ramp (100~ns), common
527for all channels, at the same time of the charge.
528
529In \refFig{fig:19} is represented the TDC Ramp general schematic. The current,
530which flows in feedback, charges the capacitance $C_f$ when the switch is
531off. When the switch is turned off, $C_f$ discharges. Signals \verb|start\_ramp| and
532\verb|start\_ramp\_b| manage the switches. The rising signal starts the ramp
533and the falling signal stop the ramp (\refFig{fig:19}).
534
535\begin{figure}[!htbp]
536\centering
537\begin{tabular}{rl}
538\includegraphics[width=0.5\columnwidth,height=6cm]{img19a.jpg}&
539\includegraphics[width=0.5\columnwidth,height=6cm]{img19b.jpg}
540\end{tabular}
541\caption{TDC Ramp general schematic.}
542\label{fig:19}
543\end{figure}
544In order to avoid the large falling time of the ramp due to the $C_f$
545discharge time and the problem of non linearity at the start and the
546end of ramp signal (\refFig{fig:20}), the real ramp is created from two
547ramps.
548
549\begin{figure}[!htbp]
550\centering
551\includegraphics[width=0.7\columnwidth,height=6cm]{img20.jpg}
552\caption{TDC Ramp.}
553\label{fig:20}
554\end{figure}
555
556The signal start ramp, coming from the digital
557part, enters in two delay cells. The two delayed signals create the
558first and second ramps. Commutating alternatively two switches the 100~ns ramp TDC is created
559(\refFig{fig:21} and \refFig{fig:22}).
560
561\begin{figure}[!htbp]
562\centering
563\includegraphics[width=0.7\columnwidth,height=6cm]{img21.jpg}
564\caption{TDC Ramp scheme.}
565\label{fig:21}
566\end{figure}
567
568\begin{figure}[!htbp]
569\centering
570\includegraphics[width=0.7\columnwidth,height=6cm]{img22.jpg}
571\caption{TDC Ramp simulation.}
572\label{fig:22}
573\end{figure}
574
575This time value, stored as a voltage value, is then converted in
576digital value tanks to the 8/10/12 bit Wilkinson ADC.
577
578%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
579\subsection{ADC ramp}
580\label{ssec:ADCramp}
581%%%%%%%%%%%%%%%%%%%%%%%%%%%
582In \refFig{fig:23} is represented the Ramp ADC general scheme. It is the
583same as TDC ramp one, the difference is in a variable current source
584which allows obtaining 8bit/10bit/12bit ADC according to the injected
585current. \refTab{tab:6} gives, for each ramp, the time duration to reach 3.3~V.
586
587\begin{figure}[!htbp]
588\centering
589\includegraphics[width=0.7\columnwidth,height=6cm]{img23.jpg}
590\caption{ADC ramp schematic.}
591\label{fig:23}
592\end{figure}
593
594\begin{table}
595\centering
596\caption{TO BE COMPLETED}
597\label{tab:6}
598\begin{tabular}{|l|l|}
599\hline
600 Header 1      & Header 2 \\
601 12 bit ADC & From 0.9~V to 3.3~V in $102.0~\mu{}$s \\
602 10 bit ADC & From 0.9~V to 3.3~V in $25.6~\mu{}$s \\
603 \phantom{ }8 bit ADC & From 0.9~V to 3.3~V in $6.4~\mu{}$s \\
604\hline
605\end{tabular}
606\end{table}
607
608Then the ADC ramp is compared thanks to a Discriminator to the voltage
609values, which corresponds to charge and fine time values, stored in the
610SCA. The digital converted DATA are then treated by the digital part.
611%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
612\subsection{Digital part}
613\label{ssec:Digital}
614%%%%%%%%%%%%%%%%%%%%%%%%%%%
615The digital part of PARISROC is built around 4 modules which are "`acquisition"', "`conversion"', "`readout"' and "`top manager"'. Actually, PARISROC is based on 2 memories. During acquisition,
616discriminated analog signals are stored into an analog memory (the SCA:
617switched capacitor array). The analog to digital conversion module
618converts analog charges and times from SCA into 12 bits digital values.
619These digital values are saved into registers (RAM). At the end of the
620cycle, the RAM is readout by an external system. The block diagram is
621given on \refFig{fig:24}.
622
623
624\begin{figure}[!htbp]
625\centering
626\includegraphics[width=0.7\columnwidth,height=6cm]{img24.jpg}
627\caption{Block diagram of the digital part.}
628\label{fig:24}
629\end{figure}
630
631This sequence is made thanks to the top manager module which controls
632the 3 other ones. When 1 or more channels are hit, it starts ADC
633conversion and then the readout of digitized data. The maximum cycle
634length is about $200~\mu$s. During
635conversion and readout, acquisition is never stopped. It means that
636discriminated analog signals can be stored in the SCA at any time of
637the sequence shown in on \refFig{fig:25}.
638
639\begin{figure}[!htbp]
640\centering
641\includegraphics[width=0.7\columnwidth,height=6cm]{img25.jpg}
642\caption{Top manager sequence.}
643\label{fig:25}
644\end{figure}
645
646The first module in the sequence is the acquisition
647which is dedicated to charge and fine time measurements. It manages the
648SCA where charge and fine time are stored as a voltage like. It also
649integrates the coarse time measurement thanks to a 24-bit gray counter
650with a resolution of 100~ns. Each channel has a depth of 2 for the SCA
651and they are managed individually. Besides, SCA is treated like a FIFO
652memory: analog voltage can be written, read and erased from this
653memory.
654
655
656\begin{figure}[!htbp]
657\centering
658\includegraphics[width=0.7\columnwidth,height=6cm]{img26.jpg}
659\caption{SCA analogue voltage}
660\label{fig:26}
661\end{figure}
662
663Then, the conversion module converts analog values stored in
664the SCA (charge and fine time: cf. \`refFig{fig:26}) in digital ones thanks to a 12-bit
665Wilkinson ADC. The counter clock frequency is 40~MHz, it implies a
666maximum ADC conversion time of $103~\mu$s
667when it overflows. This module makes 32 conversions in 1 run (16
668charges and 16 fine times).
669
670Finally, the readout module permits to empty all the registers
671to an external system. As it will only transfer hit channels, this
672module will tag each frame with its channel number: it works as a
673selective readout. The pattern used is composed of 4 data: 4-bit
674channel number, 24-bit coarse time, 12-bit charge and 12-bit fine time.
675The total length of one frame is 52 bits. The maximum readout time
676appears when all channels are hit. About 832 bits of data are
677transferred to the concentrator with a 10~MHz clock: the readout takes
678about $100~\mu$s with $1~\mu$s between 2 frames.
679
680%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
681\section{ASIC Laboratory tests}
682\label{sec:ASICLAbTest}
683%%%%%%%%%%%%%%%%%%%%%%%%%%%
684The PARISROC has been submitted in June 2008; a first batch of 6 ASICs
685has been produced and received in January 2009 (a second batch of 14
686ASICs in May 2009.
687
688The ASIC test has been a critical step in the PARISROC planning due to
689the ASIC complexity.A dedicated test board has been designed and realized for this purpose
690(\refFig{fig:27}). Its role is to allow the characterization of the chip and the
691communication between photomultipliers and ASIC. This is possible
692thanks to a dedicated Labview program that allows sending the ASIC
693configuration (slow control parameters; ASIC parameters, etc) and
694receiving the output bits via a USB cable connected to the test board.
695The Labview is developed by LAL.
696
697\begin{figure}[!htbp]
698\centering
699\includegraphics[width=0.7\columnwidth,height=6cm]{img27.jpg}
700\caption{Test Board.}
701\label{fig:27}
702\end{figure}
703
704%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
705\subsection{General tests}
706\label{ssec:GeneralTest}
707%%%%%%%%%%%%%%%%%%%%%%%%%%%
708On  \refFig{fig:28} is shown the Test Bench used in laboratory. It is composed by a
709test board, a signal generator, an oscilloscope, multimeters and PC to
710run labview program.
711
712\begin{figure}[!htbp]
713\centering
714\includegraphics[width=0.7\columnwidth,height=6cm]{img28.jpg}
715\caption{Test Bench.}
716\label{fig:28}
717\end{figure}
718
719The signal generator is a TEKTRONIX single
720channel function generator. It is used to create the input charge
721injected in the ASIC. The signal injected has the shaping as similar as
722possible to the PMT signal. On \refFig{fig:28} is represented the generator input
723signal and its characteristics.
724
725\begin{figure}[!htbp]
726\centering
727\includegraphics[width=0.7\columnwidth,height=6cm]{img29.jpg}
728%%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
729\caption{Input signals}
730\label{fig:29}
731\end{figure}
732
733At the beginning all the standard electrical
734characteristics have been tested: DC levels, analogue output signals,
735the analogue part characteristics and then the pedestals, the DAC
736linearity, S\-curves (trigger efficiency as a function of the injected
737charge or the threshold), the ADC linearity. The first purpose is the
738comparison between simulation results and test measurements; most of
739them are in agreement with the ASIC characteristics, obtained in
740simulation.
741%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
742\subsection{Analogue tests}
743\label{ssec:AnalogueTest}
744%%%%%%%%%%%%%%%%%%%%%%%%%%%
745The DC level characterization is the first step in ASIC
746characterization; in particular the DC uniformity of the analogue part
747DC level for the different channels has to be measured.
748
749In \refFig{fig:30} are represented the preamplifier, slow
750shaper and fast shaper DC uniformity plots. The DC uniformity test has a small dispersion
751of 0.4\%, 0.1\% and 0.05\% respectively for the preamplifier, the slow
752shaper and the fast shaper (\refTab{tab:7}).
753
754\begin{figure}[!htbp]
755\centering
756\begin{tabular}{c}
757\includegraphics[width=0.7\columnwidth,height=6cm]{img30a.jpg}\\
758\includegraphics[width=0.7\columnwidth,height=6cm]{img30b.jpg}\\
759\includegraphics[width=0.7\columnwidth,height=6cm]{img30c.jpg}
760\end{tabular}
761\caption{DC uniformity.}
762\label{fig:30}
763\end{figure}
764
765\begin{table}
766\centering
767\caption{TO BE COMPLETED}
768\label{tab:7}
769\begin{tabular}{|l|c|c|c|}
770\hline
771DC level & RMS \\
772Preamplifier & 3.8~mV (0.40~\%) \\ 
773Slow shaper  & 1.3~mV (0.10~\%) \\
774Fast shaper  & 1.0~mV (0.05\%\\
775\hline
776\end{tabular}
777\end{table}
778
779The second step is the analogue part output signals: Injecting a
780charge equivalent to 10~pe, and setting a preamplifier gain at 8, are
781observed and compared with simulation results all the output waveforms.
782
783There is a good agreement in preamplifier results ( \refFig{fig:31} and \refTab{tab:8}), the
784amplitude has the same value while time rise value has a difference of
7853~ns. This difference is due to the output buffer placed in the test
786board.
787
788\begin{figure}[!htbp]
789\centering
790                \begin{tabular}{rl}
791                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31a.jpg}&
792                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31b.jpg}
793                \end{tabular}
794\caption{Measurement and simulation of the preamplifier output for
795an input charge of 10~pe.}
796\label{fig:31}
797\end{figure}
798
799\begin{table}
800\centering
801\caption{TO BE COMPLETED. Preamplifier parameters.... $G_{pa} = 8$. WHY not same parameters 1~pe and 10~p.e}
802\label{tab:8}
803\begin{tabular}{|l|c|c|}
804\hline
805             &  Measurement    & Simulation \\
806\hline
807Maximum voltage (10~pe) & 50.00~mV  & 50.83~mV \\
808Rise time (10~pe) & 7.78~ns & 4.79~ns \\
809RMS noise &       1~mV       & 0.47~mV \\
810without USB cable & 0.66~mV  &         \\
811Noise in pe   & 0.2  & 0.086 \\
812without USB cable & 0.132 &         \\
813Maximum voltage (1~pe) & 5.00~mV  & 5.43~mV \\
814SNR (1~pe ????) & 5 & 11.6 \\
815without USB cable & 7.5 &         \\
816\hline
817\end{tabular}
818\end{table}
819
820The slow shaper waveforms are shown in \refFig{fig:32} while \refTab{tab:9} 
821summarizes the results. The first differences appear: a different value
822in amplitude for slow shaper signal and fast shaper signal that is
823probably associate, also, to the Output Buffer. The second relevant
824difference is in noise value, in particular in slow shaper noise
825performance (\refTab{tab:9}).
826
827\begin{figure}[!htbp]
828\centering
829                \begin{tabular}{rl}
830                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}
831                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
832                \end{tabular}
833\caption{Measurement and simulation of the slow shaper output for an
834input charge of 10~pe.}
835\label{fig:32}
836\end{figure}
837
838\begin{table}
839\centering
840\caption{TO BE COMPLETED. $G_{pa} = 8$ and $RC = 50$~ns.}
841\label{tab:9}
842\begin{tabular}{|l|c|c|}
843\hline
844             &  Measurement    & Simulation \\
845\hline
846Maximum Voltage (10~pe) & 117~mV & 290~mV \\
847Rise time (10~pe) & 18.0~ns & 19.1~ns \\
848RMS noise &  4.0~mV & 1.7~mV \\
849Noise in pe &  0.3 & 0.08 \\
850Maximum Voltage (1~pe) & 12~mV & 19~mV \\
851SNR &  3 & 11  \\
852\hline
853\end{tabular}
854\end{table}
855
856The Fast shaper results are shown in \refFig{fig:33}
857and \refTab{tab:10}.
858\begin{figure}[!htb]
859        \centering
860                \begin{tabular}{rl}
861                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}
862                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
863                \end{tabular}
864        \caption{Measurement and simulation of the fast shaper output for an
865input charge of 1 pe.}
866        \label{fig:33}
867\end{figure}
868
869
870\begin{table}
871\centering
872\caption{TO BE COMPLETED. $G_{pa} = 8$.}
873\label{tab:10}
874\begin{tabular}{|l|c|c|}
875\hline
876             &  Measurement    & Simulation \\
877\hline
878RMS noise &  2.5~mV & 2.4~mV \\
879Noise in pe &  0.08 & 0.05 \\
880Maximum Voltage (1~pe) & 30~mV & 42~mV \\
881SNR &  12 & 18  \\
882\hline
883\end{tabular}
884\end{table}
885Another important characteristic is the
886linearity. The output voltage in function of the input injected charge
887is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
888the preamplifier at different gains. \refTab{11} summarizes the fit
889results of these linearities. Good linearity performances are shown by
890residuals (better than $\pm 2~\%$) value but for a
891smaller dynamic range than simulation.
892
893\begin{figure}[!htbp]
894\centering
895                \begin{tabular}{c}
896                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}
897                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}
898                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}
899                \end{tabular}
900\caption{Preamplifier linearity for different gains.}
901\label{fig:34}
902\end{figure}
903
904\begin{table}
905\centering
906        \caption{TO BE COMPLETED}
907        \label{tab:11}
908\begin{tabular}{|c|c|c|c|}
909\hline
910Preamplifier Gains & Maximum voltage & Charge/Nb of pe & Residuals \\
911\hline
9128                  &   0.52~V        & 12~pC / 78~pe & -1.0~\% to 0.8~\% \\
9134                  &   0.64~V        & 32~pC / 198~pe & -1.0~\% to 1.0~\% \\
9142                  &   0.51~V        & 50~pC / 312~pe & -2.0~\% to 1.5~\% \\
915\hline
916\end{tabular}
917\end{table}
918
919
920\refFig{fig:35} represents an example of slow shaper
921linearity for a time constant of 50~ns and  a preamplifier gain of 8
922with residuals better than $pm 1~\%$.
923
924\begin{figure}[!htbp]
925\centering
926\includegraphics[width=0.7\columnwidth,height=6cm]{img35.jpg}
927\caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
928\label{fig:35}
929\end{figure}
930
931\refFig{fig:36} gives an example of the fast shaper linearity until an injected
932charge of 10~pe. Residuals better than $ \pm 2~\%$
933are obtained.
934
935\begin{figure}[!htbp]
936\centering
937\includegraphics[width=0.7\columnwidth,height=6cm]{img36.jpg}
938\caption{Fast shaper linearity up to 10~pe.}
939\label{fig:36}
940\end{figure}
941
942The preamplifier linearity in function of
943variable feedback capacitor value with an input charge of 10~pe and
944with residuals from $-2.5~\%$ to $1.4~\%$ is represented on \refFig{fig:37} . The gain
945adjustment linearity is nice at 2~\% on 8 bits.
946
947\begin{figure}[!htbp]
948\centering
949\includegraphics[width=0.7\columnwidth,height=6cm]{img37.jpg}
950\caption{Preamplifier linearity vs feedback capacitor value.}
951\label{fig:37}
952\end{figure}
953
954On \refFig{fig:38}  is given the gain uniformity. For the
955different preamplifier gains is plotted the maximum voltage value for
956all channels in order to investigate the homogeneity among the whole
957chip, essential for a multichannels ASIC. Residual dispersion of 0.05~\%,
9580.013~\% and 0.012~\% have respectively been obtained for gain 8, 4 and
9592.
960
961\begin{figure}[!htbp]
962\centering
963\includegraphics[width=0.7\columnwidth,height=6cm]{img38.jpg}
964\caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
965\label{fig:38}
966\end{figure}
967
968%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
969\subsection{DAC linearity}
970\label{ssec:DAClinearity}
971%%%%%%%%%%%%%%%%%%%%%%%%%%%
972The DAC linearity has been measured and it consists in measuring the
973voltage DAC ($V_{dac}$) amplitude obtained for different DAC register
974values. \refFig{fig:39} gives the evolution of $V_{dac}$ as a function of the register for the two
975DACs and residuals from $-0.1~\%$ to $0.1~\%$.
976
977\begin{figure}[!htbp]
978\centering
979                \begin{tabular}{rl}
980                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39a.jpg}&
981                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39b.jpg}
982                \end{tabular}
983\caption{DAC linearity; DAC1 and DAC2 respectively.}
984\label{fig:39}
985\end{figure}
986%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
987\subsection{Trigger output}
988\label{ssec:TriggerMeas}
989%%%%%%%%%%%%%%%%%%%%%%%%%%%
990The trigger output behavior was studied scanning the threshold for
991different injected charges. At first no charge was injected which
992corresponds to measure the fast shaper pedestal. The result is
993represented on \refFig{fig:40}  for each channel. The  S-curves
994are superimposed meaning good homogeneity. The spread
995is of one DAC count ($LSB DAC = 1.78$~mV) or 0.06~pe.
996
997\begin{figure}[!htbp]
998\centering
999\includegraphics[width=0.7\columnwidth,height=6cm]{img40.jpg}
1000\caption{Pedestal S-curves for channel 1 to 16.}
1001\label{fig:40}
1002\end{figure}
1003
1004The trigger efficiency was then measured for a
1005fixed injected charge of 10~pe. On \refFig{fig:41} are represented the S-curves
1006obtained with 200 measurements of the trigger for all channels varying
1007the threshold. The homogeneity is proved by a spread of 7 DAC unit (0.4~pe) and a noise of 0.07 pe ($RMS =2.19$).
1008
1009\begin{figure}[!htbp]
1010\centering
1011                \begin{tabular}{rl}
1012                        \multicolumn{2}{c}{\includegraphics[width=0.5\columnwidth,height=6cm]{img41a.jpg}}\\
1013                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41b.jpg}&
1014                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41c.jpg}
1015                \end{tabular}
1016\caption{Fast shaper and trigger (top panel); S-curves for input of 10~pe (left panel);
1017uniformity plot for channel 1 to 16 (right panel).}
1018\label{fig:41}
1019\end{figure}
1020
1021The trigger output is studied also by scanning
1022the threshold for a fixed channel and changing the injected charge. On \refFig{fig:42}
1023on the left panel  is shown the trigger efficiency versus the DAC unit and on
1024the right panel is plotted the threshold versus the injected charge but only
1025until 0.5~pC. From these measurements a noise of 10~fC has been
1026extrapolated. Therefore the threshold is only possible above $10~\sigma$ of the noise due to the discriminator coupling
1027(\refFig{fig:43}).
1028
1029\begin{figure}[!htbp]
1030\centering
1031                \begin{tabular}{rl}
1032                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}
1033                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
1034                \end{tabular}
1035\caption{Trigger efficiency vs DAC count up to 300~pe (left panel) and
1036until 3~pe (right panel).}
1037\label{fig:42}
1038\end{figure}
1039
1040\begin{figure}[!htbp]
1041\centering
1042\includegraphics[width=0.7\columnwidth,height=6cm]{img43.jpg}
1043\caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
1044\label{fig:43}
1045\end{figure}
1046
1047The trigger coupling illustrated in \refFig{fig:44} with the
1048injected charge in channel 1 and output signal observed in channel 2,
1049shows a coupling signal around 25~mV (10~fC). This coupling signal is
1050due, probably, to the input power supply ($V_{dd-pa}$ and $V_{ss}$).
1051
1052\begin{figure}[!htbp]
1053\includegraphics[width=0.7\columnwidth,height=6cm]{img44.jpg}
1054\caption{Trigger coupling signal.}
1055\label{fig:44}
1056\end{figure}
1057
1058%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1059\subsection{ADC characterisation}
1060\label{ssec:ADCMeas}
1061%%%%%%%%%%%%%%%%%%%%%%%%%%%
1062The ADC performance has been studied alone and with the whole chain. Injecting to the
1063 ADC input directly a DC voltage by the internal DAC,
1064in order to have a voltage level as stable as possible, were measured
1065the ADC values for all channels (\refFig{fig:45}).
1066
1067The measurement is repeated 10000 times for
1068each channel and in the first plot of the LabView front panel window (\refFig{fig:45}). The
1069minimal, maximal and mean values, over all acquisitions, for each
1070channel are plotted. In the second plot there is the rms charge value
1071versus channel number with a value in the range $[0.5, 1]$ ADC unit.
1072Finally the third plot shows an example of charge amplitude
1073distribution for a single channel: a spread of 5 ADC counts is
1074obtained.
1075
1076\begin{figure}[!htbp]
1077\centering
1078\includegraphics[width=0.7\columnwidth,height=6cm]{img45.jpg}
1079\caption{ADC measurements with DC input 1.45~V (middle scale).}
1080\label{fig:45}
1081\end{figure}
1082
1083The ADC is suited to a multichannel conversion
1084so the uniformity and linearity are studied in order to characterize
1085the ADC behaviour. On \refFig{fig:46} is represented the ADC transfer function for the
108610-bit ADC versus the input voltage level. All channels are represented
1087and have plots superimposed.
1088
1089\begin{figure}[!htbp]
1090\centering
1091\includegraphics[width=0.7\columnwidth,height=6cm]{img46.jpg}
1092\caption{10  bits ADC transfer function vs input charge.}
1093\label{fig:46}
1094\end{figure}
1095
1096The good homogeneity observed is confirmed by
1097the linear fit parameters comparison. In  are plotted the slope and the
1098intercept distributions for all channels. The RMS slope value of 0.143
1099and the RMS intercept value of 0.3 confirm the 10-bits ADC uniformity
1100(\refTab{tab:12}).
1101
1102\begin{figure}[!htbp]
1103\centering
1104                \begin{tabular}{rl}
1105                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47a.jpg}&
1106                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47b.jpg}
1107                \end{tabular}
1108\caption{Evolution of the fit parameters (slope on the
1109left panel and intercept on the right panel) as a function of the channel
1110number.}
1111\label{fig:47}
1112\end{figure}
1113
1114\begin{table}
1115\centering
1116\caption{TO BE COMPLETED. 10 bits ADC parameter fits.... 25 acquisitions per channel, $LSB = 1.06$~mV...}
1117\label{tab:12}
1118\begin{tabular}{|l|c|c|}
1119\hline
1120   & Slope      & Intercept \\
1121Mean & 936.17   & 859.8 \\
1122RMS  & 0.14     & 0.3   \\ 
1123\hline
1124\end{tabular}
1125\end{table}
1126
1127In \refFig{fig:48} are shown respectively the 12, 10 and 8 bits ADC
1128linearity plots with the 25 measurements made for each input voltage
1129level. The average ADC count value is plotted versus the input signal.
1130The residuals from $-1.5$ to $0.9$ ADC units for the 12-bits ADC; from $-0.5$
1131to $0.4$ for the 10-bit ADC and from $-0.5$ to $0.5$ for the 8-bit ADC. This prove
1132the good ADC behaviour in terms of Integral non linearity.
1133
1134\begin{figure}[!htbp]
1135\centering
1136                \begin{tabular}{c}
1137                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
1138                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48b.jpg}\\
1139                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48c.jpg}
1140                \end{tabular}
1141\caption{12, 10, 8 bit ADC linearity.}
1142\label{fig:48}
1143\end{figure}
1144In terms of Differential non linearity, the
1145value from $-1.0$ to $0.65$ for the 10 bit ADC and from $-0.3$ to $0.2$ for the 8
1146bit ADC, show us a good behaviour even if the plots are the results of
1147preliminary measurements.
1148
1149\begin{figure}[!htb]
1150        \centering
1151                \begin{tabular}{rl}
1152                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}
1153                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
1154                \end{tabular}
1155\caption{Differential non linearity.}
1156\label{fig:49}
1157\end{figure}
1158
1159Once the ADC performances have been tested
1160separately, the measurements are performed on the complete chain. The
1161results of the input signal autotriggered, held in the T\&H and
1162converted in the ADC are illustrated in  where are plotted the 10-bit
1163ADC counts in function of the variable input charge (up to 50~pe). A
1164good linearity of $1.4~\%$ and a noise of 6 ADC units are obtained. In \refTab{tab:13}
1165are listed the setting value for measurements.
1166
1167\begin{table}
1168        \centering
1169        \caption{TO BE COMPELTED. $G_{pa}=14$ ($C_{in}=7$~pF , $C_f=0.5$~pF),
1170Slow shaper $RC=50$~ns,
1171DAC delay: $bit<0> = 1$ \& $bit<2> = 1$.
1172}
1173        \label{tab:13}
1174\begin{tabular}{|l|c|c|c|}
1175\hline
1176Parameters & 12 bits ADC & 10 bits ADC & 8 bits ADC\\
1177\hline 
1178LSB         & $0.27$ & $1.06$~mV  & $4.26$~mV\\
1179Min ADC count at 3~pe& $509$ &  $132$ & $33$  \\
1180Max ADC count at 50~pe & $3873$ &  $989$ & $241$ \\
1181Residuals in ADC units &$[21,54]$ & $[6,14]$  & $[2,3]$ \\
1182\hline
1183\end{tabular}
1184\end{table}
1185
1186\begin{figure}[!htbp]
1187\centering
1188\includegraphics[width=0.7\columnwidth,height=6cm]{img50.jpg}
1189\caption{10 bit ADC linearity.}
1190\label{fig:50}
1191\end{figure}
1192
1193On \refFig{fig:51} is plotted the 8-bit linearity at $1.4~\%$
1194and a noise of 1.53 ADC unit. In \refTab{tab:13} are listed the setting value for
1195measurements.
1196
1197\begin{figure}[!htbp]
1198\centering
1199\includegraphics[width=0.7\columnwidth,height=6cm]{img51.jpg}
1200\caption{8 bit ADC linearity.}
1201\label{fig:51}
1202\end{figure}
1203
1204On  \refFig{fig:53} is plotted the 12-bit linearity
1205at $1.4~\%$ and a noise of 23.69 ADC unit. In \refTab{tab:13} are listed the setting
1206value for measurements.
1207
1208\begin{figure}[!htbp]
1209\centering
1210\includegraphics[width=0.7\columnwidth,height=6cm]{img52.jpg}
1211\caption{12 bit ADC linearity.}
1212\label{fig:52}
1213\end{figure}
1214
1215%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1216\section{Measurements with PMTs}
1217\label{sec:MeasWithPMT}
1218%%%%%%%%%%%%%%%%%%%%%%%%%%%
1219The first measurements with a photomultiplier at input are started in
1220IPNO at Orsay.
1221
1222\begin{figure}[!htbp]
1223\centering
1224\includegraphics[width=0.7\columnwidth,height=6cm]{img53.jpg}
1225\caption{TO BE COMPLETED}
1226\label{fig:53}
1227\end{figure}
1228
1229\acknowledgments
1230%\begin{acknowledgments}
1231This work, especially one of the author, is supported by the National Reasaerch Agency under contract ANR-06-BLAN-0186.
1232%\end{acknowledgments}
1233%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1234\newpage
1235%\section*{References}
1236\bibliography{campagne}
1237\end{document}
1238
1239
Note: See TracBrowser for help on using the repository browser.