source: Selma/PARISROC/parisroc-jinst.tex @ 477

Last change on this file since 477 was 477, checked in by campagne, 15 years ago

references update (JEC)

File size: 44.5 KB
Line 
1\documentclass{JINST}
2\usepackage[pdftex]{graphicx}
3\graphicspath{{figures/}}
4\usepackage[figuresright]{rotating}
5%\usepackage{graphicx}
6%\usepackage[T1]{fontenc}
7\usepackage{eurosym}
8%\usepackage{rotating}
9%\usepackage[dvips]{color}
10
11
12%used explicitly in the text
13\newcommand{\refTab}[1]{Tab.~\ref{#1}}
14\newcommand{\refFig}[1]{Fig.~\ref{#1}}
15\newcommand{\refSec}[1]{Sec.~\ref{#1}}
16
17
18
19
20\title{PARISROC, a Photomultiplier Array Integrated Readout Chip.}
21%
22
23\author{S. Conforti$^a$, Second Author$^b$\thanks{Corresponding
24author.}~ and Third Author$^b$\\
25\llap{$^a$}Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud 11,
26Bât. 200, 91898 Orsay Cedex, France\\
27\llap{$^b$}Name of Institute,\\
28  Address, Country\\
29  E-mail: \email{conforti@lal.in2p3.fr}}
30
31
32
33
34\abstract{
35PARISROC is a complete read
36out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
37\cite{Genolini:2008uc}
38%[1]
39, for photomultipliers array. It allows triggerless acquisition for
40next generation neutrino experiments and it belongs to an R\&D program
41funded by French national agency for research (ANR) called
42PMm2: "`Innovative electronics for photodetectors array
43used in High Energy Physics and Astroparticles"'
44\cite{PMm2Site:2006}
45%[2]
46(ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
47triggered channels with variable gain and provides charge and time
48measurement by a 12-bit ADC and a 24-bit Counter. The charge
49measurement should be performed from 1 up to 300 pe with a good
50linearity. The time measurement allowed to a coarse time with a 24-bit
51counter at 10 MHz and a fine time on a 100ns ramp to achieve a
52resolution of 1 ns. The ASIC sends out only the relevant data through
53network cables to the central data storage.
54}%end of abstract
55
56%\pacs{13.30.a,14.20.Dh,14.60.Pq,26.65.t+,29.40.Gx,29.40.Ka,29.40.Mc,95.55.Vj,95.85.Ry,
57%97.60.Bw}
58
59%\submitto{Journal of Instrumentation}
60
61\keywords{Keyword1; Keyword2; Keyword3}
62
63\begin{document}
64%use BST file provided by SPIRES for JHEP and modify it to forbid "to lower case" title
65\bibliographystyle{Campagne}
66%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67\section{Introduction}
68\label{sec:Intro}
69%%%%%%%%%%%%%%%%%%%%%%
70The PMm2 project: "`Innovative electronics for
71photodetectors array used in High Energy Physics and
72Astroparticles"' \cite{PMm2Site:2006}
73%[2]
74proposes to segment the large surface of photodetection in macro
75pixel consisting of an array of 16 photomultipliers connected to an
76autonomous front-end electronics () and powered by a common High
77Voltage. These large detectors are used in next generation proton decay
78and neutrino experiment (i.e. the post-SuperKamiokande detectors as
79those that will take place in megaton size water tanks) and will
80require very large surfaces of photo detection and a large volume of
81data. The micro-electronics group's (OMEGA from the LAL at Orsay)
82purpose is the front-end electronics conception and
83realization. This R\&D \cite{PMm2Site:2006}
84%[2]
85involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
86Orsay) and ULB Bruxells for the DAQ. It is funded for three years by
87the French National Agency for Research (ANR) under the reference
88ANR-06-BLAN-0186.
89
90
91LAL Orsay is in charge of the design and tests of the readout chip
92named PARISROC which stands for Photomultiplier ARrray Integrated in
93Si-Ge Read Out Chip.
94
95\begin{figure}[!htbp]
96\begin{center}
97\includegraphics[width=0.7\columnwidth,height=6cm]{img1.jpg}
98\caption{Principal of PMm2 proposal for megaton scale Cerenkov water
99tank.}
100\label{fig:1}
101\end{center}
102\end{figure}
103
104The detectors such as SuperKamiokande, are large tanks covered by a
105significant number of large photomultipliers (20"),
106the next generation neutrino experiments will require a bigger surface
107of photo detection and thus more photomultipliers. As a consequence the
108total cost has an important relief \cite{Genolini:2008uc}.
109\begin{itemize}
110        \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
111a common electronics, even if it induces more electronic channels;
112        \item A common High Voltage for the 16 PMTs so a reduced number of
113underwater cables, cables  that are also used to brought the DATA to
114the surface;
115        \item The front-end closed to the PMTs that allow a suppression of
116underwater connector.
117\end{itemize}
118
119The general principle of PMm2 project is that the ASIC and a FPGA
120manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
121
122\begin{center}
123\begin{figure}[!!htbp]
124\includegraphics[width=0.7\columnwidth,height=6cm]{img2.jpg}
125\caption{Principle of the PMm2 project.}
126\label{fig:2}
127\end{figure}
128\end{center}
129%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130\section{PARISROC architecture}
131\label{sec:PARISROCArchi}
132The ASIC Parisroc is composed of 16 analogue channels managed by a
133common digital part (\refFig{fig:3}).
134
135\begin{center}
136\begin{figure}[!htbp]
137\includegraphics[width=0.7\columnwidth,height=6cm]{img3.jpg}
138\caption{PARISROC global schematic.}
139\label{fig:3}
140\end{figure}
141\end{center}
142
143Each analogue channel is made of a low noise preamplifier with
144variable and adjustable gain. The variable gain is common for all
145channels and it can change from 8 to 1 on 4 bits. The gain is also
146tuneable channel by channel to adjust the input detector's gain, up to
147a factor 4 to an accuracy of 7\% with 8 bits.
148
149The preamplifier is followed by a slow channel for the charge
150measurement in parallel with a fast channel for the trigger output.
151
152The slow channel is made by a slow shaper followed by an analogue
153memory with a depth of 2 to provide a linear charge measurement up to
15450~pC; this charge is converted by a 12-bits Wilkinson ADC. One follower
155OTA is added to deliver an analogue multiplexed charge measurement.
156
157The fast channel consists in a fast shaper (15~ns) followed by 2 low
158offset discriminators to auto-trig down to 50~fC. The thresholds are
159loaded by 2 internal 10-bit DACs common for the 16 channels and an
160individual 4bit DAC for one discriminator. The 2 discriminator outputs
161are multiplexed to provide only 16 trigger outputs. Each output trigger
162is latched to hold the state of the response until the end of the clock
163cycle. It is also delayed to open the hold switch at the maximum of the
164slow shaper. An "`OR"' of the 16 trigger gives a 17th output.
165
166
167For each channel, a fine time measurement is made by an analogue
168memory with depth of 2 which samples a 12-bit ramp, common for all
169channels, at the same time of the charge. This time is then converted
170by a 12 bit Wilkinson ADC.
171
172The two ADC discriminators have a common ramp, of 8/10/12 bits, as
173threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
174
175\begin{center}
176\begin{figure}[!htbp]
177\includegraphics[width=0.7\columnwidth,height=6cm]{img4.jpg}
178\caption{PARISROC Layout.}
179\label{fig:4}
180\end{figure}
181\end{center}
182%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
183\subsection{Analogue Channel description and simulations}
184\label{ssec:AnalogChannel}
185%%%%%%%%%%%%%%%%%%%%%%%%%%%
186\refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
187part.
188
189\begin{center}
190\begin{figure}[!htbp]
191\includegraphics[width=0.7\columnwidth,height=6cm]{img5.jpg}
192\caption{PARISROC one channel analogue part schematic.}
193\label{fig:5}
194\end{figure}
195\end{center}
196%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
197\subsection{Preamplifier}
198\label{ssec:Preamplifier}
199%%%%%%%%%%%%%%%%%%%%%%%%%%%
200The input preamplifier is a low noise preamplifier with variable gain
201thanks to the switched input ($C_{in}$) and feedback ($C_f$) capacitors that
202can be adjusted (\refFig{fig:6}).
203
204This gain can vary changing $C_{in}$, which is
205common to the 16 channels, over 4 bits and $C_{f}$, to adjust preamplifier
206gain channel by channel. This adjustment allows correction of the PMT
207gain dispersion due to a use of a common HV.
208
209\begin{center}
210\begin{figure}[!htb]
211\includegraphics[width=0.7\columnwidth,height=6cm]{img6.jpg}
212        \caption{PARISROC preamplifier schematic.}
213        \label{fig:6}
214\end{figure}
215\end{center}
216
217The preamplifier is designed as a voltage
218preamplifier in p-type Cascode structure to allow the acquisition of a
219fast input signal with a large dynamic range.
220
221The input transistor is a PMOS in common source
222configuration: $W = 800~\mu$m; $L = 0.35~\mu$m; the big input transistor is
223chosen to keep the preamplifier noise contribution low and to achieve a
224high gm. It supplies the output (the drain terminal) to the input
225terminal (source terminal) of the second stage transistor: $W = 100~\mu$m;
226$L = 0.35~\mu$m; the output transistor must be small to reach preamplifier
227high speed performances. The utility of the cascode preamplifier is in
228the large input impedance of the common source (with also the
229characteristic of Current Buffer) and better frequency response of a
230common Gate. An output buffer stage is designed in order to adapt the
231output impedance to the loaded impedance. The input dc level is high
232(about 2.6~V) while the output dc level is low (about 1~V). Because of
233the single side structure of preamplifier, it is hard to use the
234external reference voltage to set the dc operating point; the idea is
235to use an OTA as the dc feedback amplifier.
236
237In  \refFig{fig:7} are shown preamplifier's output waveforms
238for fixed gain and different input signal (left panel) and for fixed
239input signal and different preamplifier gain (right panel).
240
241\begin{center}
242\begin{figure}[!htbp]
243\begin{tabular}{rl}
244\includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} & 
245\includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
246\end{tabular} 
247caption{Simulated preamplifier output waveforms for different input
248signals with fixed gain (left panel) and for fixed input
249signal at different gain (different input capacitor values (right
250panel).}
251\label{fig:7}
252\end{figure}
253\end{center}
254
255The input signal, used in simulation, is a triangle signal with 4.5~ns
256rise and fall time and 5~ns of duration as shown in \refFig{fig:8}. This current
257signal is sent to an external resistor (50~Ohms) and varies from 0 to 5~mA
258in order to simulate a PMT charge from 0 to 50~pC which represents 0
259to 300 photo-electrons when the PM gain is $10^{6}$.
260
261\begin{center}
262\begin{figure}[!htbp]
263\includegraphics[width=0.7\columnwidth,height=6cm]{img8.jpg}
264\caption{Simulation input signal.}
265\label{fig:8}
266\end{figure}
267\end{center}
268
269The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
270linearity performance. \refTab{tab:1} lists the residuals obtained for different
271gains and shows a good linearity (better than $\pm 1\%$).
272
273\begin{center}
274\begin{figure}[!htbp]
275\includegraphics[width=0.7\columnwidth,height=6cm]{img9.jpg}
276\caption{Preamplifier linearity.}
277\label{fig:9}
278\end{figure}
279\end{center}
280
281
282\begin{table}
283\centering
284        \caption{TO BE COMPLETED}
285        \label{tab:1}
286\begin{tabular}{|c|c|c|c|}
287\hline
288$G_{pa}$ &  $V_{out-max}$ &  $Qi_{max}/n_{pe}$ & Residuals (\%) \\
289\hline
290 8 & 1.394~V  & 40~pC/250~pe & -0.6 to 0.2 \\
291 4 & 0.841~V  & 48~pC/300~pe & -0.1 to 0.3 \\
292 2 & 0.417~V  & 48~pC/300~pe & -0.2 to 0.3 \\
293\hline
294\end{tabular}
295\end{table}
296
297
298 
299The \refFig{fig:10} displays the preamplifier noise with an
300rms value of 13~fC and a Signal to Noise ratio of $\approx 12$.
301\refTab{tab:2} summarizes the results obtained.
302
303\begin{center}
304\begin{figure}[!htbp]
305\includegraphics[width=0.7\columnwidth,height=6cm]{img10.jpg}
306\caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
307$C_{f}=0.5$~pF.}
308\end{figure}
309\label{fig:10}
310\end{center}
311
312\begin{table}
313\centering
314\caption{TO BE COMPLETED}
315\label{tab:2}
316\begin{tabular}{|c|c|c|}
317\hline
318RMS  & SNR & $V_{out}(1 p.e)$  \\
319\hline
320$468~\mu$V ($\approx 1/12$~p.e, $\approx 13$~fC ) & 11.6 & 5.43~mV\\
321\hline
322\end{tabular}
323\end{table}
324
325%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
326\subsection{Trigger output}
327\label{ssec:Trigger}
328%%%%%%%%%%%%%%%%%%%%%%%%%%%
329The PARISROC is a self-triggered device. The fast channel has been
330conceived for this purpose.The amplified signal flows in a fast shaper that is a CRRC filter with
331a time constant of 15~ns. Its high gain allows to send high signal to
332the discriminator and thus to trigger easily on 1/3 of photo-electron.
333It has a classical design: differential pair is followed by a buffer.
334
335\begin{figure}[!htbp]
336\centering
337\includegraphics[width=0.7\columnwidth,height=6cm]{img11.jpg}
338\caption{Fast shaper schematics.}
339\label{fig:11}
340\end{figure}
341
342The \refFig{fig:12} represents the fast shaper output
343waveforms for a variable input signal. The \refTab{tab:3} lists the fast
344shaper principal characteristics obtained in simulation.
345
346\begin{figure}[!htbp]
347\centering
348\begin{tabular}{rl}
349\includegraphics[width=0.5\columnwidth,height=6cm]{img12a.jpg} &
350\includegraphics[width=0.5\columnwidth,height=6cm]{img12b.jpg}
351\end{tabular}
352\caption{Simulated fast shaper outputs ($G_{pa} = 8$ with input from 1-10~pe (left panel) 
353and from 1/3~pe to 2~pe (right panel).}
354\label{fig:12}
355\end{figure}
356
357\begin{table}
358\centering
359        \caption{To be completed}
360        \label{tab:3}
361        \begin{tabular}{|c|c|c|c|}
362        \hline
363RMS  & SNR & $V_{out}(1 p.e)$  & $T_p$  \\
364\hline
365$2.36~\mu$V ($\approx 1/16$~p.e, $\approx 10$~fC ) & 16 & 37.85~mV & 8~ns\\
366        \hline
367        \end{tabular}
368\end{table}
369
370The fast shaper (15~ns) is followed by a low
371offset discriminator to auto-trig down to 50~fC (1/3~pe at $10^6$ gain).
372
373
374The two discriminators can be used alone or
375simultaneously. Their outputs are multiplexed to ease the choice. Both
376are simple low offset comparators with the same schematic. The
377difference comes from the way to set the threshold. The first
378discriminator has the threshold sets by one 10-bit DAC, common to all
37916 channels, and one 4-bit DAC for each channel. The second
380discriminator has the threshold sets by only the 10 bit common DAC.
381Each output trigger is latched to hold the state of the response in SCA
382channel. In  \refFig{fig:13} are shown the triggers and the zoom of the triggers rise
383time in order to see the time walk of around 4~ns.
384
385
386\begin{figure}[!htbp]
387\centering
388                \begin{tabular}{rl}
389                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13a.jpg}&
390                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13b.jpg}
391                \end{tabular}
392\caption{Simulated trigger output (input charge from 0 to 10~p.e;
393threshold at 1/3~p.e). Zoom of trigger rise time on right
394pannel.}
395\label{fig:13}
396\end{figure}
397
398Each output trigger is latched to hold the
399state of the response in SCA channel.  SCA channel is the also called
400"`Analogue memory"'. The SCA has a
401depth equal to two; this means that there are two T\&H for time
402measurement as well as for charge measurement.
403
404\begin{figure}[!htbp]
405\centering
406\includegraphics[width=0.7\columnwidth,height=6cm]{img14.jpg}
407\caption{SCA (switched capacitor array) scheme.}
408\label{fig:14}
409\end{figure}
410
411The voltage level of the signal coming from
412slow shaper or ramp TDC cell is memorised in the T\&H capacitor (500~fF)
413so "`Track \& Hold Cell"' allows
414to lock the capacitor value only when a calibrated trigger (from fast
415channel) occurs within the selected column. The SCA column is selected, read and erased by
416the digital part.
417
418\begin{figure}[!htbp]
419\centering
420\includegraphics[width=0.7\columnwidth,height=6cm]{img15.jpg}
421\caption{Operation of T\&H cell.}
422\label{fig:15}
423\end{figure}
424
425On  \refFig{fig:15} is illustrated the T\&H cell mode of
426operation: when a signal arrives in the discriminator cell is detected
427and the output trigger signal is sent to the T\&H cell.
428The output trigger is delayed and calibrated before being sent.
429
430
431%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
432\subsection{Charge channel}
433\label{ssec:Charge}
434%%%%%%%%%%%%%%%%%%%%%%%%%%%
435The charge channel is the slow channel: the signal amplified by the
436variable gain preamplifier is sent to the slow shaper, a typical
437$\mathrm{CRRC}^2$ filter with variable peaking time. The
438peaking time can be set from 50~ns (default value) to 200~ns thanks to
439the switched feedback capacitors.
440
441On left part of \refFig{fig:16} are represented the slow shaper waveforms for
442different shaping times and the same input signal. The noise value (\refTab{tab:4}
443and right part of \refFig{fig:16}), from $980~\mu$V to $1.6$~mV (simulation results), foresee
444good noise performance.
445
446\begin{figure}[!htbp]
447\centering
448                \begin{tabular}{rl}
449                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16a.jpg}&
450                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16b.jpg}
451                \end{tabular}
452\caption{Slow shaper output waveforms simulation (left panel). Slow shaper
453output noise simulation (right panel).}
454\label{fig:16}
455\end{figure}
456
457\begin{table}
458\centering
459\caption{TO BE COMPLETED. $G_{pa} = 8$}
460\label{tab:4}
461\begin{tabular}{|c|c|c|c|}
462\hline
463Time constant & RMS  & SNR & $V_{out}(1 p.e)$ \\
464\hline
46550~ns & \parbox[t]{20mm}{$1.68$~mV \\ $\approx 1/17$~p.e \\ $ \approx 9$~fC}
466     &  11
467                        & \parbox[t]{20mm}{$29$~mV \\ $T_p = 48$~ns } \\
468100~ns & \parbox[t]{20mm}{$1.26$~mV\\$\approx 1/12$~p.e \\ $ \approx 20$~fC}
469     &  8
470                        & \parbox[t]{20mm}{$15$~mV \\ $T_p = 78$~ns }\\
471200~ns & \parbox[t]{20mm}{$0.98$~mV\\$\approx 1/5$~p.e \\ $ \approx 32$~fC}
472     &  5
473                        & \parbox[t]{23mm}{$8$~mV \\ $ T_p = 141.5$~ns } \\
474\hline                 
475\end{tabular}
476\end{table}
477
478The \refFig{fig:17}  and \refTab{tab:5} illustrate the linearity performance for
479different time constants.  Simulations show a good linearity with
480residuals from -0.5\% to 0.2\% at $T_p = 50$~ns, from
481-1\% to 0.3\% at $T_p =100$~ns and -0.7\% to 0.3\% at
482$T_p=200$~ns.
483
484\begin{figure}[!htbp]
485\centering
486\includegraphics[width=0.7\columnwidth,height=6cm]{img17.jpg}
487\caption{Slow shaper linearity simulation.}
488\label{fig:17}
489\end{figure}
490
491\begin{table}
492\centering
493\caption{TO BE COMPLETED}
494\label{tab:5}
495\begin{tabular}{|c|c|c|c|}
496\hline
497Time constante & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
498\hline
499 50~ns &  1.437~V &  13~pC/80~pe &  -0.5 to 0.2 \\
500100~ns &  1.493~V &  24~pC/150~pe &  -1.0 to 0.3 \\
501200~ns &  1.385~V &  48~pC/300~pe &  -0.7 to 0.3 \\
502\hline
503\end{tabular}
504\end{table}
505
506The Slow shaper maximum value, therefore the charge value, is then
507memorized in the analogue memory, with a depth of 2, thanks to the
508delayed trigger. \refFig{fig:18} gives the simulated slow shaper and SCA
509signals.
510
511\begin{figure}[!htbp]
512\centering
513\includegraphics[width=0.7\columnwidth,height=6cm]{img18.jpg}
514\caption{Slow shaper \& SCA simulation.}
515\label{fig:18}
516\end{figure}
517This charge, stored as a voltage value, is then converted in digital
518value thanks to the 8/10/12 bit Wilkinson ADC.
519
520%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
521\subsection{Time measurement}
522\label{ssec:Timemeas}
523%%%%%%%%%%%%%%%%%%%%%%%%%%%
524For each channel, a fine time measurement is performed by the analogue
525memory with a depth of 2 which samples a 12 bit ramp (100~ns), common
526for all channels, at the same time of the charge.
527
528In \refFig{fig:19} is represented the TDC Ramp general schematic. The current,
529which flows in feedback, charges the capacitance $C_f$ when the switch is
530off. When the switch is turned off, $C_f$ discharges. Signals \verb|start\_ramp| and
531\verb|start\_ramp\_b| manage the switches. The rising signal starts the ramp
532and the falling signal stop the ramp (\refFig{fig:19}).
533
534\begin{figure}[!htbp]
535\centering
536\begin{tabular}{rl}
537\includegraphics[width=0.5\columnwidth,height=6cm]{img19a.jpg}&
538\includegraphics[width=0.5\columnwidth,height=6cm]{img19b.jpg}
539\end{tabular}
540\caption{TDC Ramp general schematic.}
541\label{fig:19}
542\end{figure}
543In order to avoid the large falling time of the ramp due to the $C_f$
544discharge time and the problem of non linearity at the start and the
545end of ramp signal (\refFig{fig:20}), the real ramp is created from two
546ramps.
547
548\begin{figure}[!htbp]
549\centering
550\includegraphics[width=0.7\columnwidth,height=6cm]{img20.jpg}
551\caption{TDC Ramp.}
552\label{fig:20}
553\end{figure}
554
555The signal start ramp, coming from the digital
556part, enters in two delay cells. The two delayed signals create the
557first and second ramps. Commutating alternatively two switches the 100~ns ramp TDC is created
558(\refFig{fig:21} and \refFig{fig:22}).
559
560\begin{figure}[!htbp]
561\centering
562\includegraphics[width=0.7\columnwidth,height=6cm]{img21.jpg}
563\caption{TDC Ramp scheme.}
564\label{fig:21}
565\end{figure}
566
567\begin{figure}[!htbp]
568\centering
569\includegraphics[width=0.7\columnwidth,height=6cm]{img22.jpg}
570\caption{TDC Ramp simulation.}
571\label{fig:22}
572\end{figure}
573
574This time value, stored as a voltage value, is then converted in
575digital value tanks to the 8/10/12 bit Wilkinson ADC.
576
577%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
578\subsection{ADC ramp}
579\label{ssec:ADCramp}
580%%%%%%%%%%%%%%%%%%%%%%%%%%%
581In \refFig{fig:23} is represented the Ramp ADC general scheme. It is the
582same as TDC ramp one, the difference is in a variable current source
583which allows obtaining 8bit/10bit/12bit ADC according to the injected
584current. \refTab{tab:6} gives, for each ramp, the time duration to reach 3.3~V.
585
586\begin{figure}[!htbp]
587\centering
588\includegraphics[width=0.7\columnwidth,height=6cm]{img23.jpg}
589\caption{ADC ramp schematic.}
590\label{fig:23}
591\end{figure}
592
593\begin{table}
594\centering
595\caption{TO BE COMPLETED}
596\label{tab:6}
597\begin{tabular}{|l|l|}
598\hline
599 Header 1      & Header 2 \\
600 12 bit ADC & From 0.9~V to 3.3~V in $102.0~\mu{}$s \\
601 10 bit ADC & From 0.9~V to 3.3~V in $25.6~\mu{}$s \\
602 \phantom{ }8 bit ADC & From 0.9~V to 3.3~V in $6.4~\mu{}$s \\
603\hline
604\end{tabular}
605\end{table}
606
607Then the ADC ramp is compared thanks to a Discriminator to the voltage
608values, which corresponds to charge and fine time values, stored in the
609SCA. The digital converted DATA are then treated by the digital part.
610%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
611\subsection{Digital part}
612\label{ssec:Digital}
613%%%%%%%%%%%%%%%%%%%%%%%%%%%
614The digital part of PARISROC is built around 4 modules which are "`acquisition"', "`conversion"', "`readout"' and "`top manager"'. Actually, PARISROC is based on 2 memories. During acquisition,
615discriminated analog signals are stored into an analog memory (the SCA:
616switched capacitor array). The analog to digital conversion module
617converts analog charges and times from SCA into 12 bits digital values.
618These digital values are saved into registers (RAM). At the end of the
619cycle, the RAM is readout by an external system. The block diagram is
620given on \refFig{fig:24}.
621
622
623\begin{figure}[!htbp]
624\centering
625\includegraphics[width=0.7\columnwidth,height=6cm]{img24.jpg}
626\caption{Block diagram of the digital part.}
627\label{fig:24}
628\end{figure}
629
630This sequence is made thanks to the top manager module which controls
631the 3 other ones. When 1 or more channels are hit, it starts ADC
632conversion and then the readout of digitized data. The maximum cycle
633length is about $200~\mu$s. During
634conversion and readout, acquisition is never stopped. It means that
635discriminated analog signals can be stored in the SCA at any time of
636the sequence shown in on \refFig{fig:25}.
637
638\begin{figure}[!htbp]
639\centering
640\includegraphics[width=0.7\columnwidth,height=6cm]{img25.jpg}
641\caption{Top manager sequence.}
642\label{fig:25}
643\end{figure}
644
645The first module in the sequence is the acquisition
646which is dedicated to charge and fine time measurements. It manages the
647SCA where charge and fine time are stored as a voltage like. It also
648integrates the coarse time measurement thanks to a 24-bit gray counter
649with a resolution of 100~ns. Each channel has a depth of 2 for the SCA
650and they are managed individually. Besides, SCA is treated like a FIFO
651memory: analog voltage can be written, read and erased from this
652memory.
653
654
655\begin{figure}[!htbp]
656\centering
657\includegraphics[width=0.7\columnwidth,height=6cm]{img26.jpg}
658\caption{SCA analogue voltage}
659\label{fig:26}
660\end{figure}
661
662Then, the conversion module converts analog values stored in
663the SCA (charge and fine time: cf. \`refFig{fig:26}) in digital ones thanks to a 12-bit
664Wilkinson ADC. The counter clock frequency is 40~MHz, it implies a
665maximum ADC conversion time of $103~\mu$s
666when it overflows. This module makes 32 conversions in 1 run (16
667charges and 16 fine times).
668
669Finally, the readout module permits to empty all the registers
670to an external system. As it will only transfer hit channels, this
671module will tag each frame with its channel number: it works as a
672selective readout. The pattern used is composed of 4 data: 4-bit
673channel number, 24-bit coarse time, 12-bit charge and 12-bit fine time.
674The total length of one frame is 52 bits. The maximum readout time
675appears when all channels are hit. About 832 bits of data are
676transferred to the concentrator with a 10~MHz clock: the readout takes
677about $100~\mu$s with $1~\mu$s between 2 frames.
678
679%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
680\section{ASIC Laboratory tests}
681\label{sec:ASICLAbTest}
682%%%%%%%%%%%%%%%%%%%%%%%%%%%
683The PARISROC has been submitted in June 2008; a first batch of 6 ASICs
684has been produced and received in January 2009 (a second batch of 14
685ASICs in May 2009.
686
687The ASIC test has been a critical step in the PARISROC planning due to
688the ASIC complexity.A dedicated test board has been designed and realized for this purpose
689(\refFig{fig:27}). Its role is to allow the characterization of the chip and the
690communication between photomultipliers and ASIC. This is possible
691thanks to a dedicated Labview program that allows sending the ASIC
692configuration (slow control parameters; ASIC parameters, etc) and
693receiving the output bits via a USB cable connected to the test board.
694The Labview is developed by LAL.
695
696\begin{figure}[!htbp]
697\centering
698\includegraphics[width=0.7\columnwidth,height=6cm]{img27.jpg}
699\caption{Test Board.}
700\label{fig:27}
701\end{figure}
702
703%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
704\subsection{General tests}
705\label{ssec:GeneralTest}
706%%%%%%%%%%%%%%%%%%%%%%%%%%%
707On  \refFig{fig:28} is shown the Test Bench used in laboratory. It is composed by a
708test board, a signal generator, an oscilloscope, multimeters and PC to
709run labview program.
710
711\begin{figure}[!htbp]
712\centering
713\includegraphics[width=0.7\columnwidth,height=6cm]{img28.jpg}
714\caption{Test Bench.}
715\label{fig:28}
716\end{figure}
717
718The signal generator is a TEKTRONIX single
719channel function generator. It is used to create the input charge
720injected in the ASIC. The signal injected has the shaping as similar as
721possible to the PMT signal. On \refFig{fig:28} is represented the generator input
722signal and its characteristics.
723
724\begin{figure}[!htbp]
725\centering
726\includegraphics[width=0.7\columnwidth,height=6cm]{img29.jpg}
727%%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
728\caption{Input signals}
729\label{fig:29}
730\end{figure}
731
732At the beginning all the standard electrical
733characteristics have been tested: DC levels, analogue output signals,
734the analogue part characteristics and then the pedestals, the DAC
735linearity, S\-curves (trigger efficiency as a function of the injected
736charge or the threshold), the ADC linearity. The first purpose is the
737comparison between simulation results and test measurements; most of
738them are in agreement with the ASIC characteristics, obtained in
739simulation.
740%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
741\subsection{Analogue tests}
742\label{ssec:AnalogueTest}
743%%%%%%%%%%%%%%%%%%%%%%%%%%%
744The DC level characterization is the first step in ASIC
745characterization; in particular the DC uniformity of the analogue part
746DC level for the different channels has to be measured.
747
748In \refFig{fig:30} are represented the preamplifier, slow
749shaper and fast shaper DC uniformity plots. The DC uniformity test has a small dispersion
750of 0.4\%, 0.1\% and 0.05\% respectively for the preamplifier, the slow
751shaper and the fast shaper (\refTab{tab:7}).
752
753\begin{figure}[!htbp]
754\centering
755\begin{tabular}{c}
756\includegraphics[width=0.7\columnwidth,height=6cm]{img30a.jpg}\\
757\includegraphics[width=0.7\columnwidth,height=6cm]{img30b.jpg}\\
758\includegraphics[width=0.7\columnwidth,height=6cm]{img30c.jpg}
759\end{tabular}
760\caption{DC uniformity.}
761\label{fig:30}
762\end{figure}
763
764\begin{table}
765\centering
766\caption{TO BE COMPLETED}
767\label{tab:7}
768\begin{tabular}{|l|c|c|c|}
769\hline
770DC level & RMS \\
771Preamplifier & 3.8~mV (0.40~\%) \\ 
772Slow shaper  & 1.3~mV (0.10~\%) \\
773Fast shaper  & 1.0~mV (0.05\%\\
774\hline
775\end{tabular}
776\end{table}
777
778The second step is the analogue part output signals: Injecting a
779charge equivalent to 10~pe, and setting a preamplifier gain at 8, are
780observed and compared with simulation results all the output waveforms.
781
782There is a good agreement in preamplifier results ( \refFig{fig:31} and \refTab{tab:8}), the
783amplitude has the same value while time rise value has a difference of
7843~ns. This difference is due to the output buffer placed in the test
785board.
786
787\begin{figure}[!htbp]
788\centering
789                \begin{tabular}{rl}
790                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31a.jpg}&
791                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31b.jpg}
792                \end{tabular}
793\caption{Measurement and simulation of the preamplifier output for
794an input charge of 10~pe.}
795\label{fig:31}
796\end{figure}
797
798\begin{table}
799\centering
800\caption{TO BE COMPLETED. Preamplifier parameters.... $G_{pa} = 8$. WHY not same parameters 1~pe and 10~p.e}
801\label{tab:8}
802\begin{tabular}{|l|c|c|}
803\hline
804             &  Measurement    & Simulation \\
805\hline
806Maximum voltage (10~pe) & 50.00~mV  & 50.83~mV \\
807Rise time (10~pe) & 7.78~ns & 4.79~ns \\
808RMS noise &       1~mV       & 0.47~mV \\
809without USB cable & 0.66~mV  &         \\
810Noise in pe   & 0.2  & 0.086 \\
811without USB cable & 0.132 &         \\
812Maximum voltage (1~pe) & 5.00~mV  & 5.43~mV \\
813SNR (1~pe ????) & 5 & 11.6 \\
814without USB cable & 7.5 &         \\
815\hline
816\end{tabular}
817\end{table}
818
819The slow shaper waveforms are shown in \refFig{fig:32} while \refTab{tab:9} 
820summarizes the results. The first differences appear: a different value
821in amplitude for slow shaper signal and fast shaper signal that is
822probably associate, also, to the Output Buffer. The second relevant
823difference is in noise value, in particular in slow shaper noise
824performance (\refTab{tab:9}).
825
826\begin{figure}[!htbp]
827\centering
828                \begin{tabular}{rl}
829                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}
830                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
831                \end{tabular}
832\caption{Measurement and simulation of the slow shaper output for an
833input charge of 10~pe.}
834\label{fig:32}
835\end{figure}
836
837\begin{table}
838\centering
839\caption{TO BE COMPLETED. $G_{pa} = 8$ and $RC = 50$~ns.}
840\label{tab:9}
841\begin{tabular}{|l|c|c|}
842\hline
843             &  Measurement    & Simulation \\
844\hline
845Maximum Voltage (10~pe) & 117~mV & 290~mV \\
846Rise time (10~pe) & 18.0~ns & 19.1~ns \\
847RMS noise &  4.0~mV & 1.7~mV \\
848Noise in pe &  0.3 & 0.08 \\
849Maximum Voltage (1~pe) & 12~mV & 19~mV \\
850SNR &  3 & 11  \\
851\hline
852\end{tabular}
853\end{table}
854
855The Fast shaper results are shown in \refFig{fig:33}
856and \refTab{tab:10}.
857\begin{figure}[!htb]
858        \centering
859                \begin{tabular}{rl}
860                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}
861                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
862                \end{tabular}
863        \caption{Measurement and simulation of the fast shaper output for an
864input charge of 1 pe.}
865        \label{fig:33}
866\end{figure}
867
868
869\begin{table}
870\centering
871\caption{TO BE COMPLETED. $G_{pa} = 8$.}
872\label{tab:10}
873\begin{tabular}{|l|c|c|}
874\hline
875             &  Measurement    & Simulation \\
876\hline
877RMS noise &  2.5~mV & 2.4~mV \\
878Noise in pe &  0.08 & 0.05 \\
879Maximum Voltage (1~pe) & 30~mV & 42~mV \\
880SNR &  12 & 18  \\
881\hline
882\end{tabular}
883\end{table}
884Another important characteristic is the
885linearity. The output voltage in function of the input injected charge
886is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
887the preamplifier at different gains. \refTab{tab:11} summarizes the fit
888results of these linearities. Good linearity performances are shown by
889residuals (better than $\pm 2~\%$) value but for a
890smaller dynamic range than simulation.
891
892\begin{figure}[!htbp]
893\centering
894                \begin{tabular}{c}
895                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}
896                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}
897                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}
898                \end{tabular}
899\caption{Preamplifier linearity for different gains.}
900\label{fig:34}
901\end{figure}
902
903\begin{table}
904\centering
905        \caption{TO BE COMPLETED}
906        \label{tab:11}
907\begin{tabular}{|c|c|c|c|}
908\hline
909Preamplifier Gains & Maximum voltage & Charge/Nb of pe & Residuals \\
910\hline
9118                  &   0.52~V        & 12~pC / 78~pe & -1.0~\% to 0.8~\% \\
9124                  &   0.64~V        & 32~pC / 198~pe & -1.0~\% to 1.0~\% \\
9132                  &   0.51~V        & 50~pC / 312~pe & -2.0~\% to 1.5~\% \\
914\hline
915\end{tabular}
916\end{table}
917
918
919\refFig{fig:35} represents an example of slow shaper
920linearity for a time constant of 50~ns and  a preamplifier gain of 8
921with residuals better than $pm 1~\%$.
922
923\begin{figure}[!htbp]
924\centering
925\includegraphics[width=0.7\columnwidth,height=6cm]{img35.jpg}
926\caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
927\label{fig:35}
928\end{figure}
929
930\refFig{fig:36} gives an example of the fast shaper linearity until an injected
931charge of 10~pe. Residuals better than $ \pm 2~\%$
932are obtained.
933
934\begin{figure}[!htbp]
935\centering
936\includegraphics[width=0.7\columnwidth,height=6cm]{img36.jpg}
937\caption{Fast shaper linearity up to 10~pe.}
938\label{fig:36}
939\end{figure}
940
941The preamplifier linearity in function of
942variable feedback capacitor value with an input charge of 10~pe and
943with residuals from $-2.5~\%$ to $1.4~\%$ is represented on \refFig{fig:37} . The gain
944adjustment linearity is nice at 2~\% on 8 bits.
945
946\begin{figure}[!htbp]
947\centering
948\includegraphics[width=0.7\columnwidth,height=6cm]{img37.jpg}
949\caption{Preamplifier linearity vs feedback capacitor value.}
950\label{fig:37}
951\end{figure}
952
953On \refFig{fig:38}  is given the gain uniformity. For the
954different preamplifier gains is plotted the maximum voltage value for
955all channels in order to investigate the homogeneity among the whole
956chip, essential for a multichannels ASIC. Residual dispersion of 0.05~\%,
9570.013~\% and 0.012~\% have respectively been obtained for gain 8, 4 and
9582.
959
960\begin{figure}[!htbp]
961\centering
962\includegraphics[width=0.7\columnwidth,height=6cm]{img38.jpg}
963\caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
964\label{fig:38}
965\end{figure}
966
967%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
968\subsection{DAC linearity}
969\label{ssec:DAClinearity}
970%%%%%%%%%%%%%%%%%%%%%%%%%%%
971The DAC linearity has been measured and it consists in measuring the
972voltage DAC ($V_{dac}$) amplitude obtained for different DAC register
973values. \refFig{fig:39} gives the evolution of $V_{dac}$ as a function of the register for the two
974DACs and residuals from $-0.1~\%$ to $0.1~\%$.
975
976\begin{figure}[!htbp]
977\centering
978                \begin{tabular}{rl}
979                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39a.jpg}&
980                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39b.jpg}
981                \end{tabular}
982\caption{DAC linearity; DAC1 and DAC2 respectively.}
983\label{fig:39}
984\end{figure}
985%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
986\subsection{Trigger output}
987\label{ssec:TriggerMeas}
988%%%%%%%%%%%%%%%%%%%%%%%%%%%
989The trigger output behavior was studied scanning the threshold for
990different injected charges. At first no charge was injected which
991corresponds to measure the fast shaper pedestal. The result is
992represented on \refFig{fig:40}  for each channel. The  S-curves
993are superimposed meaning good homogeneity. The spread
994is of one DAC count ($LSB DAC = 1.78$~mV) or 0.06~pe.
995
996\begin{figure}[!htbp]
997\centering
998\includegraphics[width=0.7\columnwidth,height=6cm]{img40.jpg}
999\caption{Pedestal S-curves for channel 1 to 16.}
1000\label{fig:40}
1001\end{figure}
1002
1003The trigger efficiency was then measured for a
1004fixed injected charge of 10~pe. On \refFig{fig:41} are represented the S-curves
1005obtained with 200 measurements of the trigger for all channels varying
1006the threshold. The homogeneity is proved by a spread of 7 DAC unit (0.4~pe) and a noise of 0.07 pe ($RMS =2.19$).
1007
1008\begin{figure}[!htbp]
1009\centering
1010                \begin{tabular}{rl}
1011                        \multicolumn{2}{c}{\includegraphics[width=0.5\columnwidth,height=6cm]{img41a.jpg}}\\
1012                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41b.jpg}&
1013                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41c.jpg}
1014                \end{tabular}
1015\caption{Fast shaper and trigger (top panel); S-curves for input of 10~pe (left panel);
1016uniformity plot for channel 1 to 16 (right panel).}
1017\label{fig:41}
1018\end{figure}
1019
1020The trigger output is studied also by scanning
1021the threshold for a fixed channel and changing the injected charge. On \refFig{fig:42}
1022on the left panel  is shown the trigger efficiency versus the DAC unit and on
1023the right panel is plotted the threshold versus the injected charge but only
1024until 0.5~pC. From these measurements a noise of 10~fC has been
1025extrapolated. Therefore the threshold is only possible above $10~\sigma$ of the noise due to the discriminator coupling
1026(\refFig{fig:43}).
1027
1028\begin{figure}[!htbp]
1029\centering
1030                \begin{tabular}{rl}
1031                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}
1032                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
1033                \end{tabular}
1034\caption{Trigger efficiency vs DAC count up to 300~pe (left panel) and
1035until 3~pe (right panel).}
1036\label{fig:42}
1037\end{figure}
1038
1039\begin{figure}[!htbp]
1040\centering
1041\includegraphics[width=0.7\columnwidth,height=6cm]{img43.jpg}
1042\caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
1043\label{fig:43}
1044\end{figure}
1045
1046The trigger coupling illustrated in \refFig{fig:44} with the
1047injected charge in channel 1 and output signal observed in channel 2,
1048shows a coupling signal around 25~mV (10~fC). This coupling signal is
1049due, probably, to the input power supply ($V_{dd-pa}$ and $V_{ss}$).
1050
1051\begin{figure}[!htbp]
1052\includegraphics[width=0.7\columnwidth,height=6cm]{img44.jpg}
1053\caption{Trigger coupling signal.}
1054\label{fig:44}
1055\end{figure}
1056
1057%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1058\subsection{ADC characterisation}
1059\label{ssec:ADCMeas}
1060%%%%%%%%%%%%%%%%%%%%%%%%%%%
1061The ADC performance has been studied alone and with the whole chain. Injecting to the
1062 ADC input directly a DC voltage by the internal DAC,
1063in order to have a voltage level as stable as possible, were measured
1064the ADC values for all channels (\refFig{fig:45}).
1065
1066The measurement is repeated 10000 times for
1067each channel and in the first plot of the LabView front panel window (\refFig{fig:45}). The
1068minimal, maximal and mean values, over all acquisitions, for each
1069channel are plotted. In the second plot there is the rms charge value
1070versus channel number with a value in the range $[0.5, 1]$ ADC unit.
1071Finally the third plot shows an example of charge amplitude
1072distribution for a single channel: a spread of 5 ADC counts is
1073obtained.
1074
1075\begin{figure}[!htbp]
1076\centering
1077\includegraphics[width=0.7\columnwidth,height=6cm]{img45.jpg}
1078\caption{ADC measurements with DC input 1.45~V (middle scale).}
1079\label{fig:45}
1080\end{figure}
1081
1082The ADC is suited to a multichannel conversion
1083so the uniformity and linearity are studied in order to characterize
1084the ADC behaviour. On \refFig{fig:46} is represented the ADC transfer function for the
108510-bit ADC versus the input voltage level. All channels are represented
1086and have plots superimposed.
1087
1088\begin{figure}[!htbp]
1089\centering
1090\includegraphics[width=0.7\columnwidth,height=6cm]{img46.jpg}
1091\caption{10  bits ADC transfer function vs input charge.}
1092\label{fig:46}
1093\end{figure}
1094
1095The good homogeneity observed is confirmed by
1096the linear fit parameters comparison. In  are plotted the slope and the
1097intercept distributions for all channels. The RMS slope value of 0.143
1098and the RMS intercept value of 0.3 confirm the 10-bits ADC uniformity
1099(\refTab{tab:12}).
1100
1101\begin{figure}[!htbp]
1102\centering
1103                \begin{tabular}{rl}
1104                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47a.jpg}&
1105                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47b.jpg}
1106                \end{tabular}
1107\caption{Evolution of the fit parameters (slope on the
1108left panel and intercept on the right panel) as a function of the channel
1109number.}
1110\label{fig:47}
1111\end{figure}
1112
1113\begin{table}
1114\centering
1115\caption{TO BE COMPLETED. 10 bits ADC parameter fits.... 25 acquisitions per channel, $LSB = 1.06$~mV...}
1116\label{tab:12}
1117\begin{tabular}{|l|c|c|}
1118\hline
1119   & Slope      & Intercept \\
1120Mean & 936.17   & 859.8 \\
1121RMS  & 0.14     & 0.3   \\ 
1122\hline
1123\end{tabular}
1124\end{table}
1125
1126In \refFig{fig:48} are shown respectively the 12, 10 and 8 bits ADC
1127linearity plots with the 25 measurements made for each input voltage
1128level. The average ADC count value is plotted versus the input signal.
1129The residuals from $-1.5$ to $0.9$ ADC units for the 12-bits ADC; from $-0.5$
1130to $0.4$ for the 10-bit ADC and from $-0.5$ to $0.5$ for the 8-bit ADC. This prove
1131the good ADC behaviour in terms of Integral non linearity.
1132
1133\begin{figure}[!htbp]
1134\centering
1135                \begin{tabular}{c}
1136                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
1137                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48b.jpg}\\
1138                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48c.jpg}
1139                \end{tabular}
1140\caption{12, 10, 8 bit ADC linearity.}
1141\label{fig:48}
1142\end{figure}
1143In terms of Differential non linearity, the
1144value from $-1.0$ to $0.65$ for the 10 bit ADC and from $-0.3$ to $0.2$ for the 8
1145bit ADC, show us a good behaviour even if the plots are the results of
1146preliminary measurements.
1147
1148\begin{figure}[!htb]
1149        \centering
1150                \begin{tabular}{rl}
1151                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}
1152                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
1153                \end{tabular}
1154\caption{Differential non linearity.}
1155\label{fig:49}
1156\end{figure}
1157
1158Once the ADC performances have been tested
1159separately, the measurements are performed on the complete chain. The
1160results of the input signal autotriggered, held in the T\&H and
1161converted in the ADC are illustrated in  where are plotted the 10-bit
1162ADC counts in function of the variable input charge (up to 50~pe). A
1163good linearity of $1.4~\%$ and a noise of 6 ADC units are obtained. In \refTab{tab:13}
1164are listed the setting value for measurements.
1165
1166\begin{table}
1167        \centering
1168        \caption{TO BE COMPELTED. $G_{pa}=14$ ($C_{in}=7$~pF , $C_f=0.5$~pF),
1169Slow shaper $RC=50$~ns,
1170DAC delay: $bit<0> = 1$ \& $bit<2> = 1$.
1171}
1172        \label{tab:13}
1173\begin{tabular}{|l|c|c|c|}
1174\hline
1175Parameters & 12 bits ADC & 10 bits ADC & 8 bits ADC\\
1176\hline 
1177LSB         & $0.27$ & $1.06$~mV  & $4.26$~mV\\
1178Min ADC count at 3~pe& $509$ &  $132$ & $33$  \\
1179Max ADC count at 50~pe & $3873$ &  $989$ & $241$ \\
1180Residuals in ADC units &$[21,54]$ & $[6,14]$  & $[2,3]$ \\
1181\hline
1182\end{tabular}
1183\end{table}
1184
1185\begin{figure}[!htbp]
1186\centering
1187\includegraphics[width=0.7\columnwidth,height=6cm]{img50.jpg}
1188\caption{10 bit ADC linearity.}
1189\label{fig:50}
1190\end{figure}
1191
1192On \refFig{fig:51} is plotted the 8-bit linearity at $1.4~\%$
1193and a noise of 1.53 ADC unit. In \refTab{tab:13} are listed the setting value for
1194measurements.
1195
1196\begin{figure}[!htbp]
1197\centering
1198\includegraphics[width=0.7\columnwidth,height=6cm]{img51.jpg}
1199\caption{8 bit ADC linearity.}
1200\label{fig:51}
1201\end{figure}
1202
1203On  \refFig{fig:53} is plotted the 12-bit linearity
1204at $1.4~\%$ and a noise of 23.69 ADC unit. In \refTab{tab:13} are listed the setting
1205value for measurements.
1206
1207\begin{figure}[!htbp]
1208\centering
1209\includegraphics[width=0.7\columnwidth,height=6cm]{img52.jpg}
1210\caption{12 bit ADC linearity.}
1211\label{fig:52}
1212\end{figure}
1213
1214%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1215\section{Measurements with PMTs}
1216\label{sec:MeasWithPMT}
1217%%%%%%%%%%%%%%%%%%%%%%%%%%%
1218The first measurements with a photomultiplier at input are started in
1219IPNO at Orsay.
1220
1221\begin{figure}[!htbp]
1222\centering
1223\includegraphics[width=0.7\columnwidth,height=6cm]{img53.jpg}
1224\caption{TO BE COMPLETED}
1225\label{fig:53}
1226\end{figure}
1227
1228\acknowledgments
1229%\begin{acknowledgments}
1230This work, especially one of the author, is supported by the National Reasaerch Agency under contract ANR-06-BLAN-0186.
1231%\end{acknowledgments}
1232%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1233\newpage
1234%\section*{References}
1235\bibliography{campagne}
1236\end{document}
1237
1238
Note: See TracBrowser for help on using the repository browser.