1 |
|
---|
2 | #include "lobe.h"
|
---|
3 | #include "radutil.h"
|
---|
4 | #include "randfmt.h"
|
---|
5 | typedef FMTRandGen RandomGenerator ;
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "fftwserver.h"
|
---|
9 | #include "matharr.h"
|
---|
10 | #include "ctimer.h"
|
---|
11 |
|
---|
12 |
|
---|
13 | /* --Methode-- */
|
---|
14 | BeamEffect::BeamEffect(Four2DResponse& resp, bool preservefreq0)
|
---|
15 | : fresp_(resp), preservefreq0_(preservefreq0)
|
---|
16 | // resp doit avoir sa longueur d'onde de reference en metres
|
---|
17 | {
|
---|
18 | }
|
---|
19 |
|
---|
20 |
|
---|
21 |
|
---|
22 | /* --Methode-- */
|
---|
23 | void BeamEffect::ApplyLobe3D(TArray< TF >& a, double dx, double dy, double f0, double df)
|
---|
24 | // dx, dy en radioans, f0, df en MHz
|
---|
25 | {
|
---|
26 | Timer tm("BeamEffect::ApplyLobe3D");
|
---|
27 | FFTWServer ffts(true);
|
---|
28 | ffts.setNormalize(true);
|
---|
29 |
|
---|
30 | H21Conversions conv;
|
---|
31 |
|
---|
32 | TArray< complex<TF> > fourAmp;
|
---|
33 | double dkx = DeuxPI/(double)a.SizeX()/dx;
|
---|
34 | double dky = DeuxPI/(double)a.SizeY()/dy;
|
---|
35 |
|
---|
36 | for(sa_size_t kz=0; kz<a.SizeZ(); kz++) {
|
---|
37 | TArray< TF > slice( a(Range::all(), Range::all(), kz) );
|
---|
38 | ffts.FFTForward(slice, fourAmp);
|
---|
39 | conv.setFrequency(f0+kz*df);
|
---|
40 | fresp_.setLambda(conv.getLambda());
|
---|
41 | // cout << " DEBUG*" << kz << " lambda=" << conv.getLambda() << " lambda_ratio_=" << fresp_.lambda_ratio_ << endl;
|
---|
42 | ApplyLobeK2D(fresp_, fourAmp, dkx, dky);
|
---|
43 | ffts.FFTBackward(fourAmp, slice, true);
|
---|
44 | if (kz%20==0) cout << "BeamEffect::ApplyLobe3D() done kz=" << kz << " / a.SizeZ()=" << a.SizeZ() << endl;
|
---|
45 | }
|
---|
46 | double mean, sigma;
|
---|
47 | TF min, max;
|
---|
48 | a.MinMax(min, max);
|
---|
49 | MeanSigma(a, mean, sigma);
|
---|
50 | cout << " BeamEffect::ApplyLobe3D() - Result Min=" << min << " Max=" << max
|
---|
51 | << " Mean=" << mean << " Sigma=" << sigma << endl;
|
---|
52 | return;
|
---|
53 | }
|
---|
54 |
|
---|
55 | /* --Methode-- */
|
---|
56 | void BeamEffect::Correct2RefLobe(Four2DResponse& rep, TArray< TF >& a, double dx, double dy, double f0, double df)
|
---|
57 | // dx, dy en radioans, f0, df en MHz
|
---|
58 | {
|
---|
59 | Timer tm("BeamEffect::Correct2RefLobe");
|
---|
60 | FFTWServer ffts(true);
|
---|
61 | ffts.setNormalize(true);
|
---|
62 |
|
---|
63 | H21Conversions conv;
|
---|
64 |
|
---|
65 | TArray< complex<TF> > fourAmp;
|
---|
66 | double dkx = DeuxPI/(double)a.SizeX()/dx;
|
---|
67 | double dky = DeuxPI/(double)a.SizeY()/dy;
|
---|
68 |
|
---|
69 | for(sa_size_t kz=0; kz<a.SizeZ(); kz++) {
|
---|
70 | TArray< TF > slice( a(Range::all(), Range::all(), kz) );
|
---|
71 | ffts.FFTForward(slice, fourAmp);
|
---|
72 | conv.setFrequency(f0+kz*df);
|
---|
73 | fresp_.setLambda(conv.getLambda());
|
---|
74 | Four2DRespRatio rratio(rep, fresp_);
|
---|
75 | ApplyLobeK2D(rratio, fourAmp, dkx, dky);
|
---|
76 | ffts.FFTBackward(fourAmp, slice, true);
|
---|
77 | if (kz%20==0) cout << "BeamEffect::Correct2RefLobe() done kz=" << kz << " / a.SizeZ()=" << a.SizeZ() << endl;
|
---|
78 | }
|
---|
79 | double mean, sigma;
|
---|
80 | TF min, max;
|
---|
81 | a.MinMax(min, max);
|
---|
82 | MeanSigma(a, mean, sigma);
|
---|
83 | cout << " BeamEffect::Correct2RefLobe() - Result Min=" << min << " Max=" << max
|
---|
84 | << " Mean=" << mean << " Sigma=" << sigma << endl;
|
---|
85 | return;
|
---|
86 | }
|
---|
87 |
|
---|
88 | /* --Methode-- */
|
---|
89 | void BeamEffect::ApplyLobeK2D(Four2DResponse& rep, TArray< complex<TF> >& fourAmp, double dkx, double dky)
|
---|
90 | {
|
---|
91 | complex<TF> cf0=fourAmp(0,0);
|
---|
92 | double kxx, kyy;
|
---|
93 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) {
|
---|
94 | kyy = (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky : (double)ky*dky;
|
---|
95 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) {
|
---|
96 | kxx=(double)kx*dkx;
|
---|
97 | fourAmp(kx, ky) *= complex<TF>(rep(kxx, kyy), 0.);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | if (preservefreq0_) fourAmp(0, 0)=cf0;
|
---|
101 | return;
|
---|
102 | }
|
---|
103 |
|
---|
104 | /* --Methode-- */
|
---|
105 | TArray< TF > BeamEffect::ReSample(TArray< TF >& a, double xfac, double yfac, double zfac)
|
---|
106 | {
|
---|
107 | Timer tm("BeamEffect::ReSample");
|
---|
108 |
|
---|
109 | sa_size_t szx = a.SizeX()*xfac;
|
---|
110 | sa_size_t szy = a.SizeY()*yfac;
|
---|
111 | sa_size_t szz = a.SizeZ()*zfac;
|
---|
112 |
|
---|
113 | TArray<TF> rsa(szx, szy, szz);
|
---|
114 | for(sa_size_t kz=0; kz<rsa.SizeZ(); kz++) {
|
---|
115 | sa_size_t kza=kz/zfac;
|
---|
116 | if ((kza<0)||(kza>=a.SizeZ())) continue;
|
---|
117 | for(sa_size_t ky=0; ky<rsa.SizeY(); ky++) {
|
---|
118 | sa_size_t kya=ky/yfac;
|
---|
119 | if ((kya<0)||(kya>=a.SizeY())) continue;
|
---|
120 | for(sa_size_t kx=0; kx<rsa.SizeX(); kx++) {
|
---|
121 | sa_size_t kxa=kx/xfac;
|
---|
122 | if ((kxa<0)||(kxa>=a.SizeX())) continue;
|
---|
123 | rsa(kx,ky,kz)=a(kxa,kya,kza);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|
127 | return rsa;
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | /* --Methode-- */
|
---|
132 | void BeamEffect::AddNoise(TArray< TF >& a, double pixsignoise, bool fgcmsig)
|
---|
133 | {
|
---|
134 | cout << "BeamEffect::AddNoise() PixelSigmaNoise=" << pixsignoise << endl;
|
---|
135 | RandomGenerator rg;
|
---|
136 | for(sa_size_t kz=0; kz<a.SizeZ(); kz++)
|
---|
137 | for(sa_size_t ky=0; ky<a.SizeY(); ky++)
|
---|
138 | for(sa_size_t kx=0; kx<a.SizeX(); kx++)
|
---|
139 | a(kx,ky,kz) += rg.Gaussian(pixsignoise);
|
---|
140 | if (fgcmsig) {
|
---|
141 | double mean, sigma;
|
---|
142 | MeanSigma(a, mean, sigma);
|
---|
143 | cout << "BeamEffect::AddNoise()-done, Mean=" << mean << " Sigma=" << sigma << endl;
|
---|
144 | }
|
---|
145 | return;
|
---|
146 | }
|
---|