[3756] | 1 | // Classes to compute 2D
|
---|
| 2 | // R. Ansari - Nov 2008, May 2010
|
---|
| 3 |
|
---|
| 4 | #include "mdish.h"
|
---|
| 5 |
|
---|
| 6 |
|
---|
| 7 | //--------------------------------------------------
|
---|
| 8 | // -- Four2DResponse class
|
---|
| 9 | //--------------------------------------------------
|
---|
| 10 | // Constructor
|
---|
| 11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy)
|
---|
| 12 | : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
|
---|
| 13 | {
|
---|
| 14 | }
|
---|
| 15 |
|
---|
| 16 | // Return the response for the wave vecteor (kx,ky)
|
---|
| 17 | double Four2DResponse::Value(double kx, double ky)
|
---|
| 18 | {
|
---|
| 19 | double wk,wkx,wky;
|
---|
| 20 | switch (typ_)
|
---|
| 21 | {
|
---|
| 22 | case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
|
---|
| 23 | wk = sqrt(kx*kx+ky*ky)/dx_;
|
---|
| 24 | wk = 0.5*wk*wk;
|
---|
| 25 | return exp(-wk);
|
---|
| 26 | break;
|
---|
| 27 | case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
| 28 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
| 29 | return ( (wk<1.)?(1.-wk):0.);
|
---|
| 30 | break;
|
---|
| 31 | case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
| 32 | wkx = kx/2./M_PI/dx_;
|
---|
| 33 | wky = ky/2./M_PI/dy_;
|
---|
| 34 | return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
|
---|
| 35 | break;
|
---|
| 36 | default:
|
---|
| 37 | return 1.;
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 | // Return a vector representing the power spectrum (for checking)
|
---|
| 41 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
|
---|
| 42 | {
|
---|
| 43 | double kxmx = 1.2*DeuxPI*dx_;
|
---|
| 44 | double kymx = 1.2*DeuxPI*dy_;
|
---|
| 45 | if (typ_<3) kymx=kxmx;
|
---|
| 46 | Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
|
---|
| 47 |
|
---|
| 48 | for(int j=0; j<h2.NBinY(); j++)
|
---|
| 49 | for(int i=0; i<h2.NBinX(); i++)
|
---|
| 50 | h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
|
---|
| 51 | return h2;
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | //---------------------------------------------------------------
|
---|
| 55 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
| 56 | //---------------------------------------------------------------
|
---|
| 57 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
|
---|
| 58 | : Four2DResponse(0,d,d) , hrep_(hrep)
|
---|
| 59 | {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | double Four2DRespTable::Value(double kx, double ky)
|
---|
| 63 | {
|
---|
| 64 | int_4 i,j;
|
---|
| 65 | if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
|
---|
| 66 | (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
|
---|
| 67 | hrep_.FindBin(kx, ky, i, j);
|
---|
| 68 | return hrep_(i, j);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | //--- Classe simple pour le calcul de rotation
|
---|
| 72 | class Rotation {
|
---|
| 73 | public:
|
---|
| 74 | Rotation(double tet, double phi)
|
---|
| 75 | {
|
---|
| 76 | // (Teta,Phi) = Direction de visee
|
---|
| 77 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
|
---|
| 78 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
|
---|
| 79 | // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
|
---|
| 80 | // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
|
---|
| 81 | double ct = cos(tet);
|
---|
| 82 | double st = sin(tet);
|
---|
| 83 | // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
|
---|
| 84 | // double cf = cos(phi+M_PI/2);
|
---|
| 85 | // double sf = sin(phi+M_PI/2);
|
---|
| 86 | double cf = cos(phi);
|
---|
| 87 | double sf = sin(phi);
|
---|
| 88 | double cp = 1.; // cos((double)pO);
|
---|
| 89 | double sp = 0.; // sin((double)pO);
|
---|
| 90 | RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
|
---|
| 91 | RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
|
---|
| 92 | RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
|
---|
| 93 | }
|
---|
| 94 | inline void Do(double& x, double& y)
|
---|
| 95 | {
|
---|
| 96 | double xx=x;
|
---|
| 97 | double yy=y;
|
---|
| 98 | x = RE[0][0]*xx+RE[0][1]*yy;
|
---|
| 99 | y = RE[1][0]*xx+RE[1][1]*yy;
|
---|
| 100 | }
|
---|
| 101 | double RE[3][3];
|
---|
| 102 | };
|
---|
| 103 |
|
---|
| 104 | // -----------------------------------
|
---|
| 105 | // -- Classe ressemblant a un histo 2D
|
---|
| 106 | // -----------------------------------
|
---|
| 107 | QHis2D::QHis2D()
|
---|
| 108 | : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
|
---|
| 109 | {
|
---|
| 110 | }
|
---|
| 111 | QHis2D::QHis2D(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
|
---|
| 112 | : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
|
---|
| 113 | {
|
---|
| 114 | Define(xMin, xMax, nxb, yMin, yMax, nyb);
|
---|
| 115 | }
|
---|
| 116 | void QHis2D::Define(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
|
---|
| 117 | {
|
---|
| 118 | nx=nxb; ny=nyb;
|
---|
| 119 | xmin=xMin; xmax=xMax;
|
---|
| 120 | ymin=yMin; ymax=yMax;
|
---|
| 121 | dxb=(xmax-xmin)/(double)nx;
|
---|
| 122 | dyb=(ymax-ymin)/(double)ny;
|
---|
| 123 | sa_size_t sz[5]; sz[0]=nx; sz[1]=ny;
|
---|
| 124 | aw.ReSize(2,sz);
|
---|
| 125 | sumw0=0.;
|
---|
| 126 | return;
|
---|
| 127 | }
|
---|
| 128 | double QHis2D::Add(r_8 x, r_8 y, r_8 w, bool fgfh)
|
---|
| 129 | {
|
---|
| 130 | sa_size_t ix = (sa_size_t)((x-xmin)/dxb);
|
---|
| 131 | sa_size_t jy = (sa_size_t)((y-ymin)/dyb);
|
---|
| 132 | if ((ix<0)||(ix>=nx)||(jy<0)||(jy>=ny)) return 0.;
|
---|
| 133 | double rw = ((ix==0)&&(jy==0)) ? w : 0.;
|
---|
| 134 | sumw0 += rw;
|
---|
| 135 | if (fgfh) aw(ix,jy) += w;
|
---|
| 136 | return rw;
|
---|
| 137 | }
|
---|
| 138 | Histo2D QHis2D::Convert()
|
---|
| 139 | {
|
---|
| 140 | Histo2D h2(xmin,xmax,nx,ymin,ymax,ny);
|
---|
| 141 | for(int_4 j=0; j<ny; j++)
|
---|
| 142 | for(int_4 i=0; i<nx; i++) h2(i,j) = aw(i,j);
|
---|
| 143 | return h2;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | //----------------------------------------------------------------------
|
---|
| 147 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
| 148 | //----------------------------------------------------------------------
|
---|
| 149 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
|
---|
| 150 | : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
|
---|
| 151 | {
|
---|
| 152 | SetThetaPhiRange();
|
---|
| 153 | SetRespHisNBins();
|
---|
| 154 | mcnt_=0;
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | Histo2D MultiDish::GetResponse()
|
---|
| 158 | {
|
---|
| 159 | cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
|
---|
| 160 | double kmx = 1.2*DeuxPI*dmax_/lambda_;
|
---|
| 161 | /*
|
---|
| 162 | h2w_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
|
---|
| 163 | h2cnt_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
|
---|
| 164 | h2w_.Zero();
|
---|
| 165 | h2cnt_.Zero();
|
---|
| 166 | */
|
---|
| 167 | h2w_.Define(0.,kmx,nx_,0.,kmx,ny_);
|
---|
| 168 |
|
---|
| 169 | double dold = dishes_[0].D/lambda_;
|
---|
| 170 | double dolx = dishes_[0].Dx/lambda_;
|
---|
| 171 | double doly = dishes_[0].Dy/lambda_;
|
---|
| 172 |
|
---|
| 173 | Four2DResponse rd(2, dold, dold);
|
---|
| 174 | Four2DResponse rdr(3, dolx, doly);
|
---|
| 175 |
|
---|
| 176 | if (!dishes_[0].isCircular()) rd = rdr;
|
---|
| 177 |
|
---|
| 178 | double dtet = thetamax_/(double)ntet_;
|
---|
| 179 | double dphi = phimax_/(double)ntet_;
|
---|
| 180 |
|
---|
| 181 | double sumw = 0.;
|
---|
| 182 | for(int kt=0; kt<ntet_; kt++)
|
---|
| 183 | for(int jp=0; jp<nphi_; jp++)
|
---|
| 184 | sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
|
---|
| 185 |
|
---|
| 186 | double kx0 = DeuxPI*fabs(dishes_[1].X-dishes_[0].X)/lambda_;
|
---|
| 187 | double ky0 = DeuxPI*fabs(dishes_[1].Y-dishes_[0].Y)/lambda_;
|
---|
| 188 | int_4 ib, jb;
|
---|
| 189 | // h2w_ /= h2cnt_;
|
---|
| 190 | Histo2D h2 = h2w_.Convert();
|
---|
| 191 | h2.FindBin(kx0, ky0, ib, jb);
|
---|
| 192 | cout << " ---- MultiDish::GetResponse() VMin=" << h2.VMin() << " VMax= " << h2.VMax()
|
---|
| 193 | << " h(0,0)=" << h2(0,0) << " h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
|
---|
| 194 | // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
|
---|
| 195 | double fnorm=1.;
|
---|
| 196 | if (h2.VMax() > sumw) {
|
---|
| 197 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
| 198 | cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
| 199 | << " Renormalizing x NDishes/sumw " << fnorm << endl;
|
---|
| 200 | }
|
---|
| 201 | else {
|
---|
| 202 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
| 203 | cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " VMax=" << h2.VMax()
|
---|
| 204 | << " Renormalizing x NDishes/h2.VMax() " << fnorm << endl;
|
---|
| 205 | }
|
---|
| 206 | h2 *= fnorm;
|
---|
| 207 | cout << " ---- MultiDish::GetResponse() APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
|
---|
| 208 | << h2(0,0) << endl;
|
---|
| 209 | return h2;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | /*
|
---|
| 213 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
| 214 | {
|
---|
| 215 | double xxp = kx0+x;
|
---|
| 216 | double yyp = ky0+y;
|
---|
| 217 | double sumw=0.;
|
---|
| 218 | int_4 ib, jb;
|
---|
| 219 | h2w_.FindBin(xxp, yyp, ib, jb);
|
---|
| 220 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
| 221 | if (fgfh) {
|
---|
| 222 | h2w_.Add(xxp, yyp, w);
|
---|
| 223 | h2cnt_.Add(xxp, yyp, 1.);
|
---|
| 224 | }
|
---|
| 225 | double xxm=kx0-x;
|
---|
| 226 | double yym=ky0-y;
|
---|
| 227 | if (xxm>0.) {
|
---|
| 228 | h2w_.FindBin(xxm, yyp, ib, jb);
|
---|
| 229 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
| 230 | if (fgfh) {
|
---|
| 231 | h2w_.Add(xxm, yyp, w);
|
---|
| 232 | h2cnt_.Add(xxm, yyp, 1.);
|
---|
| 233 | }
|
---|
| 234 | if (yym>0.) {
|
---|
| 235 | h2w_.FindBin(xxm, yym, ib, jb);
|
---|
| 236 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
| 237 | if (fgfh) {
|
---|
| 238 | h2w_.Add(xxm, yym, w);
|
---|
| 239 | h2cnt_.Add(xxm, yym, 1.);
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | if (yym>0.) {
|
---|
| 244 | h2w_.FindBin(xxp, yym, ib, jb);
|
---|
| 245 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
| 246 | if (fgfh) {
|
---|
| 247 | h2w_.Add(xxp, yym, w);
|
---|
| 248 | h2cnt_.Add(xxp, yym, 1.);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | return sumw;
|
---|
| 252 | }
|
---|
| 253 | */
|
---|
| 254 |
|
---|
| 255 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
| 256 | {
|
---|
| 257 | double xxp = kx0+x;
|
---|
| 258 | double yyp = ky0+y;
|
---|
| 259 | double sumw=0.;
|
---|
| 260 | sumw += h2w_.Add(xxp, yyp, w, fgfh);
|
---|
| 261 | double xxm=kx0-x;
|
---|
| 262 | double yym=ky0-y;
|
---|
| 263 | if (xxm>0.) {
|
---|
| 264 | sumw += h2w_.Add(xxm, yyp, w, fgfh);
|
---|
| 265 | if (yym>0.) sumw += h2w_.Add(xxm, yym, w, fgfh);
|
---|
| 266 | }
|
---|
| 267 | if (yym>0.) sumw += h2w_.Add(xxp, yym, w, fgfh);
|
---|
| 268 | return sumw;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
|
---|
| 272 | {
|
---|
| 273 | // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
|
---|
| 274 |
|
---|
| 275 | double dx = h2w_.WBinX()/5;
|
---|
| 276 | double dy = h2w_.WBinY()/5;
|
---|
| 277 | int nbx = DeuxPI*rd.Dx()/dx;
|
---|
| 278 | int nby = DeuxPI*rd.Dy()/dy;
|
---|
| 279 | dx = DeuxPI*rd.Dx()/(double)nbx;
|
---|
| 280 | dy = DeuxPI*rd.Dy()/(double)nby;
|
---|
| 281 | if (mcnt_==0)
|
---|
| 282 | cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
|
---|
| 283 | mcnt_++;
|
---|
| 284 |
|
---|
| 285 | double sumw = 0.;
|
---|
| 286 | Rotation rot(theta, phi);
|
---|
| 287 |
|
---|
| 288 | for(size_t i=0; i<dishes_.size(); i++) {
|
---|
| 289 | for(size_t j=i; j<dishes_.size(); j++) {
|
---|
| 290 | double kx0 = DeuxPI*fabs(dishes_[i].X-dishes_[j].X)/lambda_;
|
---|
| 291 | double ky0 = DeuxPI*fabs(dishes_[i].Y-dishes_[j].Y)/lambda_;
|
---|
| 292 | rot.Do(kx0, ky0);
|
---|
| 293 | if (kx0<0) kx0=-kx0;
|
---|
| 294 | if (ky0<0) ky0=-ky0;
|
---|
| 295 | bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
|
---|
| 296 | for(int ix=0; ix<nbx; ix++)
|
---|
| 297 | for(int jy=0; jy<nby; jy++) {
|
---|
| 298 | double x = ix*dx;
|
---|
| 299 | double y = jy*dy;
|
---|
| 300 | sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
|
---|
| 301 | }
|
---|
| 302 | }
|
---|
| 303 | // if (i%10==0)
|
---|
| 304 | // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
|
---|
| 305 | // << " theta=" << theta << " phi=" << phi << endl;
|
---|
| 306 | }
|
---|
| 307 | return sumw;
|
---|
| 308 | }
|
---|
| 309 |
|
---|